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Tumor-infiltrating dendritic cell states are conserved
across solid human cancers
Genevieve M. Gerhard1*, Ruben Bill1*, Marius Messemaker1*, Allon M. Klein2, and Mikael J. Pittet1,3,4

Dendritic cells (DCs) contribute a small fraction of the tumor microenvironment but are emerging as an essential antitumor
component based on their ability to foster T cell immunity and immunotherapy responses. Here, we discuss our expanding view
of DC heterogeneity in human tumors, as revealed with meta-analysis of single-cell transcriptome profiling studies. We
further examine tumor-infiltrating DC states that are conserved across patients, cancer types, and species and consider the
fundamental and clinical relevance of these findings. Finally, we provide an outlook on research opportunities to further
explore mechanisms governing tumor-infiltrating DC behavior and functions.

Introduction
Dendritic cells (DCs) were first described by Steinman, Cohn,
and colleagues in a series of reports in this journal almost half a
century ago (Steinman and Cohn, 1973, 1974; Steinman et al.,
1974, 1975). The work that followed recognized these cells as
key orchestrators of antigen-specific immunity and tolerance,
despite their limited abundance in the body (Steinman, 2012).
DCs were initially identified in mouse secondary lymphoid or-
gans (SLOs), namely spleen and lymph nodes (Steinman and
Cohn, 1973), which is significant considering that this localiza-
tion enables two events that are necessary for antigen-specific
immunity: (1) the capture and processing of antigens that orig-
inate from peripheral tissues, and (2) physical encounters with
(including antigen cross-presentation to and activation of) rare
clones of specific T cells that travel through lymphoid tissues
and accumulate in so-called T cell areas where DCs are found.

The last several decades of work have revealed many ad-
ditional features of DCs, including their origins, phenotypes,
and functions (Steinman et al., 2003; Colonna et al., 2004;
Geissmann et al., 2010; Merad et al., 2013; Guilliams et al., 2014;
Murphy et al., 2016; Eisenbarth, 2019). These findings have also
served to divide DCs operationally into several states, including
two classical DC (cDC) states (cDC1 and cDC2), a plasmacytoid
DC (pDC) state, and a monocyte-like inflammatory DC (MoDC)
state. Here, cell states are broadly defined as multidimensional
vectors (McKinley et al., 2020) and can include various

measurable dimensions such as protein and mRNA expression
or bodily location.

cDC1s are commonly thought to specialize in antigen cross-
presentation and CD8+ T cell activation and are often described
as XCR1+ CLEC9A+ CD141+ in humans. cDC2s can activate dif-
ferent types of CD4+ T helper cells, but also CD8+ T cells, and are
often defined as CD11b+ SIRPα+ CD1c+. The pDC state may be less
capable than the cDC states at priming T cells but can produce
type I IFNs that foster antitumor immunity and are often de-
scribed as CD123+ CLEC4C+. Finally, MoDCs are defined based on
their similarity tomonocytes, are typically produced in response
to inflammation, and may promote various effector T cell re-
sponses, but can be challenging to discriminate from cDC2s
(Eisenbarth, 2019). Of note, MoDCs found in vivo differ from
monocyte-derived DCs generated in vitro with GM-CSF and IL-4
(Alcántara-Hernández et al., 2017). Other DC states may exist
depending on bodily location or exposure to exogenous stimuli.

In the context of cancer, human DCs have long been con-
sidered cells that can cross-present tumor cell–derived antigens
and stimulate tumor-specific T cell responses (Albert et al., 1998;
Nouri-Shirazi et al., 2000). More than 10 yr ago, mechanistic
studies in mice uncovered Batf3 as a critical transcription factor
for the production of DCs that cross-present antigens and par-
ticipate in the elimination of immunogenic tumors (Hildner
et al., 2008). Additional molecules are likely to be required for
cross-presentation of tumor-associated antigens, including the
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protein WDFY4 expressed by cDC1s in mice (Theisen et al.,
2018).

Besides their presence in SLOs, DCs can be found within
solid tumors (Broz et al., 2014). Some of these cells migrate
through afferent lymph vessels while carrying tumor material
and reach tumor-draining lymph nodes, where they can pre-
sent tumor antigens, thereby activating tumor-specific T cells.
Transfer of tumor material from migratory DCs to lymph
node–resident DCs can also lead to T cell activation (Ruhland
et al., 2020). These processes enhance the cancer immunity
cycle (Chen and Mellman, 2013). Tumor-infiltrating DCs can
also act locally by promoting antitumor T cell immunity and
licensing immunotherapy responses (Engblom et al., 2016;
Wculek et al., 2020). These findings suggest that important DC
functions exist beyond SLOs, and consequently interest has
been sparked in studying tumor-infiltrating DCs in more de-
tail. The development of single-cell RNA sequencing (scRNA-
seq) provides the opportunity to map tumor-infiltrating DC
states through measurements of single-cell transcriptomes with-
out having to rely on prior assumptions of a limited set of markers
that define them. Besides expanding our view of tumor-
infiltrating DC heterogeneity across cancer types in both pa-
tients and experimental models, measurements of single-cell
transcriptomes encode information about multiple dimensions
of tumor-infiltrating DC states, such as their cell state–specific
gene signature, the cells they might interact with, and their pu-
tative ontogeny.

Conserved tumor-infiltrating DC states across solid
human cancers
Tumor-infiltrating DC states have started to be defined by
scRNA-seq in various human tumors, including non–small cell
lung cancer (NSCLC; Zilionis et al., 2019; Kim et al., 2020; Maier
et al., 2020; Qian et al., 2020), head and neck squamous cell
carcinoma (Cillo et al., 2020), hepatocellular carcinoma (Zhang
et al., 2019), melanoma (Nirschl et al., 2017; Brown et al., 2019),
cutaneous squamous cell carcinoma (Ji et al., 2020), colorectal
cancer (Qian et al., 2020; Zhang et al., 2020), ovarian cancer
(Qian et al., 2020), and breast cancer (Qian et al., 2020). When
considering NSCLC, scRNA-seq analysis of a given tumor typi-
cally reveals transcriptionally distinct DC states, which are re-
solved by clustering of single-cell transcriptomes based on their
similarity. Repeating this analysis with tumors from additional
NSCLC patients essentially rediscovers the same tumor-
infiltrating DC states and finds no others (Fig. 1, A and B).
These findings suggest the existence of a conserved structure of
tumor-infiltrating DCs across NSCLC patients and support the
view that DCs should be consistently classified using a discrete
set of marker genes. Also, the markers that are commonly used
to characterize the cDC1 state (e.g., CLEC9A, XCR1, and CADM1),
cDC2 state (e.g., FCER1A), and pDC state (e.g., TCF4, LILRA4,
CLEC4C, and IRF7) are differentially expressed by distinct
tumor-infiltrating DC states, further indicating the possibility
to relate scRNA-seq data with previous cytometric studies that
used cDC markers for subpopulation gating.

Similar scRNA-seq analyses of head and neck squamous cell
carcinoma, hepatocellular carcinoma, colorectal cancer, ovarian

cancer, and breast cancer also show the existence of tumor-
infiltrating DC states. These states may be either related to the
tumor tissue in which they reside (and thus differ across tissues)
or conserved across tissues and cancer types. Addressing this
question is complicated by the fact that scRNA-seq studies of
human tumors were performed by different investigators who
may have used varying tissue dissociation protocols and bio-
informatic approaches, and who may have given distinctive
names to newly observed DC states. Furthermore, cell state de-
tection can depend on the scRNA-seq platform used (Zhang
et al., 2019). Here we performed a meta-analysis of currently
available scRNA-seq datasets with the goal of generating a map
of tumor-infiltrating DC states across human cancers (Fig. 2 A).
This meta-analysis allows direct comparison of all DC states to
each other and resolution of possible measurement bias of in-
dividual studies and differences in tumor-infiltrating DC state
annotation.

To compare tumor-infiltrating DC states across studies, we
defined a reciprocal similarity score for each DC state compar-
ison pair using machine-learning classifier models fitted to each
scRNA-seq dataset (for further details, see supplemental text at
the end of this article). This analysis is analogous to “reciprocal
best hit” approaches used to identify orthologous genes between
species (Tatusov et al., 1997); here we instead look for ortholo-
gous cell states and use gene expression rather than sequence.
The results reveal the existence of five tumor-infiltrating DC
states across patients and cancer types, indicating DC state
conservation regardless of the tissue in which these cells reside,
the genetic makeup of tumor cells, or the composition of the
tumor microenvironment (Fig. 2 B). Three of these states are
particularly well conserved across cancer types: cDC1 (color-
coded in red), pDC (color-coded violet), and DC3 (color-coded
dark red). The latter was initially identified by scRNA-seq in all
seven NSCLC patients tested (Zilionis et al., 2019); the meta-
analysis presented here confirms the existence of this state in
additional NSCLC patients and in all other cancer types tested.
Other names used to refer to the tumor-infiltrating DC3 state
include mature DCs enriched in immunoregulatory molecules
(mregDCs; Maier et al., 2020), LAMP3+ DCs (Zhang et al., 2019),

Figure 1. scRNA-seq–based detection of tumor-infiltrating DC states in
human NSCLC. (A) Uniform manifold approximation and projection of
tumor-infiltrating DC states identified in NSCLC by scRNA-seq. (B) Cumula-
tive plots show the total number of identifiable DC states (left) or tumor cell
states (right), with every patient added. The order of patients is determined
by accumulating number of cell states detected. All panels are adapted from
Zilionis et al. (2019).
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CCR7+ DCs (Qian et al., 2020), and BATF3+ DCs (Zhang et al.,
2020). (In the latter study, so-called BATF3+ DCs contain both
cDC1 and DC3 states.) The remaining two DC states are less
conserved: one of them identifies as cDC2 (color-coded orange)
and was found in at least two studies (Zilionis et al., 2019; Qian
et al., 2020); the other is referred to here as cDC2/MoDC (color-
coded orange-green striped), as it contains the cDC2 state
identified in various cancer types (Zhang et al., 2019, 2020;
Maier et al., 2020; Qian et al., 2020) and the MoDC state iden-
tified in NSCLC (Zilionis et al., 2019).

All five tumor-infiltrating DC states express distinctive gene
expression signatures based on an analysis comprising five
cancer types and eight different scRNA-seq datasets (Fig. 3 A).
The top enriched genes include many that have been previously
used to define DC states, but also new ones that warrant in-
vestigation (Fig. 3 B). The tumor-infiltrating cDC1, cDC2, DC3,
and pDC states are distinct from their monocyte and macro-
phage counterparts, whereas the cDC2/MoDC state shows sim-
ilarities with these cells (Fig. S1). Evidence supports the
existence of a cDC2-to-monocyte continuum instead of discrete

Figure 2. Five tumor-infiltrating DC states are conserved across solid human cancer types. (A) Cartoon illustrating the human tumor tissues and scRNA-
seq studies that were used to compare the transcriptome of tumor-infiltrating DC states. Specific references are as follows: zi, Zilionis et al. (2019); ma, Maier
et al. (2020); qi, Qian et al. (2020); zh_l, Zhang et al. (2019); zh_c, Zhang et al. (2020). (B) Heatmap showing a reciprocal similarity score r for each tumor-
infiltrating DC state comparison pair, as defined in the supplemental text. The score was calculated using the probability estimates returned by the Linear
Support Vector Machine classifier on log-transformed data. The DC populations numbered 1 to 36 refer to previously published states, which are referenced in
Table S1. Five conserved states are identified as follows: cDC1 (red), cDC2 (orange), cDC2/MoDC (orange-green striped), DC3 (dark red), and pDC (violet).
(State 8 is heterogeneous: its reclustering reveals two new states that are similar to other cDC1 and DC3 states based onmarker gene comparison; Zhang et al.,
2020.)
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subsets (Alcántara-Hernández et al., 2017; Villani et al., 2017;
Dutertre et al., 2019; Bourdely et al., 2020; Leader et al., 2020).
The two ends of this continuum include CD1C+ CD5+ CD14–

CD88– CD163– cDC2s and CD88+ CD14+ CD163+ CD1C– CD5–

monocytes, respectively; the cells found in between, which we
refer to as cDC2/MoDCs, may variably express these and other
markers (Dutertre et al., 2019; Leader et al., 2020; Bourdely
et al., 2020). This complexity, as well as interindividual het-
erogeneity in the abundance of cells across this continuum,
may explain some of the differences observed for cDC2 and
cDC2/MoDC states between studies. Nevertheless, the overall
conservation of tumor-infiltrating DC states across cancers
should facilitate their investigation, and findings made in the
context of a given cancer may be relatively generalizable.
Although conserved, the abundance of specific DC states can
vary substantially across individual patients; this variation is
potentially important, because it may affect clinical outcome.

Also, it allows for correlative analyses between DC state
abundances and patient prognosis or response to different
therapeutic modalities.

It remains to be defined whether the entire tumor-
infiltrating DC landscape has been captured. It is likely that
the frame of the spectrum has been set, although it cannot for-
mally be excluded that additional tumor-infiltrating DC states
can be found. These states may have been missed in previous
studies because of their very low abundance or because they
exist in locations or under conditions that have not yet been
studied. For example, the current body of evidence mainly stems
from scRNA-seq analyses of treatment-naive tumors, and addi-
tional DC states may emerge in the context of therapeutic in-
tervention. The number of patients considered in any study
is also small, allowing for potential DC subsets unique to rare
tumor subtypes. More heterogeneity may also be revealed
as scRNA-seq improves in sensitivity and when additional

Figure 3. Human tumor-infiltrating DC states show distinctive gene expression profiles across solid cancer types. (A) Enriched genes in human tumor-
infiltrating DC states. The identification of these genes is detailed in the supplemental text. The DC populations numbered 1 to 36 refer to previously published
states (see Fig. 2 B for definitions) and are detailed in Table S1. The five conserved DC states are identified as follows: cDC1 (red), cDC2 (orange), cDC2/MoDC
(orange-green striped), DC3 (dark red), and pDC (violet). (B) Highlight of the 10 most differentially expressed genes for each human tumor-infiltrating DC state
across cancer types. Additional differentially expressed genes of interest are also shown. (C) List of the enriched genes from Fig. 3, A and B, that are also
conserved between mouse tumor-infiltrating DC states, based on data obtained in a murine lung adenocarcinoma model driven by KrasG12D and loss of Tp53
(Zilionis et al., 2019).
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variables are considered (i.e., beyond the transcriptome, as
discussed further below).

Conserved tumor-infiltrating DC states between humans
and mice
To study tumor-infiltrating DC states in vivo in a way that yields
translatable findings, there should be similar cellular diversity
among tumor-infiltrating DC states in human and laboratory
organism models. As mice remain the primary model used to
investigate immunological processes underlying human disease,
it is important to compare tumor-infiltrating DC states between
the tumor microenvironment of human cancer and murine tu-
mor models. Direct side-by-side analysis has been performed in
NSCLC (Zilionis et al., 2019; Maier et al., 2020) and colorectal
cancer (Zhang et al., 2020). Based on these reports, conservation
between mouse and human can be appreciated for tumor-
infiltrating DC states. For example, unsupervised hierarchical
clustering relates each tumor-infiltrating DC state in human
NSCLC one-to-one to those found in their mouse counterparts
(at least those tumor mouse models driven by Kras activation
and loss of Tp53; Zilionis et al., 2019; Maier et al., 2020). Fur-
thermore, many of the genes that are enriched in human tumor-
infiltrating DC states are conserved in their mouse counterparts
(Fig. 3 C). These findings are remarkable, considering that the
two species diverged ∼100 million years ago (Nei et al., 2001),
and underline the value of murine tumor models in studying DC
functions.

Increasing evidence indicates that the variable abundance of
tumor-infiltrating DC states observed in patients may be re-
produced, and thus studied, in mice. For example, mouse models
of melanoma show that expression of active β-catenin in tumor
cells limits cDC1 recruitment due to decreased production of the
cDC1 chemoattractant CCL4. This results in T cell exclusion from
the tumor, which recapitulates clinical observations of mela-
nomas with active β-catenin signaling (Spranger et al., 2015;
Nsengimana et al., 2018). Similarly, both human pancreatic
ductal adenocarcinomas and spontaneous mouse models of this
disease typically resist therapy, with resistance being linked to a
scarcity of pancreatic ductal adenocarcinoma–infiltrating cDC1s
and cDC2s (Hegde et al., 2020; Lin et al., 2020). These studies
support the relevance of using murine tumor models to study
DCs, particularly when DC abundance within murine tumors
reflects that of their human counterparts.

Tumor-infiltrating DC states: Origins
The conservation of tumor-infiltrating DC states suggests that
the ontogeny of these cells may also be conserved. The origins of
cDC1s, cDC2s, MoDCs, and pDCs has been discussed in detail
elsewhere (Sichien et al., 2017; Reizis, 2019). Interestingly, meta-
analysis of scRNA-seq data shows that tumor-infiltrating cDC1
and pDC states have their counterparts in peripheral blood (Fig.
S2). This similarity suggests that the cDC1 and pDC states are
defined phenotypically before the cells enter the tumor, al-
though it cannot be formally excluded that cells that recirculate
after residing in tissue contribute to the peripheral blood states.
These findings also align with the notion that these tumor-
infiltrating DC states have distinct developmental pathways.

Conversely, both tumor-infiltrating cDC2 and cDC2/MoDC states
resemble a circulating cDC2 state (Fig. S2; Villani et al., 2017;
Dutertre et al., 2019; Bourdely et al., 2020), and the tumor-
infiltrating cDC2/MoDC state additionally resembles a circulat-
ing cDC2/MoDC state (Fig. S2; Villani et al., 2017; Dutertre et al.,
2019; Bourdely et al., 2020). Considering not only this overlap,
but also that cDC2s and cDC2/MoDCs belong to a continuum of
states, these states are likely more closely connected ontogeni-
cally (Yáñez et al., 2017; Bourdely et al., 2020; Weinreb et al.,
2020). An additional blood DC state, referred to as DC5 (Villani
et al., 2017), has not been detected in the tumor stroma, sug-
gesting that it defines precursor cells that are never recruited to
tumors or that acquire a distinctive phenotype upon tissue en-
try. Favoring the latter possibility, the DC5 state expresses
markers that are associated with preDCs (Dutertre et al., 2019).

The tumor-infiltrating DC3 state is found exclusively in tis-
sue, hence without a similar counterpart in the blood (Fig. S2).
Computational analyses based on RNA velocity suggest that the
DC3 state may derive from either the cDC1 or cDC2/MoDC state
(Zhang et al., 2019) and possibly the cDC2 state, the contribution
of whichmay vary among tumor types or locations. Accordingly,
tumor-infiltrating DC3s identified by scRNA-seq can express
protein markers that are normally associated with cDC1s (e.g.,
XCR1 and CD103) or cDC2s (e.g., CD11b;Maier et al., 2020). These
findings suggest that maturation into DC3s supersedes ontogeny
differences for cDC1 and cDC2 differentiation. Consequently, in
previous studies the use of, for example, XCR1, CD103, and CD11b
markers to delineate cDC1s and cDC2s may have included cells in
the DC3 state. In fact, only a fraction of CD103+ DCs (often re-
ferred to as cDC1s) may express CCR7 intratumorally (Roberts
et al., 2016); this division of CCR7 expression among CD103+ DCs
may define cDC1 and DC3 states, which lack and express CCR7,
respectively (Zhang et al., 2019, 2020; Zilionis et al., 2019; Maier
et al., 2020; Qian et al., 2020).

The concept that tissue DCs can share a common gene sig-
nature, regardless of tissue location or lineage, has been sug-
gested before (Miller et al., 2012; Dalod et al., 2014; Nirschl et al.,
2017); this phenomenon may apply to the DC3 state. Moreover,
the DC3 state is not unique to tumors. For example, DC3-like
cells can be found in Crohn’s disease lesions (Martin et al., 2019):
these cells have a reciprocity similarity score of ∼0.6 compared
with all other DC3-like states identified in tumors and a recip-
rocal similarity score ∼0.05 compared with all other non-DC3
states. Thus, DC3 amplification in tissue may be a common
feature of inflammation. Preferential localization of DC3s close
to blood vessels, at least in the context of anti–programmed cell
death protein 1 (anti–PD-1) therapy (Garris et al., 2018), further
suggests that DC3 maturation in tissue is spatially compart-
mentalized. Additional studies, for example using intravital
imaging as discussed below, may help address DC3s’ origins
and fate.

Tumor-infiltrating DC states: Regulation and functions
Tumor-infiltrating DCs can regulate key aspects of tumor-
associated immunity (Fig. 4, A and B). Experimental evidence
suggests that tumor-infiltrating cDC1s can foster tumor control
in different ways, including production of the chemokines
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CXCL9 (Chow et al., 2019) and CXCL10 (Spranger et al., 2017)
that recruit CD8+ T cells to tumors and enable local (re)activa-
tion of these cells through antigen cross-presentation (Spranger
et al., 2017; Chow et al., 2019), and through production of various
factors such as IFN-λ (Hubert et al., 2020). cDC1s are also re-
quired for successful immunotherapy in various murine tumor
models (Moynihan et al., 2016; Salmon et al., 2016; Sánchez-
Paulete et al., 2016; Mao et al., 2020; Morrison et al., 2020).
Accordingly, cDC1 gene expression signatures in human tumors
often correlate with improved patient survival and clinical

response to immunotherapy (Böttcher et al., 2018; Barry et al.,
2018). Inhibitors of cDC1 responses include prostaglandin E2, IL-
10, XBP1-mediated endoplasmic reticulum stress, and lipid
peroxidation (Ruffell et al., 2014; Cubillos-Ruiz et al., 2015;
Zelenay et al., 2015; Veglia et al., 2017; Böttcher et al., 2018),
whereas enhancers of cDC1 responses include type I IFNs (Fuertes
et al., 2011), the chemokines CCL4, CCL5, and XCL1 (Spranger
et al., 2015; Böttcher et al., 2018; Williford et al., 2019) and the
growth factor Flt3L (Broz et al., 2014; Salmon et al., 2016; Barry
et al., 2018), some of which are produced by natural killer
(NK) cells.

Classically gated tumor-infiltrating cDC2s, which may in-
clude cells that fall within the tumor-infiltrating cDC2 or cDC2/
MoDC states identified in the meta-analysis, have been less
studied, perhaps due to a lack of cDC2-specific depletion strat-
egies in mice and the difficulty of distinguishing these cells from
MoDCs. Experimental evidence indicates that migration of
tumor-infiltrating cDC2s to tumor-draining lymph nodes en-
ables presentation of tumor-derived antigens predominantly to
CD4+ conventional T cells; however, the presence of regulatory
T cells (T reg cells) limits CD4+ T cell differentiation into
proinflammatory antitumor cells (Laoui et al., 2016; Binnewies
et al., 2019). Furthermore, depletion of intratumoral T reg cells
leads to increased migration to tumor-draining lymph nodes of
only one of two cDC2 states identified in murine melanoma
(Binnewies et al., 2019), suggesting that cDC2 heterogeneity may
have functional implications. Corresponding to this finding,
studies in healthy murine spleen, where two cDC2 states were
also identified, show that one cDC2 state is more anti-
inflammatory than the other (Brown et al., 2019), in which
differentially expressed gene RUNX3 may play a role (Fainaru
et al., 2004). In patients, the increased presence of tumor-
infiltrating BDCA-1+ cDC2s in head and neck cancer has been
associated with improved progression-free survival, and this
gain was even more prominent when tumor-infiltrating T reg
cell counts were low (Binnewies et al., 2019). The increased
expression of cDC2 marker genes in tumors has also been as-
sociated with improved patient survival in NSCLC (Zilionis
et al., 2019).

Emerging from recent scRNA-seq studies, tumor-infiltrating
DC3s contain a transcriptional module lacking key cDC1 and
cDC2 markers and resemble “activated” Ccr7+ cDCs in mice
(Ardouin et al., 2016). Because the chemokine CCR7 guides
tumor-infiltrating cDC trafficking to lymph nodes (Roberts et al.,
2016), it is likely that a proportion of DC3s eventually migrate to
tumor-draining lymph nodes, where they may activate tumor
antigen-specific T cells (Zhang et al., 2019). Yet, in the context of
successful immunotherapy, some tumor-infiltrating DC3s may
persist locally for at least several days (Garris et al., 2018),
suggesting they can acquire aberrant trafficking behavior or are
retained due to intratumoral interactions, such as via attraction
to stromal cells or tumor cells expressing CCR7 ligands (Novak
et al., 2007; Cheng et al., 2018; Whyte et al., 2020). Within tu-
mors, DC3s can produce high amounts of IL-12 upon sensing
IFN-γ released by neighboring T or NK cells (Garris et al., 2018;
Maier et al., 2020); in turn, IL-12 stimulates antitumor CD8+

T cells (Garris et al., 2018) or NK cells (Mittal et al., 2017),

Figure 4. Relevance, regulation, and function of tumor-infiltrating DC
states. (A) Overall clinical and experimental observations related to tumor-
infiltrating DCs, T cell infiltration, and outcome. (B) Each DC state can be
positively or negatively regulated by tumor microenvironment–derived fac-
tors that influence their antitumor capacity, as identified in experimental
studies. Thin dashed lines/arrows represent cell migration or differentiation
into another state. Solid arrows and inhibitory signs identify factors that
regulate target cell function either positively or negatively. The text boxes
describe key functions of the respective DC states. The cDC2 and cDC2/
MoDC names represent the states identified in the meta-analysis, and their
functions might differ from those of classically gated cDC2s and MoDCs. For
instance, classically gated cDC2s from prior studies in mice may include cells
from both the cDC2 and cDC2/MoDC states, and classically gated MoDCs
from prior studies may include cells from the cDC2/MoDC state.
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indicating that DC3s can license full-fledged antitumor immu-
nity through a molecular cross-talk involving IFN-γ and IL-12.
DC3s may also activate tumor-specific CD4+ T cell responses
(Maier et al., 2020). The increased expression of DC3 marker
genes in tumors has been associated with improved patient
survival in NSCLC and colorectal cancer (Zilionis et al., 2019;
Zhang et al., 2020). Furthermore, this DC state was found to be
selectively enriched in microsatellite instability–high colorectal
cancer (Zhang et al., 2020), which responds better to immune
checkpoint blockade therapy than its microsatellite instability–
low counterpart (Le et al., 2015).

The tumor-infiltrating DC3 state can be amplified and acti-
vated through noncanonical NF-κB signaling, for example with
CD40 agonists (Garris et al., 2018). Sensing of IFN-γ may play a
role, since DCs in IFN-γ receptor–deficient mice show decreased
expression of noncanonical NF-κB pathway genes (Nirschl et al.,
2017). Correspondingly, defects in the noncanonical NF-κB
pathway impair IL-12 production (Katakam et al., 2015). Tumor-
infiltrating DC3s (also referred to as mregDCs; Maier et al.,
2020) also express an immunoregulatory program that is char-
acterized by programmed death ligand 1 (PD-L1), PD-L2, and
IL-4i1 expression. This program is independent of CCR7 signal-
ing, and PD-L1 expression is driven by the phagocytic receptor
tyrosine kinase AXL. IL-4 signaling suppresses IL-12 production
by DC3s, and IL-4 blockade can induce a therapeutic response
against lung tumors in mice that otherwise resist immune
checkpoint blockade treatment (Maier et al., 2020). These find-
ings suggest that inhibitory molecules such as PD-L1 and IL-4i1
represent DC analogues to lymphocytes’ coinhibitory check-
points and may serve as their own self-limiting programs. In line
with this notion, selective deletion of PD-L1 in Clec9a-dependent
DCs enhances antitumor immunity (Oh et al., 2020).

At steady-state, tissue-derived migratory DCs also share a
unique regulatory transcriptional program across humans and
mice, regardless of tissue or cell of origin. This intrinsic regu-
latory module may help maintain tolerance under normal con-
ditions (Miller et al., 2012; Anandasabapathy et al., 2014) and
depends at least in part on NF-κB–dependent activity, because
mice develop autoimmunity in its absence (Dalod et al., 2014;
Baratin et al., 2015). It is possible that such DC tissue program-
ming is coopted in tumor and other chronic inflammatory set-
tings, such as with the DC3 state.

Classically gated tumor-infiltrating MoDCs, which may in-
clude cells that fall within the cDC2/MoDC state identified in the
meta-analysis, and pDC states also require investigation. At
present, there is evidence that MoDCs can be recruited to in-
flamed sites such as tumors upon sensing the chemokine MCP-1,
also referred to as CCL2 (Ma et al., 2014; Laoui et al., 2016), or
immunogenic tumor cell death–derived factors (Ma et al., 2013).
MoDCs may help protect the host against cancer by acquiring
the ability to cross-present tumor antigens to CD8+ T cells (Ma
et al., 2013) or by licensing CD8+ T cells independently of MHC
class I (Santana-Magal et al., 2020); however, several tumor
microenvironmental factors, including lactic acid, IL-6, and
prostaglandin E2 (Chomarat et al., 2000; Sombroek et al., 2002;
Gottfried et al., 2006), may functionally suppress MoDCs.
Tumor-infiltrating pDCs can be activated through pattern

recognition receptors comprising TLR7 and TLR9 (Stary et al.,
2007; Gungor et al., 2014), display antitumor functions such as
secretion of type I IFNs that can promote tumor cell lysis (Stary
et al., 2007; Le Mercier et al., 2013), and may recruit NK cells
and enhance their cytotoxic activity in tumors (Liu et al.,
2008). However, tumor-infiltrating pDCs may be suppressed
by the cytokines TNF-α and TGF-β (Labidi-Galy et al., 2011;
Sisirak et al., 2013) and express the inhibitory receptor TIM-3
(Chiba et al., 2012); they may also actively promote cancer by
inducing and activating T reg cells (Ito et al., 2007; Sisirak et al.,
2012) or fostering neoangiogenesis (Curiel et al., 2004). Ac-
cordingly, tumor-infiltrating pDCs have been identified as a
negative prognostic marker in melanoma (Aspord et al.,
2013) and ovarian (Labidi-Galy et al., 2012) cancers; although
it is possible that therapeutically targeting these cells may trigger
antitumor functions.

Integration of scRNA-seq landscapes with functional studies
We need to continue using scRNA-seq approaches to assess
tumor-infiltrating DC states in more cancer types and to expand
these studies to (pre)clinical trials to better understand how
therapeutic interventions impact the tumor microenvironment
at the cellular and molecular levels. The use of single-cell reso-
lution genomic approaches in clinical trials for the development
of next-generation immunotherapy is reviewed elsewhere (Yofe
et al., 2020). It is also important that information produced with
scRNA-seq approaches is used to generate models for assessing
the functional relevance of newly defined cell states, which we
discuss below (Fig. 5).

First, the information encoded in single-cell transcriptome
data should be exhausted to generate hypotheses about the
function of tumor-infiltrating DC states and to guide the design
of relevant functional experiments that can test these hypoth-
eses. For example, differentiation hierarchies in the tumor-
infiltrating DC landscape discussed above can be predicted
using single-cell trajectory inference methods (Saelens et al.,
2019) or with measurements of nascent mRNA abundance (La
Manno et al., 2018; Zhang et al., 2019). Interactions of tumor-
infiltrating DCs with other cells and downstream intracellular
targets of these receptor–ligand interactions may be predicted
with ligand–target modeling (Browaeys et al., 2020). The
transcription factors and signaling pathways that are active in
tumor-infiltrating DCs may also be predicted with transcrip-
tion factor–target modeling and pathway–target modeling, re-
spectively (Schubert et al., 2018; Garcia-Alonso et al., 2019;
Holland et al., 2020), and further tested functionally.

Second, multimodal approaches integrating single-cell tran-
scriptomes with other dimensions of cell states allow for the
mapping of these dimensions onto the high-resolution tran-
scriptionally defined tumor-infiltrating DC landscape. Such
multimodal approaches may help design functional experi-
ments. For example, conventional scRNA-seq data, such as those
discussed in the previous sections, lack spatial context; yet de-
fining the location of a cell state in a given tissue may identify its
neighbors and help understand how these cells functionally
regulate each other. Combined measurements of single-cell
transcriptomes with protein cell surface expression (Stoeckius
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et al., 2017; Baron et al., 2019; Dutertre et al., 2019) enables the
identification of cell-state protein markers, which may then be
used to locate cells of interest in tissue by histology, multiplexed
single-cell mass cytometry imaging (Jackson et al., 2020), or
multiplexed immunofluorescence (Gut et al., 2018; Lin et al.,
2018). The identification of surface markers may additionally
assist in developing reagents that facilitate labeling or depletion
of cell states of interest in experimental models for in vivo
functional studies.

Spatial context may further be assessed in combination with
time, such as with intravital imaging, to track cell behavior in
complex tissue environments (Pittet et al., 2018), or with cell
state morphology, such as with correlative light electron mi-
croscopy (Begemann and Galic, 2016), to interrogate whether
cell–cell interactions imprint cell identities (Bonnardel et al.,
2019). In addition to the approaches mentioned above, spatial
identification of tumor-infiltrating DC states may be measured
with spatial transcriptomics (Chen et al., 2015). Multimodal
approaches may also integrate single-cell transcriptomes with
cell surface and lineage markers to help map DC state ontogeny
(Wagner and Klein, 2020; Weinreb et al., 2020), with chromatin
accessibility to uncover accessible transcription factor motifs in
cell states of interest (Cusanovich et al., 2018), or with cell
sorting of physically interacting cells to discover preferential
interactions within organs (Boisset et al., 2018; Giladi et al.,
2020). Using these combined approaches should increase our
understanding of the unfolding of tumor-associated DC re-
sponses, as well as the intracellular molecular wiring and cel-
lular crosstalk with neighboring cells that dictate DC functions.
For example, these approaches may help better understand the
relationships between DC3s with cDC1s and/or cDC2s, and DC3
programming in tissue. Altogether, the experimental aims
of producing multidimensional information are to generate

informed, testable hypotheses that encompass fundamental
and translational aspects of DC function and to develop animal
models that closely model human biology and disease to allow
for biologically and clinically relevant investigation.

The DC states discussed here likely contribute differentially
to antitumor immunity but remain underinvestigated. cDC1s
have attracted increased attention, based on their ability to in-
duce tumor-specific CD8+ T cell responses; yet, all other states
may contribute nonoverlapping functions, which require study.
Additionally, there is increasing evidence that tumor immune
evasion involves crippling normal DC functions, which can be
expected when considering the central role these cells can play
in fostering antitumor immunity. Studying mechanisms leading
to dysfunctional or tolerogenic DC states warrant further in-
vestigation, especially with information suggesting that at least
some DC states can be suppressed or negatively regulated. Ul-
timately, the goal of studying DCs in cancer and related thera-
peutic interventions is to discover aspects of their cellular
identity that can be targeted to favor a functional antitumor
environment and boost treatment response. This knowledge
may also facilitate the design of DC vaccines and the identifi-
cation of predictive biomarkers of clinical outcome and treat-
ment response. The incorporation of multimodal single-cell
approaches into translational research projects, especially as
part of clinical trials, will certainly shed more light on dimen-
sional aspects of tumor-infiltrating DC identity (and that of other
cell types), better enabling the accomplishment of these goals.

Online supplemental material
Fig. S1 shows that tumor-infiltrating cDC1, cDC2, DC3, and pDC
states are distinct from monocyte and macrophage states,
whereas the tumor-infiltrating cDC2/MoDC state is not. Fig. S2
shows that tumor-infiltrating cDC1, cDC2, cDC2/MoDC, and pDC

Figure 5. Increasing the number of measured dimensions of tumor-infiltrating DC states. Computational tools can predict multiple dimensions of tumor-
infiltrating DC states from single-cell transcriptomes such as fate potential (trajectory inference and RNA velocity), cell–cell interactions, and downstream
targets of these ligand–receptor cell–cell interactions (ligand–target modeling), active transcription factors and signaling pathways (transcription factor–target
and pathway–target modeling), and conservation of DC states (meta-analyses as performed in this review). These computational prediction tools are in-
strumental to generate testable hypotheses about tumor-infiltrating DC states; however, multimodal approaches that measure both single-cell transcriptomes
and other dimensions are emerging. Available and emerging tools permit the evaluation of other intrinsic features of cells, their location, origins, fate, and
functions. *, tools applicable to exploratory models only; GEMM, genetically engineered mouse model.
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states resemble circulating DC states in peripheral blood of
cancer patients and healthy individuals, whereas the tumor-
infiltrating DC3 state does not. Table S1 lists DC, monocyte,
and macrophage states that were identified in previous
publications.
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Supplemental material

Figure S1. Tumor-infiltrating cDC1, cDC2, DC3, and pDC states are distinct from monocyte and macrophage states, whereas the tumor-infiltrating
cDC2/MoDC state is not. Heatmap showing a reciprocal similarity score r for each tumor-infiltrating DC, monocyte, and macrophage state. This score was
calculated using the probability estimates returned by the Linear Support Vector Machine classifier on log-transformed data. The DC populations numbered
1 to 36 refer to previously published states, which are referenced in Table S1. The monocyte (Mono) and macrophage (Mø) populations lettered a to dd also
refer to previously published states, also referenced in Table S1. Five conserved DC states are identified as follows: cDC1 (red), cDC2 (orange), cDC2/MoDC
(orange-green striped), DC3 (dark red), and pDC (violet). Monocyte and macrophage states are highlighted in green.
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Table S1 is provided online as a separate Word file. It lists DC, monocyte, and macrophage states that were identified in previous
publications and provides detailed information about them.

DC, monocyte, and macrophage states identified in previous publications
Figs. 2 B, 3, S1, and S2 refer to DC, monocyte, andmacrophage states that were identified in previous publications. Table S1 lists these
states and detailed information about them.

Meta-analyses
We compared single-cell transcriptomes of tumor-infiltrating DC, monocyte, and macrophage states in NSCLC (zi, Zilionis et al.
[2019]; ma, Maier et al. [2020]; qi, Qian et al. [2020]), breast (qi, Qian et al. [2020]), hepatocellular carcinoma (zh_l, Zhang et al.
[2019]), and colorectal cancer (zh_c, Zhang et al. [2020]; qi, Qian et al. [2020]). These studies were included because we could obtain
the following information from them: count matrices and corresponding metadata that included cell state, tissue origin, and cell
transcriptome quality annotations. These metadata annotations remained unavailable for some published studies that did provide
single-cell transcriptome data. Also, we selected studies that identified more than two tumor-infiltrating DC clusters (besides pDCs).
With available data, we asked how confidently machine-learning classifier models that had been fitted to single-cell transcriptomes
of these states from each dataset predicted these states to be DC, monocyte, and macrophage states in each other dataset. We used
three machine-learning classifier models implemented in the Python package sckikit-learn (v0.22.2.post1; Pedregosa et al., 2011): (1)
Linear Support Vector Machines on log-transformed data, (2) multinomial naive Bayes, and (3) multilayer perception.

For each cell i in a given dataset A, classification given a second annotated dataset B returns a probability estimate PB→A(si �
sB
�
�
�x(A)i ,DB) of the cell i being a tumor-infiltrating DC, monocyte, or macrophage state from dataset B. We represent each state sB from

Figure S2. Tumor-infiltrating cDC1, cDC2, cDC2/MoDC, and pDC states resemble circulating DC states in peripheral blood of cancer patients and
healthy individuals, whereas the tumor-infiltrating DC3 state does not. Heatmap showing a reciprocal similarity score r for each tumor-infiltrating and
blood DC state. This score was calculated using the probability estimates returned by the Linear Support Vector Machine classifier on log-transformed data.
The DC populations numbered 1 to 36 refer to previously published states, which are referenced in Table S1. The blood DC states lettered ee to nn also refer to
previously published states, which are also referenced in Table S1. Five conserved DC states are identified as follows: cDC1 (red), cDC2 (orange), cDC2/MoDC
(orange-green striped), DC3 (dark red), and pDC (violet).
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dataset B as an element of the set of states {1,2,…,m}B of lengthm. x(A)i is a J-dimensional vector of measured gene expression for cell i
(gene j = 1,…,J), and DB is the annotated data from dataset B used to construct the cell state classifier. From these probabilities, we
calculated the probability of an annotated state in dataset A corresponding to a state in dataset B as

PB→A(sA � sB) � 〈PB→A(si � sB
�
�
�x(A)i ,DB)〉{i:si�sA}}, where 〈·〉{i:si�sA} is the mean probability for cells that have an original annotation of

state sA in dataset A. Note that in general, PA→A(sA � sA) ≤ 1, and classification is not symmetric: PB→A(sA � sB) ≠ PA→ B(sB � sA).
To compare dataset A with dataset B, we defined a reciprocal similarity score rAB(sA, sB) for each tumor-infiltrating DC state

comparison pair in those datasets, as performed in Zilionis et al. (2019): rAB(sA, sB) � PB→A(sA � sB) × PA→ B(sB � sA). rAB(sA, sB) is
nonvanishing only when two states show mutual correspondence.

Before calculating the reciprocal similarity scores, all single-cell transcriptome datasets were normalized to total cell counts
(Klein et al., 2015). In addition, to filter out outlier genes, each dataset was filtered to contain only the intersecting sets of genes that
were detected in at least five cells at ≥150 transcripts per million within each of the datasets.

All figures show results using the Linear Support Vector Machine classifier on log-transformed data. Related to Fig. 2 B, mul-
tinomial-naive Bayes andmultilayer perception classifiers gave the same classification result except for themultinomial-naive Bayes
classifier that separated state 24 from other tumor-infiltrating cDC2 states. Related to Fig. S1, multinomial-naive Bayes and mul-
tilayer perception classifiers gave the same classification result except for the multinomial-naive Bayes and multilayer perception
classifier that separated states 24 and 29 from other tumor-infiltrating cDC2 and cDC2/MoDC states, and the multilayer perception
classifier that separated state 16 from the other tumor-infiltrating pDC states. Related to Fig. S2, multinomial-naive Bayes and
multilayer perception classifiers gave the same classification result except for the multinomial-naive Bayes classifier that separated
state 29 from other cDC2/MoDC states, and states 16 and “gg. blood (zi)” from other pDC states, and for the multilayer perception
classifier that separated state 29 and state 32 from other cDC2/MoDC states.

Genes overexpressed by tumor-infiltrating DCs
Tumor-infiltrating DC states show distinctive gene expression profiles. The genes shown in Fig. 3 were identified as follows. (a) We
determined the set of genes whose expression was significantly higher in each tumor-infiltrating DC state compared with all other
cell states profiled and available in the respective studies (two-tailed Mann–Whitney U test with multiple hypothesis correction,
false discovery rate <5%). (b) We divided the five sets of tumor-infiltrating DC states contained in the five conserved tumor-
infiltrating DC states defined in Fig. 2 B in folds, where each time one of the contained tumor-infiltrating DC states was left out. (c)
We determined the union of the intersecting gene sets of statistically significantly more highly expressed genes of these folds for
each of the five conserved tumor-infiltrating DC states defined in Fig. 2 B.
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