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Type 1 diabetes (T1D) is one of the most common autoimmune diseases in children. Previous studies have suggested that
endothelial progenitor cells (EPCs) might be engaged in the regulating of the biological processes in T1D and folic acid (FA)
might be engaged in regulating EPC function. The present study has identified 716 downregulated genes and 617 upregulated
genes in T1D EPC cases after treated with FA. Bioinformatics analysis has shown that these DEGs were engaged in regulating
metabolic processes, cell proliferation-related processes, bone marrow development, cell adhesion, platelet degranulation, and
cellular response to growth factor stimulus. Furthermore, we have conducted and identified hub PPI networks. Importantly, we
have identified 6 upregulated genes (POLR2A, BDNF, CDC27, LTN1, RAB1A, and CUL2) and 8 downregulated genes (SHC1,
GRIN2B, TTN, GNAL, GNB2, PTK2, TF, and TLR9) as key regulators involved in the effect of FA on endothelial progenitor
cell transcriptome of patients with T1D. We think that this study could provide novel information to understand the roles of FA
in regulating EPCs of T1D patients.

1. Introduction

Type 1 diabetes (T1D) belongs to a type of autoimmune
diseases featuring the destruction of insulin-producing
pancreatic β-cells caused by the immune systems [1]. Type
1 diabetes is regarded as one of the most frequent chronic
diseases in children and teenagers. It has contributed to a
series of symptoms [2]. Insufficient control of hyperglycemia
can help develop diabetic nephropathy, neuropathy, and
retinopathy, which are the major causes of kidney failure,
blindness, and nontraumatic amputation [3]. Patients suffer-
ing from T1D are insulin dependent and highly prone to
develop vascular diseases, end-stage renal disease, and neuro-
logical damages [3]. The detailed mechanisms regulating
T1D and novel therapeutic strategies for this disease remain
to be further explored. Endothelial progenitor cells (EPCs)
stem from the bone marrow and are critical in regulating
revascularization and endothelial homeostasis [3]. Increasing
evidence has shown that EPCs are significantly decreased in

diabetes patients compared with normal samples, suggesting
that EPCs may be involved in the regulating of the biological
processes in T1D [4].

With the development of RNA-sequence and microarray
methods, emerging studies have explored the pathological
mechanisms of human diseases using these novel methods
and a lot of data are produced. By analyzing the big data,
the researchers could find novel and useful information to
understand the progression of human diseases. For example,
Safari et al. have reported that YBX1, SRPK1, PSMA1/3, and
XRCC6 were key regulators of T1D by using protein-
protein interaction network analysis. Jia et al. have identi-
fied 329 downregulated genes and 192 upregulated genes
in childhood-onset type 2 diabetes [5]. Van et al. have
reported that against healthy subjects, there were 1591
genes differently expressed in T1D samples [6].

Folic acid (FA) has been reported to be important in
human cell proliferation [7]. Several previous studies have
shown that FA was involved in regulating endothelial
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progenitor cell function and associated with the progression
of coronary artery disease, hypercholesterolemia, and diabe-
tes. However, the mechanisms of FA in regulating T1D
remain unclear. This study has tried to determine differen-
tially expressed mRNAs after treated with FA by analyzing
a public dataset (GSE17635) [8]. Furthermore, coexpression
analysis and bioinformatics analysis have been used to
identify hub genes involved in the effect of FA on endothelial
progenitor cell transcriptome of patients with T1D.

2. Material and Methods

2.1. Microarray Data. The microarray data of GSE17635 are
accessible in the National Center of Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus database (GEO,
http://www.ncbi.nlm.nih.gov/geo/). This dataset is aimed at
investigating the difference between the gene expression pro-
files of endothelial progenitor cells from T1D patients before
(n = 11) and after a four-week duration of FA supplementa-
tion (n = 10) and that from healthy subjects (n = 11). Patients
with T1D (n = 20) were diagnosed no less than one year
prior to the participation in this study. They were all
from the outpatient clinic of the Department of Internal
Medicine of the University Medical Centre Utrecht, The
Netherlands. In manifest liver disease, macrovascular dis-
ease, creatinine > 120 μmol/L, homocysteine > 15μmol/L,
and untreated thyroid disease, the exclusion criteria were
present. If those patients were receiving retreatment of vasoac-
tive medication (angiotensin II antagonists, angiotensin-
converting enzyme inhibitors, nonsteroidal anti-inflammatory
drugs (NSAIDs), statins, vitamins, or FA), then the treatment
ceased no less than three weeks before starting this study.
Twenty both age-matched and gender-matched participants
who were in healthy conditions acted as controls. A question-
naire was used to appraise the cardiovascular risk, and themea-
surement of some clinical parameters like blood pressure,
length and weight was carried out.

The collection of the peripheral blood samples from
twenty subjects with T1D and twenty age-matched and
gender-matched healthy controls (CTR) at baseline was con-
ducted. A 4-week treatment with FA (Ratiopharm) 5mg/day
was served to T1D subjects, and then, the collection of
peripheral blood samples (19/20 patients) was conducted
again. The protocol of this study has obtained approval from
the Medical Ethical Committee of the University Medical
Centre Utrecht. The written informed consent [9] has been
provided by all the participants in this study.

GEO provided the downloads of the original datasets,
and the log2 transformation was employed to preprocess
them. The use of the limma package in R software version
3.3.0 (https://www.r-project.org/) has helped normalize all
the sample data. By employing the linear models for microar-
ray analysis (Limma) method [10], the identification of the
differentially expressed mRNA and lncRNAs was achieved.
An unpaired t-test was employed to count the P value of each
gene, and the Benjamini-Hochberg (BH) method [11] was
employed to adjust the P value into a false discovery rate
(FDR). Only those genes, the FDR of which was less than
0.01, were selected as DEGs.

2.2. Construction of the PPI Network and the Module
Analysis. As the protein interactions (physical and functional
associations) were to be predicted, this study constructed the
PPI network for DEGs (the minimum required interaction
score > 0:4) [9] employing the Search Tool for the Retrieval
of Interacting Genes (STRING). Following this construction
of the PPI network, the Mcode plugin (degree cut − off ≥ 2
and the nodes with edges ≥ 2 core) [12] was employed to
conduct a module analysis of the network. Besides, in order
to visualize the PPI networks [11], Cytoscape software ver-
sion 3.4.0 (http://cytoscape.org/download_old_versions.html)
was employed.

2.3. GO and KEGG Pathway Analyses. To figure out how
DEGs function, this study has used DAVID system [13]
(https://david.ncifcrf.gov/tools.jsp) to perform the analysis
of the GO function enrichment and the KEGG pathway
enrichment. The P value (hypergeometric P value) denotes
the significance of the pathway associated with the condi-
tions. P < 0:05 was considered to indicate a statistically
significant difference.

3. Results

3.1. Identification of DEGs in EPC of T1D Patients after
Treated with FA. This study has conducted the analysis of a
public expression profiling (GSE17635) in order to deter-
mine differently expressed genes (DEG) in endothelial
progenitor cells after treated with PA. This dataset has
included a total of 11 non-treated T1D EPC samples and 10
PA treated T1D EPC samples. This study has shown that
617 genes were overexpressed and 716 genes were downreg-
ulated in T1D EPC samples after treated with PA. Hierarchi-
cal clustering analysis of the DEGs is presented in Figure 1.
The top 10 upregulated and downregulated genes after FA
treatment were shown in Table 1.

3.2. Functional Annotation of DEGs in EPC of T1D Patients
after Treated with FA. Furthermore, in Figure 2, we have
performed GO analysis for these DEGs. Bioinformatics
analysis has shown that upregulated genes were related to
the regulation of a smoothened signaling pathway, ventricu-
lar system development, negative regulation of cell growth,
meiotic cell cycle, very long-chain fatty acid metabolic pro-
cess, collateral sprouting, glycosaminoglycan metabolic pro-
cess, bone marrow development, response to pain, and ER
to Golgi vesicle-mediated transport.

Meanwhile, this study has also shown that downregu-
lated genes were associated with the regulation of positive
regulation of transcription from RNA polymerase I pro-
moter, homophilic cell adhesion via plasma membrane adhe-
sion molecules, cell-cell signaling, cell adhesion, embryonic
skeletal system development, platelet degranulation, organ
morphogenesis, cellular response to growth factor stimulus,
regulation of potassium ion transport, and ion transmem-
brane transport.

3.3. PPI Network Analysis of DEGs. The prediction of the
interaction relationship between 617 upregulated DEGs and
716 downregulated DEGs has been achieved by using the
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STRING database. This study first sets up the PPI network by
the use of these DEGs. After constructing the PPI network,
the Mcode plugin (degree cut − off ≥ 3 and the nodes with
edges ≥ 3 core) was employed to carry out a module analysis
of it. The identification of 23 hub-networks was found in
the downregulated DEG-mediated PPI networks and that
of 17 hub-networks in the upregulated DEG-mediated
PPI networks.

Figure 3 has presented the top 3 hub-networks in upreg-
ulated DEG-mediated PPI networks. Figure 3(a) shows that

there are 18 nodes and 183 edges in Hub-network 1.
Figure 3(b) shows that there are 35 nodes and 142 edges in
Hub-network 2. Figure 3(c) shows that there are includes
37 nodes and 94 edges hub-network 3. Six DEGs, including
POLR2A, BDNF, CDC27, LTN1, RAB1A, and CUL2, have
been identified as key upregulated regulators by interacting
with more than 20 DEGs.

Figure 4 has presented the top 3 hub-networks in down-
regulated DEG-mediated PPI networks. Figure 4(a) makes it
clear that 13 nodes and 78 edges exist in Hub-network 1.

Control PA treated samples

0.40

0.27

0.13

0.00

–0.13

–0.27

–0.40

Figure 1: Identification of the significantly differentially expressed mRNAs in T1D patients after treated with FA. Heatmaps of the
differentially expressed mRNAs in GSE17635, upregulated mRNAs, and downregulated mRNAs between control and treated sample with FA.

Table 1: The top 10 upregulated and downregulated genes after FA treatment.

Gene name P value Ave nontreatment Ave treatment Fc Regulation

TFRC 0.006293 11.00542 12.23194 2.340016 Upregulated

ZFAND5 0.008766 10.48779 11.68049 2.285802 Upregulated

PPA2 0.008097 10.19328 11.31317 2.173302 Upregulated

LIMS1 0.004958 9.447019 10.47183 2.034697 Upregulated

SPTLC1 0.007231 9.948845 10.89993 1.933331 Upregulated

GPR183 0.008343 10.03497 10.92472 1.852857 Upregulated

STRAP 0.006873 9.901829 10.78517 1.844646 Upregulated

XPO1 0.003324 9.896716 10.76951 1.831212 Upregulated

RAB1A 0.002892 11.08631 11.94823 1.81746 Upregulated

UGP2 0.002848 10.00758 10.86298 1.80927 Upregulated

C19orf24 0.008067 11.64242 11.01402 0.646894 Downregulated

PBX2 0.0019 10.39015 9.723368 0.62991 Downregulated

CCDC106 0.007927 10.40376 9.722742 0.623726 Downregulated

SPATA20 0.00734 10.03424 9.332935 0.615015 Downregulated

PPP6R1 3.43E-05 9.85842 9.156729 0.614851 Downregulated

S100A10 0.007334 11.94692 11.22914 0.608032 Downregulated

PDLIM1 0.006748 9.121195 8.402882 0.607808 Downregulated

HVCN1 0.009486 10.39443 9.670834 0.605587 Downregulated

LHPP 0.000472 9.838647 9.111007 0.603891 Downregulated

LTBP2 0.002257 9.206243 8.462812 0.597317 Downregulated

TMEM156 0.008418 10.49832 9.638557 0.551042 Downregulated
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Figure 4(b) makes it clear that 8 nodes and 28 edges exist in
Hub-network 2. Figure 4(c) makes it clear that 15 nodes
and 49 edges exist in Hub-network 3. Eight DEGs, including
SHC1, GRIN2B, TTN, GNAL, GNB2, PTK2, TF, and TLR9,
have been identified as key downregulated regulators by
interacting with more than 20 DEGs.

4. Discussion

Endothelial progenitor cells (EPCs) are critical in regulating
the revascularization and endothelial homeostasis. Increas-
ing evidence has shown that EPCs were notably decreased
in diabetes patients compared with normal samples, suggest-
ing that EPCs might be involved in the regulating of the
biological processes in T1D. FA has been reported to act
significantly in human cell proliferation. Several previous
studies have shown that FA was involved in regulating endo-
thelial progenitor cell function and associated with the pro-
gression of diabetes. For example, Anna et al. have reported
that metabolic control in overweight T1D patients can be
improved through DCI plus FA oral supplementation [14].
Alian et al. have found that FA administration decreased
the level of endothelial dysfunction measured [15]. However,
the mechanisms of FA in regulating T1D remain unclear.
This study has identified DEGs involved in endothelial pro-
genitor cells after treated with FA. The present study has also
discovered that 617 genes were overexpressed and 716 genes
were downregulated in T1D EPC samples after treated with
FA. Furthermore, in order to identify hub genes, two PPI net-
works have been constructed.

Moreover, we have conducted the bioinformatics analysis
for these DEGs in T1D. Our results have shown the involve-
ment of upregulated genes in regulating multiple metabolic
and cell proliferation processes, such as cell cycle and very
long-chain fatty acid metabolic process. The study has also
shown that these DEGs were associated with bone marrow
development, which may be modulated by EPC cells. Mean-
while, this study has suggested that downregulated DEGs
were involved in regulating cell adhesion, platelet degranula-
tion, and cellular response to growth factor stimulus. These
growth factors had been demonstrated to have a crucial role
in T1D disease progression. For example, insulin-like growth
factor-1 activates AMPK to augment mitochondrial function
and correct neuronal metabolism in sensory neurons in type
1 diabetes [16]. Fibroblast growth factor 21 ameliorates
diabetes-induced endothelial dysfunction in mouse aorta
via activation of the CaMKK2/AMPKα signaling pathway
[17]. Inhibition of epidermal growth factor receptor activa-
tion is associated with improved diabetic nephropathy in
type 2 diabetes [18].

By conducting PPI network analysis, we have identified
3 downregulated hub-networks and 3 upregulated hub-
networks involved in the effect of FA on endothelial pro-
genitor cell transcriptome of patients with T1D. Importantly,
we have identified 6 upregulated genes (POLR2A, BDNF,
CDC27, LTN1, RAB1A, and CUL2) and 8 downregulated
genes (SHC1, GRIN2B, TTN, GNAL, GNB2, PTK2, TF,
and TLR9) as key regulators in this progression. Among
these regulators, BDNF has been considered to be linked with
the prognosis and progression of diabetes. For instance, the
reduction of BDNF is regarded to partly lead to cognitive

Upregulated DEGs

Regulation of smoothened signaling pathway
Meiotic cell cycle
Negative regulation of cell growth
Ventricular system development
Very long-chain fatty acid metabolic process
Collateral sprouting
Glycosaminoglycan metabolic process
Bone marrow development
Er to Golgi vesicle-mediated transport
Response to pain

(a) Upregulated DEGs

Downregulated DEGs

Homophilic cell adhesion
Positive regulation of transcription
Cell-cell signaling
Cell adhesion
Embryonic skeletal system development
Platelet degranulation
Cellular response to growth factor stimulus
Organ morphogenesis
Regulation of ion transmembrane transport
Potassium ion transport

(b) Downregulated DEGs

Figure 2: GO analysis of DEGs in EPC of T1D patients after treated with FA. (a) The analysis of the biological processes of the upregulated
expressed mRNAs in EPC of T1D patients by treated with FA. (b) The analysis of the biological processes of the downregulated expressed
mRNAs in EPC of T1D patients by treated with FA.
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impairment in type 2 diabetes mellitus (T2DM) [19]. Prote-
ome profiling of mitochondria analysis has shown that
RAB1A was upregulated in T2DM. SHC1 has been identified
as a key regulator in T1D. In a mouse model of T1D, TLR9

has been found to negatively regulate pancreatic islet beta cell
growth and function. These results have suggested that the
effect of FA on EPC cells in T1D may depend on these key
regulators.
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Figure 3: Construction of PPI network by upregulated DEGs. The PPI networks of upregulated DEGs in the top 3 hub-networks: (a) 18
nodes, 183 edges in hub-network 1; (b) 35 nodes, 142 edges in hub-network 2; and (c) 37 nodes, 94 edges in hub-network 3.
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5. Conclusion

In conclusion, we have identified 716 downregulated and 617
upregulated genes in T1D EPC cases after treated with FA.
Bioinformatics analysis has shown the involvement of these
DEGs in regulating metabolic processes, cell proliferation-

related processes, bone marrow development, cell adhe-
sion, platelet degranulation, and cellular response to growth
factor stimulus. Furthermore, we have conducted and identi-
fied hub PPI networks. Importantly, 6 upregulated genes
(POLR2A, BDNF, CDC27, LTN1, RAB1A, and CUL2) and
8 downregulated genes (SHC1, GRIN2B, TTN, GNAL,
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Figure 4: Construction of PPI network by downregulated DEGs. The PPI networks of downregulated DEGs in the top 3 hub-networks: (a) 13
nodes, 78 edges in hub-network 1; (b) 8 nodes, 28 edges in hub-network 2; and (c) 15 nodes, 49 edges in hub-network 3.
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GNB2, PTK2, TF, and TLR9) have been identified as key reg-
ulators involved in the effect of FA on endothelial progenitor
cell transcriptome of patients with T1D. We think that this
study could provide novel information to understand the
roles of FA in regulating EPC of T1D patients.
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