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Quantifying dissipation using fluctuating currents
Junang Li1, Jordan M. Horowitz1,2,3, Todd R. Gingrich1,4 & Nikta Fakhri1

Systems coupled to multiple thermodynamic reservoirs can exhibit nonequilibrium dynamics,

breaking detailed balance to generate currents. To power these currents, the entropy of the

reservoirs increases. The rate of entropy production, or dissipation, is a measure of the

statistical irreversibility of the nonequilibrium process. By measuring this irreversibility in

several biological systems, recent experiments have detected that particular systems are not

in equilibrium. Here we discuss three strategies to replace binary classification (equilibrium

versus nonequilibrium) with a quantification of the entropy production rate. To illustrate, we

generate time-series data for the evolution of an analytically tractable bead-spring model.

Probability currents can be inferred and utilized to indirectly quantify the entropy production

rate, but this approach requires prohibitive amounts of data in high-dimensional systems.

This curse of dimensionality can be partially mitigated by using the thermodynamic uncer-

tainty relation to bound the entropy production rate using statistical fluctuations in the

probability currents.
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Nonequilibrium dynamics is an essential physical feature of
biological and active matter systems1–3. By harvesting a
fuel—in the form of solar energy, a redox potential, or a

metabolic sugar—the molecular dynamics in these systems differs
profoundly from the equilibrium case. Some of the fuel’s free
energy is utilized to perform work or is stored in an alternative
form, but the remainder is dissipated into the environment, often
in the form of heat1,4. The energetic loss can alternatively be cast
as an increase in entropy of the environment, and the entropy
production is associated with broken time-reversal symmetry in
the system’s dynamics5–7. This connection has been leveraged to
experimentally classify particular biophysical processes as thermal
or active8,9 based on the existence of probability currents10,11.
There is great interest in going beyond this binary classification—
thermal versus active—to experimentally quantify how active, or
how nonequilibrium, a process is12–14. Such a quantification
could, for example, provide insight into how efficiently molecular
motors are able to work together to drive large-scale motions15–19.

One way to quantify this nonequilibrium activity is to measure
the dissipation rate, or how much free energy is lost per unit time.
In a biophysical setting, a direct local calorimetric measurement is
challenging, but signatures of the dissipation are encoded in
stochastic fluctuations of the system20, even far-from-
equilibrium21–29. We set out to develop and explore strategies
for inferring the dissipation rate from these experimentally-
accessible nonequilibrium fluctuations. In a system of interacting
driven colloids, where all degrees of freedom are tracked, Lander
et al. have indirectly measured dissipation from fluctuations27.
However, it should also be possible to bound dissipation on the
basis of nonequilibrium fluctuations in a subset of the relevant
degrees of freedom. As a tangible example of our motivation,
consider the experiment of Battle et al., which tracked cilia shape
fluctuations to determine that the cilia dynamics were driven out
of equilibrium9. With suitable analysis of those shape fluctua-
tions, might one determine, or at least constrain, the free ener-
getic cost to sustain the cilia’s motion?

Though our ultimate motivations pertain to these complex
systems, here we present an exhaustive analytical and numerical
study of a tractable model30. Using a model consisting of beads
coupled by linear springs, we demonstrate how the statistical
properties of trajectories provides information about the dissipa-
tion rate. The bead-spring model furthermore allows us to address
various practical considerations that will be important for future
experimental applications of the inference techniques: how much
data is required, what is the role of coarse graining, and what can
be done about the curse of dimensionality. We show that fluc-
tuations in nonequilibrium currents can provide a route to bound
the dissipation rate, even in high-dimensional dynamical systems
operating outside a linear-response regime. Crucially, we antici-
pate many of these insights will support the data analysis of
experimentally accessible biological and active matter systems.

Results
Bead-spring model. As one of the simplest possible none-
quilibrium models, we consider two coupled beads, each allowed
to fluctuate in one dimension. The beads are connected to each
other and to the boundary walls by linear springs with stiffness k
(see Fig. 1). We imagine that the beads are embedded in two
different viscous fluids, one hot with temperature Th and the
other cold with temperature Tc. These fluids exert a friction γ on
each bead, absorbing energy from the beads’ motion. In the
absence of coupling between the beads, the average rate at which
each thermal bath injects energy exactly balances with the rate it
absorbs energy due to frictional drag. By coupling the beads,
however, there is a net steady-state rate of heat flow _Qss from the

hot reservoir into the system and out to the cold reservoir. The
hot reservoir’s entropy changes with rate _Sh ¼ � _Qss=Th while
the cold reservoir’s entropy increases with rate _Sc ¼ _Qss=Tc. In
total, the steady-state entropy production rate can therefore be
written as

_Sss ¼ _Sh þ _Sc ¼ _Qss T�1
c � T�1

h

� �
: ð1Þ

This equation expresses the entropy production rate as the pro-
duct of a flux _Qss and the conjugate thermodynamic driving force
ðT�1

c � T�1
h Þ. The typical situation is that the driving force may

be tuned in the lab and the flux is measured as a response.
Suppose, however, that it is not simple to measure the heat flux.

Rather, we imagine directly observing the bead positions as a
function of time. Those measurements are sufficient to extract the
entropy production rate, but to do so we must go beyond the
thermodynamics and explicitly consider the system’s dynamics,
an approach known as stochastic thermodynamics1,31,32. The
starting point is to mathematically describe the bead-spring
dynamics with a coupled overdamped Langevin equation
x
: ¼ Ax þ Fξ, where x= (x1, x2)T is the vector consisting of each
bead’s displacement from its equilibrium position, ξ= (ξ1, ξ2)T is
a vector of independent Gaussian white noises, and

A ¼ �2k=γ k=γ

k=γ �2k=γ

� �
; F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTh=γ

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTc=γ

p
 !

:

ð2Þ
The matrix A captures deterministic forces acting on the beads
due to the springs, while F describes the random forces imparted
by the medium. The strength of these random forces depends on
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Fig. 1 Two coupled beads at different temperatures. a An illustration of the
model with the red bead immersed in a hot temperature bath Th and the
blue bead immersed in a cold temperature bath Tc. Three springs with equal
spring constant k connected the beads and the walls. Displacements away
from the equilibrium position of the hot and cold beads are denoted by x1
and x2, respectively. b The steady-state probability density and current as a
function of bead displacements for spring constant k= 1, friction γ= 1, and
thermal energy scales kBTc= 25 and kBTh= 250. c The local entropy
production rate calculated from Eq. (7) of the system as a function of bead
displacements for the same parameters
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the temperature and the Boltzmann constant kB, consistent with
the fluctuation-dissipation theorem33.

It is useful to cast the Langevin equation as a corresponding
Fokker-Planck equation for the probability of observing the
system in configuration x at time t, ρ(x, t):

∂ρðx; tÞ
∂t

¼ �∇ � ðAxρðx; tÞ � D∇ρðx; tÞÞ � �∇ � jðx; tÞ; ð3Þ

with D= FFT/2. Though we are modeling a two-particle system,
it can be helpful to think of the entire system as being a single
point diffusing through x space with diffusion tensor D and with
deterministic force γAx. The second equality in Eq. (3) defines the
probability current j(x, t). These probability currents (and their
fluctuations) will play a central role in our strategies for inferring
the rate of entropy production.

Due to its analytic and experimental tractability, this bead-
spring system and related variants have been extensively studied
as models for nonequilibrium dynamics34–39. In particular, the
steady-state properties are well-known. Correlations between the
position of bead i at time 0 and that of bead j at time t are given
by Cij(t)= 〈xi(0)xj(t)〉. The expectation value is taken over
realizations of the Gaussian noise to give

CðtÞ ¼
Z t

�1
ds eAðt�sÞFFTeA

T ðt�sÞ: ð4Þ

The steady-state density and current are expressed simply as

ρssðxÞ ¼ ð2π ffiffiffiffiffiffiffiffiffi
detCp Þ�1e�

1
2x

TC�1x

jssðxÞ ¼ ðAx þ DC�1xÞρssðxÞ
ð5Þ

in terms of the long-time limit of the correlation matrix

C � lim
t!1CðtÞ ¼ kB

12k

7Th þ Tc 2ðTc þ ThÞ
2ðTc þ ThÞ Th þ 7Tc

� �
: ð6Þ

The steady-state current jss(x) is a vector field that specifies the
probability current conditioned upon the system being in
configuration x. Associated with this current is a local conjugate
thermodynamic force FðxÞ ¼ kBj

T
ssðxÞD�1=ρssðxÞ40,41. The pro-

duct of the microscopic current and force is the local entropy
production rate at configuration x: _σssðxÞ ¼ FðxÞ � jssðxÞ. Upon
integrating over all configurations, we obtain the total entropy
production rate

_Sss ¼
R
dx _σssðxÞ ¼ kBTr AD�1AC � C�1D

� �
¼ kB

kðTh�TcÞ2
4γThTc

:
ð7Þ

Comparing with Eq. (1), we see that the rate of net heat flow is
_Qss ¼ kBkðTh � TcÞ=4γ. Our ability to analytically compute the
heat flow derives from the linear coupling between beads, yet we
are ultimately interested in experimental scenarios in which linear
coupling could not be assumed. In those more complicated
systems, there is no simple analytical expression for the local
entropy production rate, but we could still estimate _σss by
sampling trajectories from the steady-state distributions—either
in a computer or in the lab. We now consider strategies for this
estimation by sampling the bead-spring dynamics and comparing
with the analytical expression, Eq. (7).

Estimating the steady state from sampled trajectories. We first
seek estimates of jss(x) and ρss(x) from a long trajectory x(t) of
bead positions over an observation time τobs. We estimate the
steady-state density by the empirical density, the fraction of time
the trajectory spends in state x:

ρðxÞ ¼ 1
τobs

Z τobs

0
δ x tð Þ � xð Þdt; ð8Þ

where δ is a Dirac delta function. The empirical density is an
unbiased estimate of the steady-state density, meaning the fluc-
tuating density ρ(x) tends to ρss(x) in the long-time limit. Simi-
larly, an unbiased estimate for the steady-state currents is the
empirical current

jðxÞ ¼ 1
τobs

Z τobs

0
δ x tð Þ � xð Þ � dxðtÞ: ð9Þ

This Stratonovich integral can be colloquially read as the time-
average of all displacement vectors that were observed when the
system occupied configuration x. In practice, experiments typi-
cally record the configuration x at discrete-time intervals Δt such
that the trajectory is given by the timeseries {xΔt, x2Δt,...}. Con-
sequently we work with estimates of the density and currents42:

ρ̂ðxÞ ¼ Δt
τobs

Xτobs=Δt
i¼1

K xiΔt ; xð Þ ð10Þ

|̂ðxÞ ¼ ρ̂ðxÞ
2Δt

Pτobs=Δt�1

i¼2
L xiΔt; xð Þ x iþ1ð ÞΔt � x i�1ð ÞΔt

h i
Pτobs=Δt�1

i¼2
LðxiΔt ; xÞ

; ð11Þ

where K and L are kernel functions43. The kernel functions make
it natural to spatially coarse grain the data, a necessity because
experiments have a limited resolution and because most micro-
scopic configurations will never be sampled by a finite-length
trajectory. The function K(xiΔt, x) controls how observing the ith
data point at position xiΔt impacts the estimate of ρ̂ at a nearby
position x. Similarly, L controls how currents are estimated in the
neighborhood of the observed data points. Specific choices for K
and L are discussed in the Methods section. Using ρ̂ and |̂ we can
now construct direct estimates of the entropy production rate.

Direct strategies for entropy production inference. In com-
puting Eq. (7), we integrated the local entropy production rate
F(x) ⋅ jss(x) over all configurations x. When jss(x) and F(x) are not
known, it is natural to replace them by the estimators |̂ðxÞ and
F̂ðxÞ � kB|̂

TðxÞD�1=ρ̂ðxÞ. Though F̂ is constructed from the
unbiased estimators |̂ and ρ̂, F̂ is only asymptotically unbiased,
necessitating sufficiently long trajectories for the bias to become
negligible. Utilizing F̂, we approximate _Sss by either a spatial or a
temporal average:

b_Sspatss �
Z

dx F̂ðxÞ � |̂ðxÞ ð12Þ

b_Stemp
ss � 1

τobs

R τobs
0 dt F̂ðxðtÞÞ � �dxðtÞ

¼ 1
τobs

Pτobs=Δt
i¼2

F̂
xiΔtþxði�1ÞΔt

2

	 

� xiΔt � xði�1ÞΔt
h i

:
ð13Þ

The performance of these estimators is assessed using data
sampled from numerical simulations of the Langevin equation,
described further in Methods. As illustrated in Fig. 2, the
estimators are biased for any finite trajectory length, but they
converge to the analytical result, Eq. (7), with sufficiently long
sampling times.

At first glance b_Sspatss and b_Stemp
ss may appear equivalent due to

ergodicity. Indeed, with an infinite amount of sampling, both
schemes must yield the same result, _Sss, but the temporal
estimator converges significantly faster with finite sampling. Plots
of the estimated local dissipation rate (Fig. 2 inset) hint at the

reason b_Sspatss converges more slowly: _σssðxÞ must be accurately

estimated by _̂σssðxÞ ¼ F̂ðxÞ � |̂ðxÞ throughout the entire
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configuration space. The integral in Eq. (12) equally weights
_̂σssðxÞ at all x, even those points which have been infrequently (or
never) visited by the stochastic trajectory. Our x has dimension
two, but we will also consider higher-dimensional configuration
spaces, for example by coupling more than two beads in a linear
chain. If that configuration space has dimension greater than
three or four, it becomes impractical to estimate _σss across the
entire space. Furthermore, estimating Eq. (12) for high-
dimensional x confronts the classic problem of performing
numerical quadrature on a high-dimensional grid, where it is
well-known that Monte Carlo integration becomes a superior
method.

The temporal integral can be thought of as a convenient way to
implement such a Monte Carlo integration, with sampled x’s
coming from the configurations of the stochastic trajectory.
Notably, Eq. (13) is computed from estimates of the thermo-
dynamic force near the sampled configurations xiΔt, precisely where
the finite trajectory has been most reliably sampled. In contrast,
Eq. (12) requires spurious extrapolation of the kernel density
estimates (ρ̂ and |̂) to points which are far from the any sampled
configurations. The advantage of the temporal estimator over the
spatial one becomes even more pronounced as dimensionality

increases. Nevertheless, even b_Stemp
ss becomes harder to estimate when

x grows in dimensionality. Getting accurate estimates of F around
the xiΔt requires observing several trajectories which have cut
through that part of configuration space while traveling in each
direction. But when the dimensionality is large, recurrence to the
same configuration-space neighborhood takes a long time. Conse-
quently, we turn to a complementary method which can be
informative even when x is too high-dimensional to accurately
estimate F.

Indirect strategy for entropy production inference. Thus far our
estimators have been based on detailed microscopic information,
but as the dimensionality of x increases, estimating the micro-
scopic steady-state properties requires exponentially more data.
To combat this curse of dimensionality, it is standard to project

high-dimensional dynamics onto a few preferred degrees of
freedom9,44–46. For example, the projected coordinates could be
two principle components from a principle component analysis.
Such projected dynamics have been used to detect broken detailed
balance9, however, these reduced dynamics overlook hidden
dissipation from the discarded degrees of freedom.

An alternative strategy that retains contributions from all
degrees of freedom is provided by recent theoretical results
relating entropy production and current fluctuations in general
nonequilibrium steady-state dynamics28,29,47–52. To this end, we
introduce a single projected macroscopic current, constructed as a
linear combination of the microscopic currents:

jd ¼
Z

dx dðxÞ � jðxÞ; ð14Þ

where d(x) is a vector field that weights how much a microscopic
current at x contributes to the macroscopic current jd. Any
physically measurable current—electrons flowing through a
wire, heat passing from one bead to the other, or the production
of a chemical species in a reaction network—can be cast as such
a linear superposition of microscopic currents. Figure 3
illustrates one particular example by applying the weighting
field d(x)= F(x) to project microscopic currents onto the single
macroscopic current jF. Each step of the trajectory is weighted by
the value of d associated with the observed transition, and this
weighted average, accumulated as a function of time, is the
fluctuating macroscopic current (fluctuating because it depends
on the particular stochastic trajectory). Each trajectory observed
for a time τobs yields a measurement jd of the fluctuating current,
and many such trajectories give a distribution P(jd) character-
ized by mean 〈jd〉 and variance Var(jd). The thermodynamic
uncertainty relation (TUR)28,29,48–50 then constrains the entropy
production rate in terms of the dynamical fluctuations of this
macroscopic current:

_Sss �
2kB jdh i2

τobsVarðjdÞ
� _SðdÞTUR: ð15Þ

Note that we have used Var(jd) to denote the variance of the
macroscopic empirical current distribution, but some prior
work29,48 used this notation to denote the way the variance
scaled with observation time. The difference between these
notations is the factor of τobs in the denominator of the right hand
side of Eq. (15).

Unlike the field of microscopic currents, j(x), the macroscopic
current jd is a single scalar quantity, allowing estimates of its

cumulants—particularly the mean djdh i and variance dVarðjdÞ—to
be extracted from a modest amount of experimental data. Indeed,
measurements of kinesin fluctuations have recently been used to
infer constraints on the efficiency of these molecular motors18,53.
Importantly, the TUR is valid for any choice of d, granting
freedom to consider fluctuations of arbitrary macroscopic
currents, some of which will yield tighter bounds than others.
In a later section, we use Monte Carlo sampling to seek a choice
for d which yields the tightest possible bound, but first we
consider an important physically motivated choice, d= F. In this
case, the macroscopic current jF is the fluctuating entropy
production rate (cf. Eqs. (7) and (14)), so jFh i ¼ _Sss. With access
to F, we can thus compute the entropy production rate by simply
taking the mean of the generalized current (the average slope in
Fig. 3), or we could use the fluctuations from repeated realizations
of jF to get a bound on _Sss via Eq. (15).

It perhaps seems foolish to settle for a bound if one could
compute the actual entropy production rate, but in practice one
would not typically have access to F. More likely, it would only be
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Fig. 2 Convergence of dissipation estimates. The spatial (blue solid circles)
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possible to estimate F from data as F̂. With sufficient data, F̂
converges to F such that a temporal estimate of the entropy
production rate would eventually become accurate, but this
convergence is slow in high dimensions. Alternatively, by
choosing d ¼ F̂, we obtain a TUR lower bound estimate

b_SðF̂ÞTUR ¼ 2kB
djF̂� �2

τobs
dVarðjF̂Þ

: ð16Þ

A key advantage of this estimate is that it is less sensitive to

whether F̂ has converged than either b_Sspatss and b_Stemp
ss . When F̂ is

noisily estimated due to little data or high dimensionality, the
TUR estimate can nevertheless provide an accessible route to
constraining the entropy production rate from experimental data.

Convergence of the entropy production rate estimates. To
assess the costs and benefits of the various estimation schemes,
we numerically sampled trajectories for the two-bead model of
Fig. 1 and for a variant with five beads coupled along a one-
dimensional chain with spring constant k, the five beads being
embedded in thermal baths whose temperatures linearly ramp
from Tc to Th. Equation (7) gives the entropy production rate
for the two-bead model as a function of the bath temperatures.
An analogous expression is derived in Supplementary Note 1
for the model with five beads, and both expressions are plotted
with a solid red line in Fig. 4. The temporal and spatial esti-
mators both converge to these analytical expressions in the long

trajectory limit, while the TUR estimate tends to the lower

bound _SðdÞTUR. We performed a series of calculations to assess: (1)
how close is this lower bound to the true dissipation rate and
(2) how long of a trajectory is needed to converge all three
estimates.

We discuss the convergence results first, plotted as insets in
Fig. 4. Using a trajectory of length τobs, F̂ was estimated, and this
estimated thermodynamic force field was used to plot how

quickly b_Sspatss and b_Stemp
ss converged to their expected value of _Sss. To

compare convergence of the TUR bound on an equal footing, we
recognize that the τobs→∞ limit of a long trajectory with perfect

sampling will not yield _Sss but rather the bound _SðFÞTUR. In all three
cases we scale the estimate by its appropriate infinite-sampling
limit and observe how quickly this ratio decays to one. The
superiority of the temporal estimator over the spatial one is clear
in the two-bead model, and the inadequacy of the spatial
estimator is so stark in the higher-dimensional five-bead model
that it was prohibitive to compute. The TUR estimator
performance is comparable to the temporal average estimator
when F can be estimated well (low dimensionality and large
thermodynamic driving). In the more challenging situation that
the phase space is high dimensional and the statistical
irreversibility is more subtle, the TUR estimator appears to offer
some advantage. It converges with roughly an order of magnitude

fewer samples than are required for b_Stemp
ss (see bottom right inset

of Fig. 4b).
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To understand how well one can estimate the entropy
production rate from current fluctuations, we must also address
how close the TUR lower bound is to _Sss. The dashed black line of
Fig. 4 shows that the TUR lower bound equals the actual entropy
production rate in the near-equilibrium limit Tc→ Th. Far from
equilibrium, the TUR lower bound remains the same order of
magnitude as the entropy production rate, with the deviation
increasing with the size of the temperature difference. Comparing
the dashed black lines in two different dimensions, we can see
that as more beads are added to the model, this deviation between
_SðFÞTUR and _Sss decreases. Hence the TUR bound more closely
approximates the actual entropy production rate with increasing
dimensionality and decreasing thermodynamic force, precisely
the conditions when the TUR estimate converges more rapidly.

Optimizing the macroscopic current. Thus far we have focused
on measuring the statistics of a particular macroscopic empirical
current, the fluctuating entropy production, constructed by
choosing d= F. This choice was a natural starting point since the
fluctuations are known to saturate Eq. (15) in the equilibrium
limit Tc→ Th29. However, when working with timeseries data we
had to replace F by the estimate F̂, and this estimated thermo-
dynamic force is error-prone in high dimensions. In the previous
section we saw that the TUR estimator is sufficiently robust that a
tight bound for _Sss may be inferred even when F̂ has not fully
converged to F. This robustness derives from the validity of Eq.
(15) for all possible choices of d. The generality of the TUR can be
further leveraged by optimizing over d:

_Sss �
2kB
τobs

max
dðxÞ

jdh i2
VarðjdÞ

: ð17Þ

We are not aware of methods to explicitly compute the optimal
choice of d, but a vector field d*(x) which outperforms F(x)
can be found readily by Monte Carlo (MC) sampling with
a preference for macroscopic currents with a large TUR ratio
〈jd〉2/Var(jd).

Each step of the MC algorithm requires 〈jd〉 and Var(jd), which
could be estimated with trajectory sampling, as illustrated in Fig. 3a,
c. In fact, one could collect a single long trajectory—from an
experiment or from simulation—then sample d* based on mean

and variance estimates djd�h i and dVarðjd� Þh i for that fixed trajectory.
Such a scheme is enticing, but we warn that the procedure is
susceptible to over-optimization of the TUR ratio since optimizing

to maximize the ratio djd�h i2= dVarðjd� Þ is not the same as optimizing
the ratio jd�h i2=Varðjd� Þ. The former can yield a large value just
because the trajectory happens to return anomalous estimates for
the mean and variance of the generalized current. The latter ratio
does not depend on any one trajectory but has rather averaged over
all trajectories. Avoiding over-optimization requires appropriate
cross-validation. For example, d* could be selected based on one
sampled trajectory then the dissipation bound inferred by an
independently sampled trajectory.

Rather than implementing such a cross-validation scheme, we
avoided the over-optimization problem for this model system by
putting the dynamics on a grid to compute the means and
variances exactly. As described in Methods, we construct a
continuous-time Markov jump process on a square lattice with
grid spacing h= {h1, h2} such that the h→ 0 jump process limits
to the same Fokker-Planck description, Eq.(3), as the continuous-
space Langevin dynamics48. The vector field d(x) is also
discretized as a set of weights dx+h,x associated with the transition
from x to the neighboring microstate at x+ h (see Fig. 3b, d). In
place of trajectory sampling, the mean and variance can be
extracted from a standard computation of the current’s scaled
cumulant generating function as a maximum eigenvalue of a
tilted rate matrix54–56.

The MC sampling returns an ensemble of nearly-optimal

choices for d* such that _Sss � _Sðd
�Þ

TUR � _SðFÞTUR. Each d* from the
ensemble yields a similar TUR ratio, but the near-optimal vector
fields are qualitatively distinct (see Fig. 5). We lack a physical
understanding of the differences between the various near-optimal
choices d* and the thermodynamic force field F. Even without a
clear physical interpretation, we have a straightforward numerical
procedure for extracting as tight of an entropy production bound
as can be obtained from macroscopic current fluctuations.

Discussion
Physical systems in contact with multiple thermodynamic reser-
voirs support nonequilibrium dynamics that manifest as prob-
ability currents in phase space. Detection of these currents has
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been used in a biophysical context to differentiate between dis-
sipative and equilibrium processes. In this paper, we have
explored how the currents can be further utilized to infer the rate
of entropy production. Using a solvable toy model, we demon-
strated three inference strategies: one based on a spatial average,
one based on a temporal average, and one based on fluctuations
in the currents.

Regardless of strategy, the entropy production inference
becomes more challenging and requires more data as the ther-
modynamic drive decreases. This challenge results from the fact
that weakly driven systems produce trajectories which look very
similar when played forward or backward in time. The weaker the
drive, the more data it requires to confidently detect the statistical
irreversibility.

It is in this weak driving limit that we see the most stark
difference between the performance of the three studied estima-
tors. As we move to higher-dimensional but weakly driven sys-
tems, it requires too much data to detect the statistical
irreversibility at every point in phase space, so performing spatial
averages is out of the question. The temporal average can still be
taken, but for a fixed amount of data, estimates of F become
systematically more error-prone with increased dimensionality.
In that limit we find it useful to measure not just the average
current, but also the variance. By leveraging the TUR we cir-
cumvent the need to accurately estimate F and achieve more
rapid convergence.

The TUR-inspired estimator is not without pitfalls. Most
prominently, it only returns a bound on the entropy produc-
tion rate, and it is not simple to understand how tight this
bound will be. That tightness, characterized by η � _SðFÞTUR=

_Sss,
does not, for example, depend solely on the strength of the
thermodynamic drive. In Supplementary Note 2 and Supple-
mentary Figure 2, we make this point by separately tuning the
various spring constants to show how η depends on properties
of the system in addition to the ratio of reservoir temperatures.
Though our modestly sized toy systems (no more than five
coupled beads) always produce η of order unity, there is little

reason to believe that the TUR bound will remain a good proxy
for the entropy production rate in the limit of a high-
dimensional system in which only a few degrees of freedom are
visible. Future experiments are needed to elucidate whether
these inference strategies can be usefully applied to the com-
plex biophysical dynamics that has motivated our study.

Methods
Numerically generating the bead-spring dynamics. We simulate the bead-spring
dynamics in two complementary ways: as discrete-time trajectories in continuous-
space and as continuous-time trajectories in discrete space. The results presented in
Figs. 2 and 4 stem from continuous-space calculations. Trajectories are generated
by numerically integrating the overdamped Langevin equation using the stochastic
Euler integrator with timestep Δt according to x(i+1)Δt = xiΔt + AxiΔtΔt + Fη,
where η is a vector of random numbers drawn from the normal distribution with
variance Δt for each timestep. Setting k= γ= 1, we numerically integrate the
equation of motion with timestep Δt= 0.001. The initial condition x0 is effectively
drawn from the steady state by starting the clock after integrating the dynamics for
a long time from a random initial configuration. In addition to the discrete-time
simulations, continuous-time jump trajectories were simulated in discrete space
with a rate

Wxþh;x ¼ Ax=2ð Þ þ hTD

 � � h=hTh ð18Þ

for transitioning from a lattice site at position x to a neighboring site at position
x+ h48. This discrete-space trajectory was generated by first discretizing the phase
space on a 200 by 200 grid with x1 ranging from −50 to 50 and x2 ranging from
−20 to 20 as shown in Fig. 3a. The Markov jump process is simulated using the
Gillespie algorithm57.

Estimating density and current. To form histogrammed estimates, we bin the
data into a 100 by 100 grid with x1 ranging between ±50 and x2 ranging between
±20. We can write the kernel functions as
KðxiΔt ; xÞ ¼ LðxiΔt ; xÞ ¼

P
m;n χmnðxÞχmnðxiΔtÞ, where χmn is the indicator func-

tion taking the value 1 only if the argument lies in the bin with row and column
indices m and n. Alternatively, a continuous estimate of the density and current can
be constructed using smooth non-negative functions for K and L, each of which
integrates to one. For our kernel density estimates, we place a Gaussian at each data
point by choosing K(xiΔt, x) ∝ exp[(x− xiΔt)TΣ−1(x− xiΔt)]. The breadth of the ith
Gaussians bi, known as the bandwidth, sets the diagonal matrix Σ−1 via Σii ¼ b2i .
The estimation of currents proceeds similarly using kernel regression with the
Epanechnikov kernel58

LðxiΔt ; xÞ /
Qd
j¼1

1� ðxiΔt;j�xjÞ2
b2j

� �
; jxiΔt � xj<b

0; otherwise;

0
B@ ð19Þ

where d is the spatial dimension and xiΔt;j is the jth component of the configuration
xiΔt at discrete time i. The bandwidth for both Gaussian and Epanechnikov kernels
are chosen using the rule of thumb suggested by Bowman and Azzalini58, speci-
fically

b ¼ 4
Nðd þ 2Þ
� �1=ðdþ4Þ ~σ

0:6745
: ð20Þ

Here N denotes the length of the data, and ~σ is the median absolute deviation
estimator computed by
~σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

medianfjv �medianðvÞjgmedianfjx �medianðxÞjgp
, where v is the

magnitude of the velocities. In general the bandwidth will go to zero with
increasing data length, so the kernel estimator should be asymptotically unbiased.
In that limit of infinite data, the differences between histogram and kernel density
estimates are insignificant. When data is limited, we find the fastest convergence by
using kernel density estimates with a multivariate Gaussian for K and the
Epanechnikov kernel for L.

To optimally handle limited data, the bandwidth is typically chosen to minimize
the mean squared error (MSE) of the estimated function59–61:

MSE _Sss
¼ b_Sss � _Sss

	 
2� �
and MSETUR ¼ b_STUR � _STUR

	 
2� �
; ð21Þ

where the expectation value is taken over realizations of trajectories. The MSE is
naturally a function of the bandwidth since the value of the estimator depends on
b. Supplementary Figure 1 shows this bandwidth-dependence of the MSE
estimated from the five-bead model temporal estimator and TUR lower bound with
τobs= 1200 and Tc/Th= 0.1. Notice that the TUR lower bound tends to be less
sensitive to the choice of bandwidth.

Estimation of the TUR lower bound. To get estimates for the current’s mean and

variance, djdh i and dVarðjdÞ, from a single realization of length τobs, we first divide
the trajectory into τobs/Δτ subtrajectories of length Δτ. For the continuous-time
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Fig. 5 Monte Carlo sampling for maximally informative currents. We seek a
weighting vector field d such that the TUR bound is as close to the true
entropy production rate as possible. Starting either with d= F (blue curve)
or with a random vector field (red curve), a Markov chain Monte Carlo
procedure was used to change d in search of a higher _SðdÞTUR=

_Sss ratio. The
Monte Carlo sampling discovers diverse ways to yield a similar maximal
value of the TUR ratio, suggesting that while the optimization problem is
not dominated by a single basin, competitive near-optimal solutions can be
discovered from a variety of starting points
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Markov jump process as shown in Fig. 3b, the vector field d(x) is discretized
as a set of weights dx+h,x associated with the edges of the lattice and the
trajectory is series of lattice sites occupied over time. The accumulated current,
as illustrated in Fig. 3d, is computed as the sum of weights along the subtrajectory

k: JðkÞd ¼Pi dxi ;xiþ1
: For the continuous-space Langevin dynamics, the accumulated

current for subtrajectory is given by JðkÞd ¼Pi d
xiΔtþxði�1ÞΔt

2

	 

� xiΔt � xði�1ÞΔt
	 


.

This accumulated current is scaled by the trajectory length to get the fluctuating

macroscopic current for subtrajectory k: jðkÞd ¼ JðkÞd =Δτ. The sample mean and

variance of jð1Þd ; jð2Þd ; :::
n o

give djdh i and dVarðjdÞ, respectively.

Computing the mean and variance by tilting. It is useful to conceptualize 〈jd〉
and Var(jd) in terms of sampled trajectories, but finite trajectory sampling will
result in statistical errors. We may alternatively compute the mean and variance as
the first two derivatives of the scaled cumulant generating function
ϕðλÞ ¼ limτobs!1

1
τobs

ln eλjdτobs
� �

, evaluated at λ= 0. The expectation value averages

over all trajectories of length τobs, and in the long-time limit, ϕ(λ) coincides with
the maximum eigenvalue of the tilted operator with matrix elements
WðλÞxþh;x ¼ Wxþh;xe

λdxþh;x 54–56. By discretizing space, we computed ϕ(λ) around
λ= 0 as the maximal eigenvalue of the tilted operator. Using numerical derivatives,
we estimate

jdh i ¼ ϕ0ð0Þ � ϕðδλÞ � ϕð�δλÞ
2δλ

ð22Þ

VarðjdÞ ¼ ϕ00ð0Þ � ϕðδλÞ þ ϕð�δλÞ
δλ2

ð23Þ

with δλ= 0.00001.

MC optimization. We seek a vector field d(x) such that the TUR bound is as large
as possible. To identify such a choice of d, we first decompose it into a basis of
M= 100 Gaussians:

dðxÞ ¼
XM
i¼1

wðiÞexp ðx � xðiÞÞB�1ðx � xðiÞÞ
h i

: ð24Þ

The ith Gaussian, centered at position x(i), carries a weight w(i). The centers
for the first 50 Gaussians are uniformally sampled with x1 ranging from −50 to
50 and x2 from −20 to 20. The breadth of the Gaussians along the i direction,
Bii, is set to 10% of the length of the interval from which uniform samples are
drawn. Only the weights for these 50 Gaussians will be allowed to freely vary.
The remaining 50 Gaussians are paired with the first 50 to impose the
antisymmetry d(x)=−d(−x). Practically, this antisymmetry constraint is
achieved by placing a second Gaussian at −x with the opposite weight as the
Gaussian positioned at x.

With this regularization, we replace the optimization of d with a sampling

problem. We sample the first 50 weights w in proportion to expðβ _SðdÞTURÞ, where β is

an effective inverse temperature and _SðdÞTUR depends on the weights since d depends
on w. By choosing β= 5000, the sampling is strongly biased toward weights that
give a near-optimal value of the TUR bound. After initializing the weights with
uniform random numbers from [−1, 1], Monte Carlo moves w→w′ were
proposed by perturbing the wi's by random uniform numbers drawn from [−0.5,
0.5]. The d′ corresponding to these new weights was computed according to Eq.
(24), and the TUR bound for that proposed macroscopic current was computed
using numerical derivatives of the tilted operator WðλÞ around λ= 0 as described
above. The maximum eigenvalue calculations made use of Mathematica’s
implementation of the Arnoldi method, performed using sparse matrices. Each
proposed move to w′ was accepted with the Metropolis criterion

min½1; expð�βð _SðdÞTUR � _Sðd
0 Þ

TURÞÞ	.
In addition to starting from a random choice of d, we performed MC sampling

about the thermodynamic force by expressing d as

dðxÞ ¼ FðxÞ þ
XM
i¼1

wðiÞexp ðx � xðiÞÞB�1ðx � xðiÞÞ
h i

: ð25Þ

Again, we have 100 Gaussians, half of them uniformally placed throughout
the space and the rest positioned to make the perturbation antisymmetric. We
stochastically update the weights by adding a uniform random number drawn
from [−0.05, 0.05], and conditionally accept the update with the same
Metropolis factor as before. The resulting TUR lower bound tends toward higher
values until it hits a plateau (Fig. 5 blue line). For each temperature ratio in
Fig. 4a, the MC sampling was run for 500 steps, after which the TUR bound
achieved a plateau and further optimization is either impossible or at least
significantly more challenging.

Data availability
Representative data generated from sampling trajectories with the aforementioned codes
can be accessed online at https://doi.org/10.5281/zenodo.2576526.

Code availability
Computer codes implementing all simulations and analyses described in this manuscript
are available for download at https://doi.org/10.5281/zenodo.2576526.
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