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Infectious disease monitoring on Oxford Nanopore Technologies (ONT) platforms offers

rapid turnaround times and low cost. Tracking low frequency intra-host variants provides

important insights with respect to elucidating within-host viral population dynamics and

transmission. However, given the higher error rate of ONT, accurate identification of intra-

host variants with low allele frequencies remains an open challenge with no viable compu-

tational solutions available. In response to this need, we present Variabel, a novel approach

and first method designed for rescuing low frequency intra-host variants from ONT data

alone. We evaluate Variabel on both synthetic data (SARS-CoV-2) and patient derived

datasets (Ebola virus, norovirus, SARS-CoV-2); our results show that Variabel can accurately

identify low frequency variants below 0.5 allele frequency, outperforming existing state-of-

the-art ONT variant callers for this task. Variabel is open-source and available for download

at: www.gitlab.com/treangenlab/variabel.
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Oxford Nanopore Technology (ONT) has become a
dominant technology for rapid sequencing of COVID-19
patients due to its low cost and relatively simple pre-

paration methods1. ONT datasets have proliferated during the
pandemic; there are now well over 100,000 sequenced COVID-19
samples from ONT alone in the NCBI SRA database and over a
half a million SARS-CoV-2 genomes assembled from ONT2.
Intra-host variation of COVID-19 reveals important information
about many aspects of the disease, such as future variants of
concern and the response to different treatments3–6. When SARS-
CoV-2 infects a human host, a combination of viral and host
proteins facilitates the replication of the virus7. Intra-host variants
then arise during the expansion of the intra-host viral population
and homologous recombination8, some of which may be biolo-
gically relevant9. Given the ubiquity of COVID-19 ONT data, the
goal of our study is to explore the use of widespread ONT data for
detection of intra-host variation to elucidate currently “hidden”
biology. However, due to the relatively high error rate of ONT,
ranging from 5% to 15%, true variation within hosts is obscured
by sequencing errors contained in the raw data10. Our assump-
tion is that the allele frequency of true SNV within a sample is
subject to change across samples, while those of sequencing errors
are independent of the sample and thus are highly stable/similar.
This is especially the case for similar basecallers and flow cells
versions. Multiple studies have shown that the allele frequency of
a true variant would experience a significant change over time or
over samples collected from different patients5,11–13. Indeed, the
size of the population of SARS-CoV-2 virions within a host
undergoes exponential growth post infection, increasing from a
handful of virions to one billion virions or more14. Furthermore,
the vast majority of sequencing errors in ONT data are deletions,
related to homopolymer regions where the same nucleotide
occurs consecutively, or low-complexity regions15–17.

Current read-based error correction and polishing methods for
ONT data primarily target genome assembly and haplotype-based
variant detection18–20. Raw read polishing has proven to be
extremely effective in generating high quality assemblies; how-
ever, information supporting low frequency (less than 0.5) intra-
host variants is almost always lost during the process. An alter-
native approach to preserving intra-host variation during error
correction involves integrating haplotype information into the
assembly step21,22. Strainline uses a combination of local De
Bruijn graph assembly and overlap extending to generate hap-
lotype genomes21. CliqueSNV constructs haplotype sequences by
recognizing linked SNVs that are supported by a single read22.
While both methods assemble genomes at strain level resolution,
haplotype phasing from ONT sequencing protocols for SARS-
CoV-2 is challenging due to the limited read length from
amplicon sequencing (250–500 bp)23, uneven coverage, and sus-
ceptibility to bias from single nucleotide variation. Furthermore,
sequencing error in ONT data is context dependent17,24.

Here, we present Variabel, a novel variant call filtering tool that is
able to recover intra-host variants from ONT data alone, for the
first time, by exploiting the tendency of true variants to change in
allele frequency across samples. The key concept behind Variabel is
that by leveraging information from viral population dynamics, we
can distinguish the true variants from sequencing errors caused by
ONT by comparing samples collected across different time points
or samples collected from different patients. Variabel is constructed
as a series of filters that operate on the variant call format (VCF)
files returned by an existing variant caller. Figure 1 illustrates the
variant calling workflow and the algorithms of Variabel. It includes
an allele frequency variation filter, which identifies true variants that
are shared across different samples (see Fig. 1B) and an insertion/
deletion (indel) filter that identifies false indel calls based on
Shannon’s entropy values of the region near indel sites (see Fig. 1C).

Results
We evaluated Variabel via two ONT datasets: (1) a time series
COVID-19 dataset and (2) a cross-patient COVID-19 dataset4,25.
Importantly, samples in both datasets are sequenced with both
ONT and Illumina platforms. Both datasets for COVID-19-positive
samples are generated using ARTIC v3 primers on the wild-type
SARS-CoV-2 genomes at the early stage of the pandemic, where the
number of consensus level mutations compared to the reference is
low. The time series dataset contains samples taken from an
immunocompromised COVID-19 patient over the course of
3 months4, where 18 pairs of Illumina and ONT sequencing runs
passed quality control. The cross-patient dataset includes 154
COVID-19-positive samples collected from patients, and 103 pairs
of Illumina and ONT sequencing runs passed our quality control.
We selected these two experimental datasets for evaluation as: (i)
the time series dataset allows us to track individual changes in allele
frequencies over time for a specific patient, and (ii) the cross-
patient datasets allow us to explore the utility of Variabel on more
readily available SARS-CoV-2 datasets. Variant calls on Illumina
sequencing runs by LoFreq26 are used as a benchmark in our
calculation of precision, recall, and F-score. In the benchmark, the
time series dataset contains 835 substitutions and 116 indels, and
the cross-patient dataset has 2786 substitutions and 757 indels. We
also ran Clair3 on the same ONT sequencing runs for bench-
marking purposes. While Clair3 is not explicitly designed for virus
SNV calling, it represents a state-of-the-art ONT variant caller27.

Illumina sequencing produces highly accurate reads, which are
ideal for intra-host variant calling. On the other hand, while
variant calling on ONT sequencing data offers faster turnaround
time and is not limited to sequencing centers, it is much more
challenging due to a higher error rate in both the sequencing and
base calling process. Most of the previously reported intra-host
variants have allele frequencies of >0.02 and less than 0.15, which
is well above the Illumina error rate but exactly within the
expected ONT error rate, highlighting the dichotomy of using one
or the other for identification of low frequency intra-host varia-
tion. Our results highlight that Variabel is able to call variants in
ONT data with high precision. Figure 2 indicates the positions
and minimum allele frequencies of variants called by LoFreq and
Variabel. By comparing the variant calling results before and after
applying Variabel on both the time series dataset (Fig. 2A) and
the cross-patient dataset (Fig. 2B), we found that Variabel is able
to remove the majority of the false positive calls caused by the
sequencing errors of ONT data. The number of variants that are
exclusively found in ONT data (marked in red) drop dramati-
cally, while most of the true variants, which are found in both
Illumina and ONT reads passed the filters.

We also benchmarked Variabel with Clair3. Figure 3A shows a
Venn diagram of variant calls from Variabel and Clair3 compared
to Illumina variant calls for 18 time series samples. Out of 415
variant calls made by Variabel, 391 (94.22%) of them are con-
sidered true positive calls since they are also found in the Illumina
data. Clair3 had a lower number (378) of true positive calls
compared to Variabel, and Clair3 had 266 false positives while
Variabel only had 24.

Importantly, Variabel is able to rescue true variants in the low
frequency domain. Figure 3B shows the false positive (FP) rates at
different variant allele frequencies and cumulative density of FP
variant calls from Variabel and Clair3 for the time series dataset.
First, we see that for ultralow frequency variants (less than 0.1
allele frequency), Clair3 has a FP rate of 100% (all variants
identified are false positives), while Variabel’s FP rate for these
ultralow frequency variants is zero, and Variabel maintained low
FP rates for variants with allele frequency below 0.2. Next, we
observed that Variabel has much lower FP rate on average for
variants with allele frequency below 0.75 compared to Clair3. The
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peak FP rate for Variabel occurs at allele frequency between 0.2
and 0.25, which is associated with Nanopore sequencing errors.
Cumulative count plot of FP variant calls shows that Variabel has
a close to uniform distribution of false calls along different allele
frequencies. On the other hand, more than 70% of the FP calls
from Clair3 have allele frequencies less than 0.5.

Figure 3C shows precision, recall, and F-score for variant calls
generated by different methods on both the time series and the
cross-patient datasets; shown are the LoFreq default output with
0.02 minimum allele frequency filter, Variabel, and Clair3. For all
18 samples that passed quality control from the time series
dataset, applying Variabel resulted in a significant mean precision

A

B

D

C

Fig. 1 Illustration of Variabel algorithm and workflow. A Sequencing reads from ONT are aligned to the reference genome of SARS-CoV-2 with
Minimap2, then variants are called based on the alignments using LoFreq. The figure shows 4 reference supporting (green) reads and 5 alternative
supporting reads (blue) amounting to an overall of 55.6% allele frequency within this sample. B Cross-sample AF variation filter identifies variants that are
shared between samples. Variant calls with maximum AF less 0.65 and maximum AF variation less than 0.05 are classified as false calls. In this example,
variant A and B pass the filter while variant C fails. C Low-entropy filter calculates the Shannon’s entropy H for subsequences (Seq A and B) of the
reference genome around the position where the indel call occurs. The length of the subsequences is determined by the length of the indel. Product of two
entropy of the subsequences is used to determine whether the indel is a false positive or not. D Workflow of Variabel for detecting intra-host variants for
ONT sequences.
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increase from 0.042 to 0.940, and a mean F-score increase from
0.076 to 0.599. When applied to the same data, Clair3 had a mean
precision of 0.579 and a F-score of 0.489, noticeably under-
performing Variabel. Both Variabel and Clair3 had similar mean
recall (0.450 for Variabel and 0.440 for Clair3). For all 103 sam-
ples that passed quality control (see Methods) from the cross-
patient dataset, the mean precision increased from 0.047 to 0.937
after applying Variabel, which is significantly higher than the
Clair3 mean precision of 0.897. The mean F-score is 0.640 for
Variabel and 0.660 for Clair3. Figure 4A shows the Venn diagram
of variant calls for 103 cross-patient samples: Variabel had 69
false positive calls on this dataset while Clair3 had 141. We also
tested Variabel with the minimum coverage of the variants set to
10× and 50× (see Supplementary Fig. 1). The precision of the
method decreases as the minimum coverage decreases in the
cross-patient dataset, since variant calls and their allele frequency
estimations at low coverage are less reliable.

We further showed that Variabel can also be used for intra-
host variant detection via two non-COVID-19 datasets: (1) an
ONT datasets of Ebola virus-positive patient samples28, and (2)
an ONT datasets of norovirus positive patient samples29. Fig-
ure 5A shows the position and minimum allele frequencies of
variant calls before and after applying Variabel on the default
LoFreq output with minimum allele frequency set to 0.02 on the
Ebola virus dataset. The observation suggested that Variabel is

capable of removing noise while still identifying a large number of
low frequency intra-host variants in the samples. Figure 5B shows
the same information on the norovirus dataset. The result indi-
cates a high number of consensus level mutations with a few low
frequency variants. The filtering rate of Variabel at different allele
frequency range is shown in Supplementary Fig. 2.

A synthetic dataset was used as a control to evaluate Variabel’s
false positive rate30. The synthetic should not contain any true
biological variants, therefore, all variant calls made should be
classified as technical artifacts or errors. Figure 6A indicates that
Variabel has a low false positive rate (<0.05) even without a
minimum coverage depth threshold, and the false positive rate
quickly drops to zero as the minimum coverage depth threshold
increases to 200×. We also performed analysis on individual fil-
ters of Variabel. Figure 6B shows that the majority of the false
variant calls are related to homopolymer errors and can be
identified and removed with the low-entropy filter, and the rest of
noise is further reduced by the AF variation filter in the synthetic
dataset.

Discussion
Our results highlight that it is possible to accurately identify
emerging intra-host variations using ONT sequencing alone. This
enables a fast and accurate variant prevalence utilizing the

Fig. 2 Variants called by LoFreq with Illumina and ONT sequences before and after applying Variabel for COVID-19 datasets. In each of the subfigures,
the left plot shows the variant calls before applying variabel and the right plot shows the variant calls after applying variabel. The x-axis shows the position
of the variant on the reference genome. The y-axis shows the minimum allele frequency of the variant found in multiple samples. Variants found in the
Illumina sequences only are marked in blue, and variants found in the ONT sequences only are marked in red. Variants that are shared between both
Illumina and ONT data are shown in green. The size of the dot represents the number of samples supporting the variant. A Variant calls of the time series
dataset. B Variant calls of the cross-patient dataset. For both A and B, source data are provided as a Source Data file.
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scalability and turnaround time of ONT that is already in place
around the world. Variabel uses the variant frequency informa-
tion and entropy filtering to distinguish true intra-host variants
from ONT sequencing error. This is well maintained in the
time series data. Furthermore, our experiments have shown that
the usage of Variabel can be extended to cross-patient datasets, as
well as other non-COVID-19 data, which strongly hints at
broader applicability of our approach to the vast amount of ONT
based studies.

One of the main limitations of Variabel for cross-patient stu-
dies is that the same variant must be observed in at least two
samples to activate allele frequency variation filtering. As expec-
ted, we observed a drop in average precision in the cross-patient
dataset compared to the time series dataset, since samples

collected from different patients are less likely to contain shared
variants. Rescuing low frequency intra-host variants is far more
challenging for cross-patient data compared to longitudinal data,
and the distribution of allele frequencies of true positive variants
found by Variabel in the cross-patient dataset clustered above 0.6
while allele frequencies of true positive variants spans in much
wider range in the time series dataset (see Fig. 2). Based on a
simple simulation (see Fig. 4B) we calculate that ~10,000 samples
would be required to recover most of the intra-host variants if we
assume variants occur randomly along the genome of SARS-
CoV-2. Similarly, we also expect a small drop in performance of
Variabel if the time series data included fewer samples (e.g., 2–5).
Both scenarios could be improved by leveraging a centralized data
depository of low frequency SNV for SARS-Cov-2. Follow-up

Fig. 3 Intra-host variant detection on COVID-19 datasets. A Venn diagram showing counts of variant calls shared between LoFreq on Illumina sequencing
runs and Variabel and Clair3 on nanopore sequencing runs on the same samples from the time series dataset. B False positive rates at different variant
allele frequencies and cumulative count of false positive variant calls of Variabel and Clair3 for the time series dataset. C Precision, recall, and F-score
comparison of LoFreq default, Clair3, and Variabel on both the time series dataset (n= 18 samples from the same COVID-19-positive patient collected over
distinct time points) and the cross-patient dataset (n= 103 biologically independent samples collected from COVID-19-positive patients). Each box plot
includes both median line (solid) and mean line (dashed), and the box bounds the interquartile range (IQR). The Tukey-style whiskers extend from the box
by at most 1.5 × IQR. The circle denotes outliers that extend beyond the whiskers. Significance between Clair3 and Variabel were calculated using the two-
sided paired t-test. Significance labeling: n.s.(P > 0.05), *(P≤ 0.05), **(P≤ 0.01), ***(P≤ 0.001). The exact p-values of the two-sided paired t-test of
precision, recall, and F-score between Clair3, and Variabel for the time series dataset are 3.36 × 10−11, 0.479, and 9.26 × 10−7. The exact p-values of the
two-sided paired t-test of precision, recall, and F-score between Clair3, and Variabel for the cross-patient dataset are 1.63 × 10−8, 3.86 × 10−9, and
4.98 × 10−4. For A, B, and C, source data are provided as a Source Data file.
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Fig. 4 Intra-host variant detection on the COVID-19 cross-patient dataset. A Venn diagram showing counts of variant calls shared between LoFreq on
Illumina sequencing runs and Variabel and Clair3 on nanopore sequencing runs on the same samples from the cross-patient dataset. B Simulation of
fraction of shared variants recovered from different sizes of collections of COVID-19 samples. For both A and B, source data are provided as a Source
Data file.

Fig. 5 Intra-host variant detection on Ebola virus and norovirus datasets. A Variant calls before and after filtering by Variabel for the Ebola virus dataset.
The x-axis shows the positions of the variant calls on the reference genome, and the y-axis shows the minimum allele frequency the same variant calls
among the samples. Variant calls before the filtering are marked in blue and the variant calls after applying Variabel are marked in red. The size of the dot
shows the number of samples in which the variant is detected. B Variant calls before and after filtering by Variabel for the norovirus dataset. The x-axis
shows the positions of the variant calls on the reference genome, and the y-axis shows the minimum allele frequency the same variant calls among the
samples. Variant calls before the filtering are marked in blue and the variant calls after applying Variabel are marked in red. The size of the dot shows the
number of samples in which the variant is detected. For both A and B, source data are provided as a Source Data file.
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studies can then leverage this resource to assess and evaluate the
biological importance of observed low frequency variants within
and across hosts over time. Given established viral genomic
databases such as GISAID are limited only to consensus level
sequences31,32, coordinated community efforts to store and track
low frequency variation across vast collections of SARS-CoV-2
datasets will significantly boost Variabel’s ability to detect low-AF
variants in cross-patient samples.

The intra-host virus mutation rate also affects the performance
of Variabel. The virus with high mutation rate during human
infection may result in the observation of a higher number of
intra-host variants, reducing the number of samples required for
AF variant filtering. A recent study on Ebola virus human
transmission reported that coincident emergence of a series of
variations happening at same locations from different patients has
been observed33, which may explain the large number of low
frequency variants we have identified in the Ebola virus dataset
(see Fig. 5A).

In this study, we have shown that by comparing the allele
frequency of the same variant across multiple samples, Variabel is
able to distinguish true biological mutation from ONT sequen-
cing errors, even at low frequency. We believed that there is more
potential of the tool outside of the viral domain, such as cancer
genomics. The principal would still hold that stable allele fre-
quencies represent artifacts rather than true mutations. As the
ONT sequencing gains its popularity over the recent years, we
expect to see more highly dynamic ONT sequencing datasets of
cross-patient samples or longitudinal samples on a single patient
become available in the near future.

Accurate intra-host low frequency variant detection is one of the
keys to solving the viral quasispecies genome phasing problem. One
common approach to this problem is through de novo assembly34.
Concordance and discordance of the allele frequencies of variants
across multiple samples provides additional information, and can
be used to determine whether or not a set of variants is originated
from the same viral strain within the population. Therefore, we plan
to explore the quasispecies inference problem as one of the future
improvements for Variabel.

In conclusion, Variabel is the first method explicitly designed
to identify low frequency intra-host variants directly from ONT

data in viral populations. This represents both an important
advance for the field and will facilitate the tracking of intra-host
variation in COVID-19-positive patients.

Methods
All data used in this study are downloaded from public databases.

Dataset descriptions. Two COVID-19 datasets were used to validate the per-
formance of Variabel. The time series dataset is a longitudinal dataset containing
respiratory samples collected from one COVID-19-positive patient with immu-
nodeficiency at 23 different time points across a 101-day period4. All samples were
sequenced with MinION (Oxford Nanopore Technologies). Among those samples,
20 samples were deep sequenced using the Illumina platform. The ONT data
downloaded from NCBI SRA database showed that the quality scores of the reads
are corrupted. All bases were assigned with the same quality score “?”. The cross-
patient dataset contains 154 COVID-19-positive samples that are collected from
different patients and sequenced using both Illumina and nanopore platforms25.
All raw sequencing runs from both datasets are publically available on NCBI SRA
database.

We also included two non-COVID-19 ONT sequencing datasets. The Ebola
virus dataset is a cross-patient dataset that contains 158 amplicon ONT sequencing
runs for Ebola virus-positive patients. The norovirus dataset includes 39 full-length
amplicon sequenced cross-patient norovirus GII-positive samples on ONT
sequencing platform. All raw sequencing runs from the non-COVID-19 datasets
are publically available on NCBI SRA database.

In addition to sequenced patient samples, we used a synthetic dataset to test the
false positive rate of Variabel. The synthetic dataset uses control data of a virus-
negative nasopharyngeal swab spiked with plasmids containing synthetic S and N
genes of SARS-CoV-2 reference genome (NCBI Reference Sequence:
NC_045512.2) at concentrations of 0, 10, 100, 500, 1000, and 3000 copies per
reaction, with four replicates at each concentration. Each replicate is sequenced
using Oxford Nanopore MinION platform for 10, 30 min, 1, 2, and 4 h. The total
number of synthetic sequencing runs in this dataset is 112.

Quality control and read alignment. We performed pre-alignment quality control
on all Illumina sequencing runs using fastp (v0.20.1)35 with the following com-
mand. fastp --detect_adapter_for_pe --cut_front, --cut_window_size 4 --cut_-
mean_quality 15 --length_required 15 --qualified_quality_phred 15
--unqualified_percent_limit 40 --n_base_limit 5 --low_complexity_filter. Read
alignment for Illumina sequences was done using bwa mem (v0.7.17-r1188) paired
end mode with default parameters36. Read alignment for nanopore sequences was
done using minimap2 (2.20-r1061) with preset map-ont37. Alignment files are
sorted using samtools (v1.11)38.

For the time series dataset and the cross-patient dataset of COVID-19 samples,
the reference genome used during the alignment is NCBI Reference Sequence:
NC_045512.2. For the norovirus dataset, the reads were aligned to the norovirus
GII reference genome (NCBI Reference Sequence: NC_039477.1). For the Ebola

Fig. 6 False positive rate analysis with the synthetic datasets. A The bar plot with x-axis on the left shows the total number of variant calls in the
synthetic dataset before and after applying Variabel. The line with x-axis on the right shows the false positive rate at each minimum coverage setting. The
variant calls are pre-filtered with 4 different minimum coverage settings (y-axis) before applying Variabel. B The stacked bar plot showing the number of
unique variants removed by different filters of Variabel. The variants removed by the low-entropy filter are shown in green, and the variants removed by the
AF variation filter are shown in orange. The remaining false positive calls are shown in blue. For both A and B, source data are provided as a Source
Data file.
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virus dataset, the reads were aligned to a reference strain from early in the
associated outbreak (GenBank: KR817198.1). For the synthetic data, the reads were
aligned to exclusively S and N gene regions of the reference genome (NCBI
Reference Sequence: NC_045512.2).

We also performed post-alignment quality control by calculating breadth and
depth of genome coverages with samtools depth. For each pair of Illumina and
ONT sequencing runs which were generated from the same COVID-19 sample,
both sequencing runs must have breadth of genome coverage no less than 0.9 and
mean depth of coverage no less than 500, otherwise both sequencing runs are
excluded from our experiments. For the norovirus dataset, ONT samples with
breadth of genome coverage less than 0.9 and mean depth of coverage less than 500
are excluded from the study, and 37 sequencing runs passed the quality control.
For the Ebola virus dataset, since the overall sequencing depth of the samples are
low, we lower the minimum mean depth of coverage to 100× but still keep the
minimum breadth of genome coverage at 0.9, and 118 sequencing runs passed the
quality control. No post-alignment quality control was performed on the synthetic
dataset since the dataset is used for coverage depth analysis.

Variant calling. We used LoFreq (v2.1.4) to call variants for Illumina samples.
This is done by first inserting indel quality score into the BAM files using
command “lofreq indelqual --dindel”, and then call variants including insertions
or deletions (indels) with command “lofreq call --no-default-filter --call-indels”.
At last, we applied the strain bias filter and removed any variants with allele
frequency below 2% or with coverage less than 100× with command “lofreq filter
--cov-min 100 --af-min 0.02 --sb-alpha 0.01 --sb-incl-indels”26. Both Variabel
and Clair3 were used to call variants from nanopore data. We used Clair version
3 [https://github.com/HKU-BAL/Clair3]27 to identify SNVs and indels in sam-
ples using default parameters. We used the training dataset specified for ONT
and set the --chunk_size to 29,903.

To call variants with variabel, we first stripped the quality score from the
nanopore data in order to force LoFreq run with its EM algorithm. Then we insert
the indel quality score into the BAM files using command “lofreq indelqual
--uniform 16”. For the COVID-19 datasets, we used the same command as
processing Illumina data to call variants and to filter variants with great strain bias
or with allele frequency below 2%. For the Ebola virus and norovirus datasets, a
similar process was used except the minimum coverage for filtering variants is set
to 10. The collection of VCF files is used as input for Variabel. First, Variabel
performs the cross-sample allele frequency variation filtering. It examines each one
of the VCF files, identifies variants that are shared between samples, and records
their allele frequencies. Any variant with maximum allele frequency less than 0.65
and maximum variation of 0.05 or less across all the samples in which the variant
existed is classified as false calls and is eliminated. Variabel then applies a low-
entropy filter to any indels that occur in regions of low-complexity. This is
designed to eliminate nanopore homopolymer errors that primarily occur in areas
with short repeats. Assume a deletion is called at position i on reference genome s
with length d, the filter checks the product of the Shannon entropy of the substring
s[i-2d: i+ 1] and the Shannon entropy of the substring s[i+ 1: i+ 1+ 3d]. If the
value of the product is less than the user defined threshold (default: 1), the variant
is classified as false calls and is eliminated. The variants that pass both cross-sample
allele frequency variation filter and low-entropy filter are collected and output in
VCF format.

Primer site masking. Both the time series dataset and the cross-patient dataset
were sequenced with amplicon sequencing method with ARTIC v3 primers
(https://github.com/artic-network/primer-schemes/tree/master/nCoV-2019/V3).
To reduce the noise of the amplicon sequencing, we masked all variant calls within
the primer region with vcftools (v0.1.16) using the command “vcftools --exclude-
bed”39.

Validation with hybrid COVID-19 datasets. Since the two COVID-19 datasets we
included in our analysis have both Illumina and nanopore sequencing runs in high
quality, we used the LoFreq variant calls generated from the Illumina data as a
ground truth to evaluate precision, recall, and F-score of Variabel and Clair3.

Intra-host variant detection in non-COVID-19 datasets. For the two non-
COVID-19 datasets, we compared the variant calls generated by LoFreq before and
after applying Variabel to test whether Variabel can be applied on non-COVID-19
datasets. We also calculated the filtering rate of Variabel at different allele
frequency range.

Validation with synthetic dataset. As the synthetic dataset should not have any
true biological variants, all of the variants output by LoFreq are identified as
negative. Four different sets of negative variant calls are generated with minimum
coverage of the variant calls set to 0×, 50×, 100×, and 200×. We then applied
Variabel, the remaining variant calls are identified as false positives, and the ones
that have been removed by Variabel are identified as true negatives. We computed
the false positive rate of Variabel under those different minimum coverage settings.
We also counted the number of unique variants removed by each of the Variabel
filters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data generated in this study, with the manifest of the datasets, have been
deposited in the OSF database with https://doi.org/10.17605/OSF.IO/QBZGP40. All
sequencing data supporting the findings of this study is publicly available. The time series
COVID-19 dataset: NCBI SRA database under BioProject PRJNA682013. The cross-
patient COVID-19 dataset: NCBI SRA database under BioProject PRJEB41737. The
Ebola virus dataset: NCBI SRA database under BioProject PRJEB10571. The norovirus
dataset: NCBI SRA database under BioProject PRJNA713985. The synthetic COVID-19
dataset: China National Center for Bioinformation GSA database with accession number
CRA004499. The details about accession numbers of each sequencing run for all datasets
used in this study can be found in the manifest. Source data are provided with this paper.

Code availability
The source code for Variabel is publicly available at: https://gitlab.com/treangenlab/
variabel, and we used version 1.0.0 of Variabel for the result and analysis presented in
this manuscript41. The code used for analysis and figure generation used in this study can
be found in: https://doi.org/10.17605/OSF.IO/QBZGP.
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