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C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C—C bond forming reac-

tions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30%

surface coverage.

Introduction

Self-assembled monolayers (SAMs) are increasingly being used
as a means of surface modification to alter properties in a tune-
able manner [1-3]. The major classes of SAMs are those with
adsorbed long chain alkyl thiols on gold surfaces/nanoparticles
[4,5], or long chain alkylsilanes on silica surfaces [6,7]. Two
general approaches are taken to achieve surface modification as
illustrated in Figure 1. The first involves incorporating pre-
functionalised alkylsilanes/alkylthiols carrying functional
groups (FG) to generate the SAM directly, whereas the second
approach involves chemical modification of a pre-assembled
monolayer carrying reactive groups (RG), as a means to intro-
duce the SAM carrying the FGs [8]. Both approaches present
challenges. In the former the desired functionality (FG) requires

to be robust and orthogonal in reactivity to the chemistry

involved in securing the substrate to the organic film (e.g.,
FG-Alkyl-SiCls and silicon substrate). In the latter chemical
modification of the reactive groups of the pre-coated SAM has
to be efficient enough such that a reasonable conversion can be
obtained, with chemical specificity and lack of surface degrad-
ation. In this respect ‘click’ reactions have become attractive
including azide—alkyne cycloadditions [9,10], Diels—Alder reac-
tions [11,12], maleimide—thiol reactions [13], thiol-ene addi-
tions [14], and imine/oxime conjugations [15]. In this article we
demonstrate that dihalocarbenes can be used to generate dihalo-
cyclopropanes on olefin terminated SAMs.

We recently reported the formation of high quality vinyl-termi-
nated SAMs generated from the vapour phase by adsorption of
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Figure 1: General strategies for incorporating functional groups (FGs) on the surface of self-assembled monolayers (SAMs), illustrated for alkylsi-

lanes onto silica.

octadecyltrichlorosilanes onto silicon wafers [16]. With access
to these SAMs it became an objective to explore functional
group modification of the vinyl double bond. Carbon—carbon
bond formation of vinyl-terminated SAMs has been demon-
strated, e.g., through surface modification of radicals generated
by C-O bond thermolysis [17] and in a more controlled sense
via olefin cross metathesis/enyne metathesis [18] of mixed vinyl
and acetylenyl-terminated SAMs followed by Diels—Alder
modifications of the resultant dienes [19]. We are not aware
however of straightforward carbene additions having been
explored with olefin-terminated SAMs. The potential for prod-
uct cyclopropanes offered a modification of limited steric
impact, but if suitably substituted may be used to tune surface
properties. Therefore dihalocyclopropanes emerged as an attrac-
tive controlled modification particularly as the precursor dihalo-
carbenes are relatively easily generated [20]. In this context we
report dihalocyclopropanation of pre-assembled vinyl-termi-
nated SAMs. Three dihalocarbene modifications were explored
involving dibromo- (:CBrjy), dichloro- (:CCl,) and difluoro-
(:CF,) carbenes [21-23]. The resultant SAMs were analysed by
X-ray photoelectron spectroscopy (XPS), contact angle goniom-

etry, ellipsometry, and atomic force microscopy.

Results and Discussion

After exposure to carbenes the vinyl-terminated SAMs were
characterised by XPS, contact angle measurements and ellip-
sometry (see Supporting Information File 1). With XPS

elements such as silicon, carbon and oxygen were expected in

all cases [16]. In each case control reactions were also carried
out on the C;g-methyl (Me)-terminated SAMs, to ensure that
only the vinyl group was responsible for surface reactivity. The
resultant XPS analyses are shown for the vinyl-terminated
SAMs for each carbene in Figure 2, and directly underneath, the
lower traces illustrate the corresponding analyses after expo-
sure of the carbene solutions to the C;g-Me-terminated SAMs.

Figure 2a represents a surface after chemical modification with
:CBr, generated from CHBr3. New peaks appeared at binding
energies of 71 and 182 eV in all of the samples. These were
assigned to Br 3d and Br 3p signals, respectively [24,25].
Figure 2b shows the results obtained from SAMs after modifi-
cation with :CCl, generated from CHCl3;. New signals at
binding energies of 201 and 270 eV were detected. These were
assigned to CI 2p and CI 2s [26]. Finally Figure 2c represents
the surface after chemical modification with :CF, generated
from TMSCF3. A new signal at binding energy of 688.7 eV was
detected and assigned to F 1s, consistent with a CF, group
present on the surface [27].

It was anticipated that gem-dibromo-, gem-dichloro- and gem-
difluorocyclopropane-terminated SAMs will be formed,
following the usual transformations of these carbenes with
double bonds. To add further support to this expectation, model
reactions were carried out under each of the reaction conditions
with dec-1-ene (1, Scheme 1). All of the cyclopropane products
2a-c¢ were obtained cleanly and in moderate yields (see
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Figure 2: XPS scans after reactions with a) :CBry; b) :CCl, and c) :CF,. In each case the upper traces are scans of C14-vinyl SAMs, and the lower
traces are C1g-Me-terminated SAMs each treated with the relevant carbene reaction solution. The expanded regions on the right hand side, asso-
ciated with each C44-vinyl SAM spectrum, show the key halide specific XPS signals.
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a) X = Br, 54%; b) X = Cl, 49%; c) X = F, 48%

Scheme 1: Model reactions of dec-1-ene (1) with dihalocarbenes in the liquid phase. a) and b) NaOH, BTEAC, CHX3, DCM, 8 h, 25 °C; ¢) TMSCFj3,
THF, Nal, 3 h, 65 °C.
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Supporting Information File 1). The results of the model reac-
tions demonstrate that formation of the dihalocyclopropane
rings is a relatively clean process for this long chain terminal
vinyl substrate. The absence of any side products gives confi-
dence that only dihalocyclopropanes will be formed in the
surface reactions.

Turning to the C;-vinyl-terminated SAMs products. In each
case the presence of gem-dihalocyclopropane groups on the
surface is supported by the ratios of the C 1s signals to the
Br 3d, Cl 2p or F 1s signal, respectively. The theoretical and
experimental ratios between the carbon and halogen XPS
signals are summarised in Table 1. In all cases the ratios are
consistent with a modification coverage of ~30%, with a
slightly lower conversion rate in case of F, which might be due
to its higher electronegativity and an associated higher repul-
sion between the terminal groups after cyclopropanation.
Conversion rates were determined by correcting the experi-
mental C3/(C1 + C2) ratios from Table 1 with a factor of
d/(M1 — exp(—=d/)N)), where d is the film thickness (determined
with ellipsometry) and A the mean free path of the electrons.
This accounts for the partial attenuation of the C3 XPS carbon
signal. The water contact angles (CAs) of Br, Cl and F carbene
treated surfaces were recorded and the CA values obtained of
80°, 85° and 104°, respectively, are in good agreement with the
literature [28-30]. Notably the fluorinated SAM has the largest
contact angle as expected, however, the increase and the final
contact angle values are clearly lower than that for a pure CF3
terminated film (~118-120°) [31], but this is not surprising
given that the halogen functional group density is lower.

Finally AFM images were recorded for the three dihalocyclo-
propane modified surfaces and they are shown in Figure 3a—c.
In all cases the images are smooth and defect free. There was no
excess of material observed from reagents after washing, and in
each case the RMS surface roughness values did not exceeded
150 pm. It is clear that there is no detectable change observed in

0,84 nm

0,00 nm

) b)

Beilstein J. Org. Chem. 2014, 10, 2897-2902.

Table 1: Assignment of the C 1s XPS signals after treatment of Cq4-
vinyl SAMs with the respective dihalocarbene. Theoretical and experi-
mental ratios of the Br 3d to C 1s, Cl 2p to C 1s and F 1s to C 1s XPS
signals of modified C4¢-vinyl SAMs.

r T T T T T T T 1
290 289 288 287 286 285 284 283 282
Binding Energy [eV]

Cis

r T T T T T T T )
200 289 288 287 286 285 284 283 282
Binding Energy [eV]

C1s

c1

PO o=t N
% 292 290 288 286 284 282

Binding Energy [eV]

Ratios
X:C1 X:C2 C1:C2 C3:(C1+C2)
Theor. :CXy 2:1 1:1 1:2 3:1

Exp. :CBrp  1.9:1 0.9:1 1:2.1 7.6:1
Exp. :CCl, 221 1.1:1 1:2 7.4:1
Exp. :CF, 2.1:1 1:1 1:2 8.5:1

0,87 nm 0,83 nm

0,00 nm

Figure 3: AFM images of 5 um x 5 ym area of C14-vinyl SAMs modified with a) :CBr; carbene, RMS 93 pm; b) :CCl, carbene, RMS 101 pm;

¢) TMSCF3, RMS 79 pm.
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the film after each modification, and that the films are of good
integrity.

An alternative approach, also illustrated in Figure 1 is to
prepare SAMs using pure samples of pre-halogenated cyclo-
propyl chains, with deposition directly onto the surface. This
presents the obvious challenge of obtaining highly ordered films
after direct deposition. The current approach establishes films
of good integrity, which then become chemically modified.
There is good evidence that this is less straightforward with
functionalised surfactants [32].

Conclusion

In summary we have been able to demonstrate that vinyl-termi-
nated SAMs can be chemically modified by a range of dihalo-
carbenes to generate surfaces carrying the corresponding
dihalocyclopropane motifs. The reactions demonstrate that
these organic chemical transformations, which have been rela-
tively widely used in solution reactions of olefins, can be
extended to surface reactions of SAMs. This opens up prospects
too of modifying surfaces in this manner with carbenes carrying
more elaborate functional groups, and thus a more dramatic
change to the surface properties.

Experimental

Bromoform (CHBr3), chloroform (CHCIl3) and the
Ruppert—Prakash reagent (CF3Si(CH3),) [33,34] were used as
the carbene precursors for surface modification, with the resul-
tant carbenes generated in solution. For dibromo- and dichloro-
carbene generation a solution of NaOH with CHBr3 or CHCl3
was stirred with a solution of benzyltriethylammonium chloride
(BTEAC, 0.1 mmol) in dichloromethane for 10 min at 0 °C.
Pre-coated silicon wafers (1 cm x 1.5 cm) with C-vinyl-termi-
nated SAMs, were immersed in the reaction mixture and the
liquids were stirred at room temperature for fixed periods of
time (see Supporting Information File 1). SAMs on silicon
substrates form stable films [6,7], however, they can be vulner-
able to chemical degradation particularly in aqueous base
[28,35,36]. For this reason the NaOH concentration and reac-
tion time required to be optimised. The reaction temperature

coated
silicon wafer

Beilstein J. Org. Chem. 2014, 10, 2897-2902.

was kept at 25 °C and the phase-transfer catalyst, benzyltri-
ethylammonium chloride (BTEAC) was chosen to generate the
:CX, carbenes, and minimise exposure of the wafers to the
base.

The Ruppert—Prakash reagent (TMSCF3) was used to prepare
the gem-difluorocyclopropane-terminated SAMs by generating
difluorocarbene, following the procedure of Wang et al. [22] for
small molecule transformations. This involved stirring a solu-
tion of Nal (0.2 equiv) and TMSCF3 in THF (2 mL), and then
immersing the silicon wafers (1 cm X 1.5 cm) into the reaction
mixture at 65 °C for a fixed period of time (see Supporting
Information File 1). The experimental set-up for the surface
modification with the three different carbenes is shown in
Figure 4. Details of the surface analytical techniques used are
given in the Supporting Information File 1.

Supporting Information

Supporting Information File 1

Synthesis protocols and additional surface analysis data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-307-S1.pdf]
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