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Brain tumours are the biggest cancer killer in those under 40 and reduce life
expectancy more than any other cancer. Blood-based liquid biopsies may aid
early diagnosis, prediction and prognosis for brain tumours. It remains
unclear whether known blood-based biomarkers, such as glial fibrillary
acidic protein (GFAP), have the required sensitivity and selectivity. We have
developed a novel in silico model which can be used to assess and compare
blood-based liquid biopsies. We focused on GFAP, a putative biomarker for
astrocytic tumours and glioblastoma multi-formes (GBMs). In silico modelling
was paired with experimental measurement of cell GFAP concentrations and
used to predict the tumour volumes and identify key parameters which limit
detection. The average GBM volumes of 449 patients at Leeds Teaching Hos-
pitals NHS Trust were also measured and used as a benchmark. Our model
predicts that the currently proposed GFAP threshold of 0.12 ng ml−1 may
not be suitable for early detection of GBMs, but that lower thresholds may
be used. We found that the levels of GFAP in the blood are related to
tumour characteristics, such as vasculature damage and rate of necrosis,
which are biological markers of tumour aggressiveness. We also demonstrate
how these models could be used to provide clinical insight.
1. Introduction
Gliomas are the largest group of intrinsic brain tumours, with age-adjusted inci-
dence rates ranging from 4.67 to 5.73 per 100 000 [1]. Furthermore, malignant
gliomas cause significant years of life lost compared with other cancer
types—about 20 years of life lost on average—due to late diagnosis and poor
treatment outcomes [2]. Currently, brain tumours are diagnosed and assessed
using scans (e.g. magnetic resonance imaging (MRI) and computed tomogra-
phy (CT)), histology and molecular profiling. A blood-based liquid biopsy
could provide a cheap, simple and minimally invasive way to diagnose brain
tumours and monitor for recurrence.

Astrocytomas are the most common type of glioma. One biomarker for
astrocytic tumours is glial fibrillary acidic protein (GFAP) [3–5], which is an
intermediate filament protein present in astrocytes that is not found outside
of the central nervous system (CNS). The normal blood–brain barrier (BBB) is
comprised of endothelial cells and astrocytes which tightly restrict the transpor-
tation of GFAP into the blood [6]. GFAP can be used as a blood-based
biomarker of neurological disease as its presence in the blood is indicative of
astrocyte injury or necrosis as well as BBB damage [7,8]. The most common
and highest grade of astrocytoma is glioblastoma multi-forme (GBM). GBMs
are associated with astrocyte necrosis and BBB breakdown which could allow
GFAP to enter the bloodstream. It is currently unknown exactly how the
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levels of serum GFAP relate to glioma properties and
whether current methods are sensitive or selective enough
to use GFAP as a blood-based biomarker for astrocytic
tumours.

Prospective studies have investigated using GFAP as a
blood-based biomarker for astrocytomas. Serum GFAP was
not detected above the analytical sensitivity of 0.08 ng ml−1

in most astrocytomas (74%), but was detected in most GBMs
(89%) [9]. Receiver operating characteristic curve (ROC)
analysis gave a GFAP serum cut-off limit of 0.12 ng ml−1 for
optimized detection of GBMs [5,9]. Although the GFAP
serum concentrations of most astrocytomas are far below this
limit, some astrocytomas exceed this limit with GFAP levels
of up to 2.04 ng ml−1 [9]. Some larger GBMs far exceed this
limit (median 0.38 ng ml−1 reaching 11.4 ng ml−1) [9]. A
lower detection threshold limit of 0.08 ng ml−1 has been
suggested for distinguishing all grades of glioblastomas from
healthy individuals [9].

Serum GFAP has been linked to prognosis, with GFAP
greater than 0.2 ng ml−1 associated with significantly lower
survival-free prognosis [9]. Serum GFAP levels are also
associated with prognostic markers and progression-free sur-
vival [3]. They also correlate with tumour volume [3,5,9,10]. It
has therefore been suggested that GFAP may be used in a
wide range of different diagnosis and monitoring situations
for astrocytic tumours. However, GFAP concentrations
are extremely heterogenous across different tumours; for
example, small tumours have been observed with very
large serum GFAP concentrations and vice versa [3,9–11].

Brain tumour growth is complex and heterogenous, and
it remains difficult to quantify. A lack of in vivo data,
especially from the earlier stages of tumour growth, makes
quantification challenging. To overcome this, a range of
experimental and mathematical modelling techniques have
been used to understand tumour growth dynamics [12–15].
Several models of glial tumour growth have been proposed
[12,15]. One of the simplest models is exponential growth,
in which it is assumed that the tumour has a constant
volume doubling time [16]. There have been various adap-
tions to this original exponential model and there are
several related models, such as linear growth models [12].
However, it has been shown that brain tumours, including
GBMs, reach a plateau phase and are better represented by
Gompertzian growth [14,17,18]. The Gompertzian growth
model assumes an initial exponential phase, followed by a
linear phase and finally a plateau phase. It is one of the
most acknowledged models for tumour growth [19–21] and
the one used in this study.

Mathematical modelling offers a powerful way of scan-
ning a wide range of different scenarios in a time- and
cost-efficient way. It can also offer additional mechanistic
understanding and in the future may be used alongside
current clinical methods to guide more effective treatment
strategies (e.g. [19,22,23]).

Mathematical modelling has been used to explore the
use of blood-based biomarkers for several different cancers
[24–26]. However, no models have been developed for
blood-based biomarkers for brain tumours. The key differ-
ence between modelling blood-based biomarkers in the
brain and other tissues is the presence of the highly selective
BBB. In the previous models of other tissues, it has been
assumed that the fraction of the biomarker which enters the
blood is constant and does not depend on tumour growth
[24,25]. This assumption is not valid for the brain, as bio-
markers from the brain are only able to enter the blood in
significant quantities when the BBB is compromised. We
therefore developed a new set of models to fulfil this
unique requirement of the brain.

We developed mathematical models which describe
dynamic serum biomarker kinetics in relation to brain
tumour growth. In this study, we focused on the CNS-specific
intermediate filament protein GFAP [27,28]. We investigate
current detection limits, show how the serum GFAP levels
depend on the tumour characteristics, determine the key par-
ameters which limit detection and explore future strategies.
Computational modelling may be used to simulate the key
aspects of the detection and properties of blood-based bio-
markers and streamline the process of liquid biopsy
development [29–31]. Our results demonstrate how math-
ematical modelling may be used both at the developmental
stage of liquid biopsies for brain tumours and in their
interpretation. We also show how these models may be
used to gain mechanistic understanding and provide clinical
insight (figure 1). A generalized form of our model is pre-
sented, and the key components and framework are
discussed so that it can be easily adapted for biomarkers pro-
duced by other mechanisms for brain tumours with varying
properties.
2. Material and methods
2.1. Measurement of current glioblastoma multi-forme

detection volumes
The neuro-oncology multi-disciplinary meeting records at Leeds
Teaching Hospitals NHS Trust between 2014 and 2020 were ret-
rospectively reviewed, and all adult patients (16 years and over)
with histologically proven GBMs were included (n = 483). The
average volume at which these GBMs were diagnosed was calcu-
lated. Formal ethics approval was granted under the project and
license—enhancing understanding and prediction of cancer out-
comes with baseline characteristics from routinely collected data
(IRAS ID. 277122). Baseline data included patient age, sex and
WHO performance status (see electronic supplementary
material, methods).

Pre-operative imaging protocols varied, but typically consisted
of T2 and T2-FLAIR (fluid attenuated inversion recovery), diffu-
sion weighted, T1 pre- and post-gadolinium sequences (Gd-T1)
and a volumetric T1-weighted sequence post-gadolinium. Enhan-
cing tumour volume was estimated following the established
protocol for GBMs which is most effective for their irregular
shapes [32]. Orthogonal measurements in axial and craniocaudal
axes, measured on axial and coronal Gd-T1 images, or multi-
planar reconstructions of a volumetric Gd-T1 sequence, using
the institutional picture archiving and communication system
(PACS, Impax v. 6.5.3.3009, Agfa Healthcare, Mortsel, Belgium)
with electronic callipers on a submillimetre (mm) scale. Three
orthogonal measurements were multiplied and divided by two
to estimate volume. The axial image with the largest tumour
was identified, and two maximum perpendicular dimensions
were measured. Using reformatted sagittal or coronal images,
the maximum dimension in the craniocaudal axis was measured.

2.2. In vitro measurement of average glial fibrillary
acidic protein per cell

We measured the average GFAP of human glioma stem cells
(G144 GSCs) and human GBM cells (U251). To quantify the
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Figure 1. Concept of how mathematical modelling may be used in the development and deployment of blood-based biomarkers for brain tumours. This figure
summarizes the role mathematical modelling could play both at the assay development stage and in clinical implementation.
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average GFAP per cell, we used a standard protocol to
quantify GFAP expression using western blotting and protein
quantification as described by Wang et al. [33].

The G144 GSCs were gifted by Dr Steve Pollard (University of
Edinburgh) and cultured as monolayers in serum-free basal media
(Sigma, D8437) with added supplements (see electronic sup-
plementary material, methods, for full media recipe). The U251
commercial human GBM cells (Sigma, 09063001) were cultured
in Minimal Essential Media (Gibco, 11095080) supplemented
with 10% fetal bovine serum (Gibco, 10500-064) and 1% MEM
non-essential amino acid solution (Gibco, 11140035). Both G144
and U251 were cultured at 37°C in 5% CO2.

Experiments were repeated for three different passages of
each cell line and all presented errors are standard errors. Cells
were pelleted per passage and each pellet was pipetted vigor-
ously with 100 µl of lysis buffer (full details of buffer
preparation can be found in the electronic supplementary
material, methods). The lysate was incubated on ice for 15 min
in 1.5 ml microtubes (Starlab, E1415-2210) before being centri-
fuged using a VWR MICROSTAR 17R at 4°C and 17 000 × g for
3 min. The supernatant was transferred to fresh microtubes and
stored at –20°C.

The protein concentrations of the lysates were determined
relative to eight known concentrations of bovine serum albumin
(Thermo Scientific, 23209) using the Pierce™ bicinchoninic acid
protein assay kit (Thermo Scientific, 23227), following the 96-
well plate protocol. The absorbance at 570 nm was measured
using an iMark™ Microplate Reader (BioRad, UK) and the
accompanying MICROPLATE MANAGER

® software.
The protein quantities of samples were determined using

western blotting. A standard curve was created (electronic sup-
plementary material, figure S1) and used to determine the
protein content of the lysate. This was then combined with the
average number of cells in the lysate to calculate the quantity
of GFAP per cell. Full details of the western blot protocol can
be found in the electronic supplementary material, methods,
but briefly lysate samples were run alongside serial dilutions of
protein standard (Recombinant mouse GFAP protein, abcam,
ab226309) with a molecular weight protein ladder at each end
(Biorad Precision Plus Protein Dual Color Standard, 1610374).
The gel was placed under a voltage of 150 V for 1 h to separate
the proteins using PowerPac™ basic power supply (BioRad).

The protein was transferred to a membrane and blocking was
carried out. Membranes were then immunoblotted with the fol-
lowing antibodies: GFAP Polyclonal Rabbit antibody (1 : 2000,
Dako, Z0334) and α Tubulin (1 : 5000, Millipore, DM1A). After
incubation with specific secondary antibodies conjugated to per-
oxidase (Sigma) proteins were visualized by Clarity ECL
substrate (BioRad) using the BioRad Chemidoc XRS + system
and analysed using IMAGE LAB software (BioRad). Electronic
supplementary material, figure S2, shows an example of a
western blot used for GFAP quantification. The intensity of the
bands, which are proportional to protein levels, was quantified
using ImageJ software.

2.3. In silico model of serum biomarker kinetics
for brain tumours

We developed a simple in silico model for brain tumour serum
biomarker kinetics with three main components (figure 2).
First, the model for tumour growth, second the mechanism via
which the biomarker is produced and finally the process by
which the biomarker enters the bloodstream (via breakdown of
the BBB). This model was based on a compartmental model
where biomarker kinetics are given by a set of differential
equations. These were solved in MATLAB (MathWorks) using
the ode45 ordinary differential equation solver.

In our model, it was assumed that the biomarker is well-
mixed and homogenous in different compartments. We note
that this does not fully encapsulate the heterogeneity of
tumour growth but is a good first approximation that allows
key parameters that influence the levels of biomarker in the
blood to be explored.

The levels of biomarker in the blood were assumed to
depend on the input from the tumour (KT(t)UT(t)) and healthy
tissue (KHUH), as well as the rate at which the biomarker is
degraded (γ). The mass of biomarker in the blood (Qp) is given by

dQp

dt
¼ KT(t)UT(t)þ KHUH � gQP, ð2:1Þ

where UT, UH are the tumour and healthy tissue production rates
at time (t) and KT, KH are the corresponding fractions entering the
blood. The concentration of biomarker in the blood is then equal

to
Qp

Vp
, where Vp is the volume of blood. The serum GFAP con-

centration of healthy individuals (CH) is given by CH ¼ KHUH

g
.

This model may be adapted for different biomarkers and applied
to brain tumours with varying properties.

A range of growth models have been proposed to describe
tumour growth [12,15]. Including simple exponential and
linear models [12,16], however, GBMs reach a plateau phase
and have been shown to be are better represented by Gompert-
zian growth [14,17,18]. We therefore employ a Gompertzian
growth model:

VT(t) ¼ VTmax exp log
VT0

VTmax

� �
exp(�RTt)

� �
, ð2:2Þ

where VT(t) is the volume of the tumour at time (t). To model the
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growth of necrosis, we assume that necrosis occurs after a
specific tumour onset volume (Vn0) is reached. This volume cor-
responds to the onset time Tn0. We assume that necrosis also
follows Gompertzian growth [13] so that the number of necrotic
cells (VN(t)) is given by

VN(t) ¼
0, t , Tn0

Vnmax exp log
VN0

VNmax

� �
exp(RN (t� Tn0))

� �
, t � Tn0,

8<
:

ð2:3Þ
where VTmax, Vnmax are the tumour and necrotic plateau
volumes, VT0 is the initial volume of the tumour (in this case
taken as the volume of a single cell) and RN, RT are the initial
growth rates. These volumes can be converted into correspond-
ing numbers of cells using the average cellular densities. This
Gompertzian growth model has been shown to be a good
approximation of brain tumour growth [14,19,20]. However, it
may be exchanged for any relevant model of brain tumour
growth.
2.4. In silico model for glial fibrillary acidic protein as a
blood-based biomarker

In this study, we focus on the CNS-specific intermediate filament
protein GFAP. The key components of our dynamic model for
GFAP are tumour and necrotic growth, biomarker production
and the fraction entering the blood (figure 2).

Necrosis is a hallmark of tumour progression in astrocytic
tumours. During necrosis, GFAP is released into the interstitial
fluid (IF) [28]. GFAP has been found in the blood of patients
with non-astrocytic tumours which suggests that GFAP may
also be produced by other mechanisms [5,9,10]. For example,
one patient with a cerebellar primarily diffuse large B-cell lym-
phoma was found to have very high serum GFAP levels
(0.25 ng ml−1), possibly due to secondary tissue necrosis. How-
ever, for astrocytic tumours, it is generally accepted that GFAP
is primarily produced via tumour necrosis [34–36] and so this
is our model assumption (equation (2.4)). We also go on to
then explore scenarios where this assumption might not hold,
for example, when GFAP is produced via damage induced by
the tumour to the surrounding brain.

For a tumour with GFAP produced via necrosis, the tumour
production term ((UT(t)) would take the form

UT(t) ¼ QN
dNN(t)

dt

¼
0, t , Tn0

QNRN log
Nnmax

NN(t)

� �
NN(t), t � Tn0,

8<
: ð2:4Þ

where QN is the average mass of GFAP per dying cell, NN is the
number of necrotic cells which is related the necrotic volume
(VN) and the average necrotic cell density (δN) by NN =VNδN,
Nnmax is the maximum number of necrotic cells which is given
by Nnmax =VnmaxδN and Tn0 is the time necrosis starts in the
tumour.

After GFAP has been emitted into the IF, it may enter the
blood either via BBB disruption [7] or via the glymphatic
system [37]. The fraction of biomarker produced by the tumour
which enters the blood (KT) is dependent on anything which
affects the transport of biomarker into the bloodstream, as well
as the removal or decay of the biomarker from the tumour.
The breakdown of the glymphatic system, which is usually
responsible for the rapid clearance of GFAP from the brain,
may lead to enhanced retention of GFAP in the tumour [38,39].
This GFAP may then enter the bloodstream at a higher rate
due to the increased permeability of the BBB [8]. Therefore, as
the tumour grows, the fraction of GFAP which enters the blood-
stream increases. We assume that these increases occur after a
threshold tumour volume/time (Vk0/Tk0) is reached and can
be approximated as a Hill function, so that KT(t) is given by

KT(t) ¼
Kmin, t , Tk0

Kmin � Kmaxth

K1=2 þ th
, t � Tk0,

8<
: ð2:5Þ

where Kmin and Kmax are the minimum and maximum KT frac-
tions, K1=2 is the half-time constant, h is the Hill coefficient and
Tk0 is the time at which the BBB is first compromised. We
assume that when the BBB is intact (prior to tumour growth),
the fraction of GFAP which enters the blood is zero (Kmin= 0)
and that K1=2 . Tk0. KT and UT are related, as necrosis occurs



Table 1. Parameters for our in silico model of serum GFAP for an average GBM.

parameter definition average range reference

RT initial rate of tumour growth 0.008 cells day−1 0.004–0.01 cells day−1 [40]

RN initial rate of necrotic growth 0.009 cells day−1 0.005–0.01 cells day−1 [40]

VTmax tumour growth plateau constant 158 ml 72–164 ml [14,18]

VNmax necrotic growth plateau constant 150 ml 70–159 ml [14,18]

Vn0 volume of necrosis onset 0.5 ml 0.1–20 ml [40,41]

Vk0 volume of k fraction onset 0.5 ml 0.1–20 ml [8,39,41–43]

h K fraction Hill constant 7 3–9 [8,39,41–43]

Kmin minimum K fraction 0 0 this study

Kmax maximum K fraction 0.5 0.3–0.8 [8,39,41–43]

K1/2 K half-time constant 225 days 100–300 days [8,39,41–43]

γ decay rate of GFAP in blood 0.7 day−1 0.5–1 day−1 [41]

CH baseline concentration in healthy individuals 0.012 ng ml−1 0–0.11 ng ml−1 [9]

QN average quantity of GFAP per cell 3.1 × 10−4 ng cell−1 1.3–5.7 × 10−4 ng cell−1 this study
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due to hypoxia, which is associated with blood vessel defor-
mation. We therefore assume that changes in KT begin at the
same time as necrosis starts so that Tn0 = Tk0.

If we simulate the dynamic serum GFAP as a function of time
or tumour volume for a given set of parameters in our model,
then we can obtain the corresponding tumour detection time
(td) and detection volume (Vd). These define the time and
volume at which the serum GFAP crosses the GFAP cut-off
threshold limit used to identify GBM patients and so give the
time and volume at which a tumour would be detected at
the current threshold. If the parameters in our model change,
the detection time and volume will also change. We define this
detection volume change as DVd ¼ jV2d � V1dj where V2d is the
detection volume for the second set of parameters and V1d is
the detection volume for the original set of parameters.

2.5. Model parametrization and sensitivity analysis
Our model is governed by a set of parameters which define the
serum GFAP in healthy patients, tumour growth, GFAP
expression, necrosis and the entry of GFAP to the blood (due
to a breakdown of the BBB). This model may be used to obtain
a profile for a specific tumour based on its parameters, or to pre-
dict global averages based on average parameters for GBMs. We
parametrize our model based on the experimental data available.
For each parameter, we use the current experimental data to
obtain global averages as well as ranges observed across GBMs
(table 1). We use these to model the average behaviour as well
as the impact of heterogeneity.

To assess the impact heterogeneity and parameter changes
have on detection, we ran sensitivity analyses. A combination
of local and global sensitivity analyses was performed depend-
ing on the parameters. Local sensitivity analysis involves
varying one parameter while average values are assumed for
the remaining parameters. This has the limitation of only explor-
ing first-order effects of the parameters on the model outcome.
There are limited experimental data on certain parameters in
our model and some of our model parameters are inextricably
linked. This led us to run certain parameter combinations glob-
ally as discussed below. In the future, given further
experimental data it would be possible to also use additional
techniques for global sensitivity analysis of all the parameters
and further explore the relationship between parameters and
their impact on detection.
The parameters defining Gompertzian growth in GBMs were
obtained from in vivo data of 106 untreated glioblastomas [14].
The heterogeneity in these parameters and ranges have been
quantified and explored in this initial study and also in further
studies [14,18]. Previously reported average densities of cells in
non-necrotic (5714 × 104 cells ml−1) and necrotic (4800 × 104 cells
ml−1) regions of the tumour were used to convert between
volumes and cell numbers [44,45]. We used the results of pre-
vious studies and simulations of tumour growth to parametrize
necrosis in the tumour and relate it to tumour growth [40].

Figure 3 shows the average Gompertzian growth for GBMs.
From the literature, we then took ranges for all the parameters
which define tumour growth (VTmax, RT), and for each set of
these parameters, we derived an associated set of possible necrotic
growth parameters (VNmax, RN, VN0, h) from the range mentioned
in the literature (table 1) within the constraints of VT >VN. As an
example, electronic supplementary material, figure S3, shows the
slowest, average and maximum tumour growth functions with
all the corresponding possible necrotic growth functions. These
constraints were used when running sensitivity analysis for the
tumour and necrotic growth functions.

The parameters which govern the fraction of GFAP able to enter
the bloodstream due to tumour growth (KT) are not well quantified
(equation (2.5); Kmax, K1=2, h). However, the processes involved, such
as the perfusion (e.g. BBB permeability, blood flow), have been
quantified for gliomas using a range of methods (e.g. dynamic per-
fusion CT and dynamic MRI) [42,43,46,47]. The relationship
between these parameters and tumour volume has not been
measured; we therefore fitted our parameters to match the available
perfusion data along with data on the tumour volume at which bio-
markers have been observed in the blood [6,9,10]. When running
sensitivity analysis to determine the impact of these parameters,
we note that the way we have fitted the parameters with the exper-
imental data does not allow us to distinguish their individual
effects. We therefore ran sensitivity analysis on all the possible par-
ameter combinations for KT that match the experimental data
simultaneously and assess these combined affects.

The remaining parameters (the patient’s baseline healthy
serum GFAP concentration (CH) [9] and the GFAP degradation
rate (γ) [41]) are not dependent on the tumour but still affect
the volume at which it is detected. To determine their combined
effect, we ran sensitivity analysis simultaneously on these par-
ameters for an average tumour (taking average values for all
other parameters).



200 400 600 800 1000
time (days)

0

20

40

60

80

100

120

140

160

vo
lu

m
e 

(m
l)

tumour
necrosis

200 250 300 350 400

time (days)

0

10

20

30

40

vo
lu

m
e 

(m
l)

Figure 3. Gompertzian model of tumour and necrosis volumes as a function of time for average growth of untreated in vivo glioblastomas.
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3. Results
3.1. In silico modelling of detection volume of

glioblastoma multi-formes using serum glial
fibrillary acidic protein

We model the dynamic changes in serum GFAP observed
with tumour growth for a ‘typical’ GBM. This was achieved
by using population averages to parametrize the model.
This allowed us to obtain average values, for example, of
detection volume. However, we note that GBMs are incred-
ibly heterogenous which we examine in the next section.
We combine previously published average parameters with
our own experimental data (table 1) (see Material and
methods for a further discussion of model parametrization).

The quantity of GFAP in a single cell (QN) was deter-
mined in vitro. We found that the average mass of GFAP
per G144 glioma stem cell was 1.7 × 10−4 ± 0.3 × 10−4 ng and
per U251 GBM cell was 3.1 × 10−4 ± 0.8 × 10−4 ng.

Figure 4 shows the dynamic change in serum GFAP as a
function of time and tumour volume using population
averages for all parameters in our model. The currently
suggested threshold limit (0.12 ng ml−1) and corresponding
detection tumour detection time (td) and volume (Vd) are
also shown. The levels of GFAP only start to increase above
the baseline level of healthy patients after the onset of necro-
sis and after the fraction entering the blood increases.
Therefore, the tumour volume at which these changes occur
(Vn0 and Vk0) is the crucial hard detection limit. The assay
detection limit and heterogeneity across different patients
will then determine the actual cut-off limit.

For a typical GBM with average parameter values,
figure 4 can be used to convert GFAP serum concentration
into tumour volume. Our model predicts that on average
the serum GFAP would cross the currently suggested critical
detection threshold for GBMs (0.12 ng ml−1 [5,9]) at a volume
of 26 ml. If we lowered the threshold to the current analytical
sensitivity and suggested a critical threshold for all
glioblastomas (0.08 ng ml−1 [9]), we find that on average the
tumour would be detected at a volume of 17 ml. Previous
studies have found a correlation between tumour volume
and serum GFAP levels [3,5,9,10]. Using these experimental
averages at the limit of 0.12 ng ml−1, the average tumour
volume was 23 ml and at 0.08 ng ml−1, it was 14 ml. These
experimental data have a limited sample size but were still
in good agreement with our model’s predictions on the
average detection volume at both these detection limits.

To compare these average detection volumes with the
volume at which GBMs are currently detected, the average
GBM volumes for 449 patients at Leeds Teaching Hospitals
NHS Trust were measured. Figure 5 shows representative
images of a GBM patient.

Tumour size and volume were available for 449
patients—the median maximum enhancing tumour diam-
eter was 4.2 cm (range 0.5–8.8 cm) and the median
enhancing tumour volume was 23.6 ml (0.06–186 ml). Our
results therefore suggest that using the critical cut-off
threshold for GBMs (0.12 ng ml−1), serum GFAP cannot be
used to detect GBMs earlier than current methods. How-
ever, by lowering this threshold, for example, to the
current analytical sensitivity and suggested cut-off for glio-
blastomas (0.08 ng ml−1), it may be possible to use serum
GFAP for early detection of GBMs.

Figure 4 shows how the levels of serum GFAP are pre-
dicted to rise with tumour growth except at the end of
tumour growth. It has been shown that GBMs exhibit Gom-
pertzian growth dynamics and that at larger tumour
volumes, growth slows. As the maximum tumour and necrotic
size is reached, the GFAP levels may decrease as the rate of
necrosis slows. However, patient survival may prevent this
limit ever being reached. Heterogeneity and, in some tumours,
a decrease in GFAP expression with tumour growth have been
observed in astrocytic tumours [48,49]. This causes a synon-
ymous relationship between tumour volume and serum
GFAP, which becomes increasingly heterogenous and, in
some cases, lower with tumour growth [3,5,9].



0.8

0.7

0.9

0.6

0.5

0.4

0.3

0.2

0.1

100 20 40 60 80
tumour volume (ml)

100 120 140

se
ru

m
 G

FA
P

 (
ng

 m
l–1

)
0.8

0.7

0.9

0.6

0.5

0.4

0.3

0.2

0.1

se
ru

m
 G

FA
P

 (
ng

 m
l–1

)

200 300
time (days)

400 500 600

td

0 0

threshold
limit

(a) (b)

Vd

Figure 4. The serum GFAP concentration as a function of time (a) and tumour volume (b) was simulated for an average GBM. The panels show the serum GFAP
concentrations for a GBM parametrized with average values and the threshold detection cut-off limit of 0.12 ng ml−1 (red) along with the corresponding detection
time (td) and detection volume (Vd).

(a) (b)

(c) (d)
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T2-weighted images (c,d ). (a) Pre-operative diagnostic imaging demonstrating a left frontal rim enhancing GBM with a significant volume of surrounding T2 hyper-
intensity. (b) Three months post-resection, post-adjuvant chemoradiotherapy (60 Gy in 30 fractions with concurrent temozolomide) baseline study.
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3.2. Tumour heterogeneity and effect of key parameters
on detection

There is large heterogeneity in the growth and behaviour of
different GBMs, leading to analogous variations in the
tumour detection volume (VD) at the threshold cut-off limit
of 0.12 ng ml−1. For a given patient, the detection volume
will depend on that patient’s baseline parameters (CH, γ)
and on the fundamental characteristics of that patient’s
tumour (all other model parameters).

Sensitivity analysis can be used to examine the effect
that changing a parameter will have on the detection volume
(VD) and therefore assess its impact. Full descriptions of the
different sensitivity analysis techniques performed can be
found in theMaterial andmethods. For the parameters defining
the fraction of GFAP entering the blood ðKTÞ (equation ð2:5Þ;
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Kmax, K1=2, h) sensitivity analysis was run on the parameter
combinations that gave reasonable agreement with experimen-
tal data (figure 6). It was found that for average values of all
other parameters, the detection volume (VD) across the possible
(KT) parameter combinations varied from 20 to 58 ml giving a
change in detection volume of DVD ¼ 38 ml.

Figure 7 shows how the remaining tumour-related par-
ameters (those defining tumour growth (VT), necrotic
growth (VN) and GFAP per cell (QN)) influence the detection
volume at the critical detection cut-off limit of 0.12 ng ml−1.
The tumour and necrotic growth are closely related. In
order to satisfy the condition that VT >VN, we only used cor-
responding tumour and necrotic growth parameter
combinations (ranges listed in table 1) that satisfied this con-
dition. The tumour detection volume (Vd) is related to the
ratio between tumour and necrotic growth. GFAP is pro-
duced as a consequence of necrotic growth not tumour
growth and although the two are related it is possible to
have a tumour which grows faster without having faster
necrotic growth. As shown in figure 7a, if this occurs, the
tumour will grow more before detection and be detected at
a larger volume.

It can be seen in figure 7 that the rate of necrosis (RN) and
the volume at which necrosis and the increase in the fraction
entering the blood occur (Vn0 and Vk0) have the largest
impact on the detection volume. The later the onset (larger
Vn0 and Vk0) the larger the tumour will grow between this
onset and detection. For example, a tumour with necrosis
onset at 0.5 ml will grow 34 ml less before detection than a
tumour which does not have necrosis until it is 50 ml in
size. A tumour with rapid necrosis (RN = 0.013 cells day−1)
and average changes (Vn0 and Vk0 ¼ 0:5 ml) will be
detected at 19.5 ml, whereas a tumour with slow necrosis
(RN = 0.005) and late changes (Vn0 and Vk0 ¼ 20 ml ) will
be detected at 118 ml.
The patient’s baseline healthy concentration (CH) and
degradation rate (γ) are not tumour dependant but still
affect the detection volume. Running simultaneous sensi-
tivity analysis on both these parameters for an ‘average
tumour’ (figure 8) we found that the combined effect of vari-
ations in both these parameters could be a change in
detection volume of up to (ΔVd = 20 ml). This means that
baseline differences across patients could have a dramatic
impact on detection. As seen in figure 8, these mainly stem
from heterogeneity in the baseline concentration of GFAP in
healthy patients. As the healthy baseline concentration of
GFAP rises the GFAP contribution required from the
tumour to reach the detection cut-off threshold drops and
therefore the tumour is detected earlier at a smaller volume.
To account for these differences and to detect tumours earlier,
it may be possible to take dynamic measurements, by
measuring the serum GFAP levels over time. This would
allow a significant reduction in false positives and a signifi-
cantly increase in the ROC. However, it should be noted
that dynamic measurements will not improve false negatives
in cases where tumours have low serum GFAP, due to low
GFAP expression.

Tumours are incredibly heterogenous and are represented
by a wide range of parameters, which leads to analogously
heterogenous detection volumes and dynamic GFAP profiles.
This could lead to larger errors if using population averages
to convert the serum GFAP concentration to tumour
volume. Previous studies have demonstrated, in line with
the predictions of our model, that the serum concentration
of GBMs of similar volumes can be extremely heterogenous
[3,5,9,10]. For example, Kiviniemi et al. [3] saw a patient
with a GBM volume of 15 ml who had a serum GFAP con-
centration of 0.4 ng ml−1 [3]. The GFAP heterogeneity
observed experimentally is in good agreement with our
results, but experimental data are limited and more data
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with more thorough quantification are required to fully
quantify heterogeneity across different tumours.

Despite the large heterogeneity in the timescales involved
in the dynamic GFAP concentration profiles (which depend
on the characteristics of a specific tumour), for all tumours,
the levels of GFAP initially follow the same trend, increasing
with volume. Also, if a given tumour is not detectable until it
is larger, this will be because the volumes associated with
necrosis and the damage to the vasculature all occurred at
larger volumes and/or that the rates of these were slower.
The exception to this is tumours that exhibit very low GFAP
expression. Therefore, even though serum GFAP is not
always a reliable predictor of tumour volume, it is, beyond
this exception, a good measure of BBB breakdown and necro-
sis. Both of which are key indicators of tumour severity [50–52].
3.3. Inputting and deriving additional clinical insight
Prospective studies on GFAP serum levels in brain tumour
patients found that GFAP was detected in patients with
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other non-glial brain tumours [5,9,10]. This suggests that in
addition to tumour necrosis, GFAP may also be produced
because of astrocyte damage in the brain surrounding the
tumour. Production via tumour necrosis occurs only in
tumours derived from astrocytes, whereas external pro-
duction may be induced by any type of brain tumour.
Equation (2.2) can be more generally used to determine the
combinations of KT and UT which give rise to serum GFAP
levels above the current cut-off limit (figure 9).

Zero values of UT arise as a consequence of zero GFAP
expression and/or no cell death, whereas the highest levels
are represented by high levels of GFAP expression and rapid
cell death. All other values in between these represent the
other possible combinations of GFAP expression and cell
death rates. If the BBB is not very severely compromised
(KT < 0.1) then detection requires high production rates UT >
2000 ng day−1. Assuming an average quantity of GFAP per
cell, this is equivalent to 3 × 106 cells day−1 dying or a volu-
metric death rate of 0.04 ml day−1. Different parameter
combinations can explain such a fast rate, but all combinations
would require rapid death of a significant volume. On the
other hand, if the BBB is severely compromised (KT = 0.4),
then significantly lower production rates, UT > 700 ng day−1,
are required for detection. This would be equivalent to
9 × 105 cells day−1 dying or a volumetric death rate of
0.02 ml day−1. This equates to a far slower death of a much
smaller volume. Previous studies [28,48] suggest that during
GBM growth GFAP expression may decrease. This could
impact detection as the cell death rate would have to increase
to produce the same quantity of GFAP.
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4. Discussion
We developed a novel in silico model to further understand
the use of blood-based biomarkers for brain tumours. We
focused on the putative biomarker GFAP and primarily on
its use as a blood-based biomarker for GBMs.

We found that the relationship between serum GFAP kin-
etics and tumour growth strongly depends on the tumour.
We used our model to assess the use of GFAP as a blood-
based biomarker for the earlier detection of GBMs. We
found that on average the currently suggested critical cut-
off serum GFAP detection limit for GBMs of 0.12 ng ml−1

cannot be used for earlier detection of GBMs. However, for
tumours with early onset of characteristics associated with
poor prognosis (necrosis and vasculature damage), serum
GFAP may be used for earlier detection. If the limit was low-
ered to the current analytical sensitivity and suggested
critical threshold for all glioblastomas (0.08 ng ml−1), the
average GBM would be detected at 17 ml—resulting in ear-
lier detection. Lowering the detection limit comes at a cost
to specificity; at the limit of 0.08 ng ml−1, a reduction in the
specificity to other tumours was observed, but the specificity
to healthy patients remains high (92.4%). This limit should
therefore be explored further experimentally. As improve-
ments are made to the testing of serum GFAP, this limit
may be lowered and so earlier detection of GBMs using
serum GFAP is likely.

There are three key requirements for elevated serum
GFAP levels in brain tumour patients (electronic supplemen-
tary material, figure S4). First, GFAP must be present in
affected cells. Second, there must be a mechanism for GFAP
release (e.g. necrosis) and finally there must be a means for
GFAP to pass into the blood. If not, then serum GFAP will
not be detected. This sets a fundamental limit on early
detection.

Our model predicted that in all cases where GFAP is
detected at the current cut-off limit the patient would benefit
from further diagnosis. In most cases, the GFAP levels scale
with tumour severity and so several different cut-off limits
may be implemented. These results match prospective exper-
imental studies which have shown that GFAP levels scale
with patient prognosis [3,9].

Our model predicts that the exception to GFAP levels
scaling with tumour growth and severity occurs late in
GBM growth when levels may begin to decrease. It has
been shown previously that GFAP expression is influenced
by astrocytoma grade [48]. GFAP positive cells are present
in tumours of all malignancy grades with a tendency for
decreased GFAP levels with increasing astrocytoma grade
[9,48,53]. There is also a higher degree of heterogeneity in
GFAP levels with increasing grade [5,9,48,53]. We measured
average quantities of GFAP per cell experimentally and
found, in line with these previous studies, that it was more
variable in GBM cells compared to glioma stem cells. Some
GBMs have even been shown to have very low levels of
GFAP expression [48,49]. Our models predicted that the
serum GFAP levels are synonymously heterogenous and, in
some cases, lower at the later stages of GBM growth. This
matches with the experimental data [3,9,10]. As our under-
standing, classification and quantification of different GBM
types improve, it will be possible to incorporate changes in
the GFAP expression with tumour growth for different
tumour types into our models.
Our model was used to show that the two parameters
which have the largest impact on the volume at which a
specific GBM would be detectable are the rate of necrosis
(RN) and the tumour volume at which necrosis first occurs
and that the BBB begins to break down (Vn0/Vk0). The
WHO has classified glial tumours according to character-
istics, such as necrosis and vascular perfusion, as well as
genetic features [2,50,54]. Our model suggests that GFAP
levels may be a good measure of these, with levels indicative
of necrosis, as well as vasculature damage. There is still a
large variance in GBM patient outcomes driving the need
for additional quantification metrics and further classification
to allow more personalized therapies [54].

It may be possible to account for some patient heterogen-
eity and improve the accuracy of current assays by taking
dynamic measurements. We have shown that parameters
which are dependent on the patient rather than tumour
characteristics, such as the patient’s healthy baseline GFAP
serum levels and the GFAP decay rate, also impact detection.
Taking dynamic measurements could significantly improve
the ROC allowing us to lower the critical detection limits.
This could be especially powerful at the earlier stages of
necrosis onset when the increase in necrosis is rapid and
GFAP expression heterogeneity is lower [3,28,48]. These
results may be used to inform the development of future
assays. They may also be used to provide additional context
to GFAP liquid biopsy results.

In the future, it may be possible to quantify heterogene-
ities and incorporate errors into our models and predictions
for GFAP blood levels for different tumours. We have
shown how mathematical modelling can be used to explore
different scenarios. For example, we have shown how a
specific patient’s parameters may be used to predict best-
and worst-case scenarios. Mathematical modelling can be
combined with GFAP liquid biopsy results alongside other
clinical data, such as scans, histological data and molecular
profiling, to provide clinical insight. Integrating liquid
biopsy with other clinical techniques could allow early detec-
tion and diagnosis for personalized precision treatment
[55,56]. To be useful in the clinic, these must be combined
in an accessible way. We suggest that decision trees at the
point of care could offer an effective way to integrate all
the information and aid clinicians in the diagnosis and in
the development of personalized treatment plans [57–59].

We propose that serum GFAP levels may be especially
useful in diagnosing early GBMs when used alongside
other diagnostic methods. For example, our modelling
showed that if imaging and histology fail to reveal necrosis,
but the GFAP is very high, this may suggest several scenarios
that clinicians need to consider. First, necrosis may have just
begun, but be rapid. Second, the tumour may be causing per-
ipheral brain damage resulting in GFAP release and damage
to the BBB. Finally, there may be extensive vasculature
damage, which could be confirmed, for example, via
dynamic contrast-enhancing MRI [42,60,61].

It may also be possible to pair our models with data on
tumour-induced brain deformation and damage [62,63] to
assess the extent of tumour-induced brain damage. Tumour
characteristics, e.g. nodular versus infiltrative, play a role in
the solid-state stress exerted by a brain tumour [64]. Math-
ematical models have been developed to predict GBM
progression based on a specific patient MRI data, demonstrat-
ing how these models may be integrated and used in the
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clinic [65]. We are always seeking to improve our classifi-
cation of brain tumours and our results suggest that GFAP
may help to differentiate between different tumours and
characteristics.

In the future, with a better understanding of the processes
which govern biomarker transport through brain tumours
and into the bloodstream, it will be possible to incorporate
tumour heterogeneity and transport dynamics into more
complex and realistic models. To build a more accurate
model, further quantification of processes, such as the
breakdown of the BBB, would be required.

We have presented a generalized form of our model and
framework to allow it to be adapted to any blood-based bio-
marker for a range of brain tumours. Our model describes
how to build a model for any biomarker using information
on biomarker production via the brain tumour and healthy
tissue. The key model components for biomarker production
via a brain tumour are tumour growth, biomarker production
and the fraction of biomarker that can enter the bloodstream.
These can be applied to any brain tumour, for any mechan-
isms of biomarker production using whichever models are
most appropriate. The baseline level of serum biomarker
can be obtained for any biomarker by measuring control
groups. We have focused on GFAP as it is currently the
serum biomarker with the most experimental data allowing
model parametrization, but as more biomarkers and exper-
imental data emerge, our model can be easily adapted and
parametrized for a range of biomarkers.

We are at the early stages of determining how blood-
based biomarkers may be used to diagnose and monitor
brain tumours. We have shown how simple in silico models
may be used to further understand the current limitations,
uses and strategies for blood-based biomarkers for brain
tumours. We have also shown how experimental work and
clinical data can be used to enhance the model’s relevance.
The mathematical techniques we have developed could also
be used more generally in the development and clinical
interpretation of liquid biopsies for brain tumours.
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