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Abstract: Titanium dioxide (TiO2) is used as a UV light absorber to protect wood matter from
photodegradation. In this paper, interactions between wood and TiO2 coating are studied, and
the efficiency of the coating is evaluated. For the experiments, two wood species were chosen:
beech (Fagus sylvatica) and pine (Pinus sylvestris). Molecular and physical modifications in coated
and uncoated wood exposed to UV radiation were investigated with Fourier transform infrared
spectroscopy with attenuated total reflectance (FTIR-ATR) and transmission electron microscopy
(TEM). UV-VIS spectroscopy was used to describe the absorption of UV light by the TiO2 planar
particles chosen for the experiment. It was demonstrated that TiO2 coating protects wood against
photodegradation to a limited extent. TEM micrographs showed fissures in the wood matter around
clusters of TiO2 particles in beech wood.

Keywords: titanium dioxide (TiO2); protective layer; photodegradation; beech wood (Fagus sylvatica);
pine wood (Pinus sylvestris); wood cell ultrastructure; wood preservation

1. Introduction

Chemically, wood mainly consists of polysaccharides (cellulose and hemicelluloses
(xylans, mannans, β-glucans, and xyloglucans)), and lignin—an organic polymer built
from three basic monomers, namely guaiacyl, syringyl, and p-hydroxyphenyl subunits [1].
Minor constituents of wood are extractives (such as resins, terpenes, gums, tannins, fatty
acids, etc.) and inorganic substances (silica sand, druses, raphides, etc.) [2]. These chemical
compounds are distributed in different parts of wood cells. Chemical composition of the
wood cell has an impact on the fiber properties. For instance, lignin is responsible for
compressive strength properties, hemicelluloses for the dimensional stability of wood cell
walls, and cellulose for the wood’s stiffness [1].

All wood is subject to deterioration processes triggered by a wide variety of factors.
Biological decay of wood is caused by fungi and bacteria, as well as insects. Physical factors,
such as temperature, UV light, and relative humidity, contribute to the weathering of wood
and affect wood properties.

Ultraviolet (UV) radiation, due to the high energy of its photons, breaks the chemical
bonds of the organic compounds of wood matter. It is estimated that UV radiation pen-
etrates through wood surface up to 70 µm, while photooxidation reactions may occur at
depths above 200 µm [3]. UV light-induced degradation (photodegradation) of the major
constituents of wood is responsible for the decrease in mechanical properties of wood
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and color change. With time, yellowish untreated timber turns brown because of decom-
position of its surface. If exposed to the influence of fluids, such as rain, decomposition
products are washed out, and the surface turns gray, while the performance of a wooden
construction decreases.

As wood is one of the oldest building materials, a vast range of protective products
has been developed through the centuries. These are mostly various preservatives for
impregnation, but there is also a large group of coatings [4,5]. Obviously, wood-related nan-
otechnology is currently in full swing [6]. Titanium dioxide (TiO2) [7–11], along with other
nanosized metal and metal oxide particles (copper-based nanoparticles [10,12], zinc borate,
zinc oxide [8,13], and silver [10,12]) are applied in coatings because of their antimicrobial
properties. For this purpose, photoactive crystalline forms of TiO2 are used—pure anatase
or anatase mixed with rutile, i.e., P25 [7], other commercial TiO2 nanoparticles (NPs) [8],
or doped TiO2 NPs [10,11]. The role of the dopant is to enhance the antimicrobial effect of
TiO2 NP and shift the absorption of TiO2 NP from UV toward VIS radiation [11].

Titanium dioxide has also been discussed in the context of superhydrophobic [11,14,15]
and, usually simultaneously, UV protective surfaces [16–26]. The use of TiO2 as a UV light
absorber to protect wood matter from photodegradation lies at the core of this research.
The form of TiO2 NPs most frequently used in UV protective coatings is rutile [16–18,21,26]
because it has lower photocatalytic properties than anatase. The latter is only rarely re-
ported [18,23]. Although this is not clearly stated, based on previous experiments [27], we
can assume that amorphous TiO2 NPs were studied by Rassam et al. [19] as the annealing
temperature was too low (120–150 ◦C) to obtain crystalline structures. For coating stability,
photocatalytic properties need to be suppressed so as to avoid interactions between TiO2
and the binder [17], or TiO2 and the wood matter [21]. Zheng et al. [21] reported interac-
tions between rutile particles and wood caused by photocatalytic degradation of wood
components. To suppress photocatalysis, insulating layers of silica or alumina were intro-
duced to coat TiO2 particles [17,26], or multilayer coating systems were developed [22,28].
UV protective coatings usually consist mainly of TiO2 NPs, a binder, and various coalescing
agents, e.g., organic surface active agents [16] or Texanol [26], to prevent nanoparticles
from aggregating and ensure transparency of the layer. The binders used are usually
acrylic copolymers [16,17,26]. In certain experimental studies, UV stabilizers, such as
benzotriazoles and triazines, VIS radiation stabilizers—hindered amine light stabilizers
(HALS)—Tinuvin [22,23,28], were used along with TiO2 NPs and, additionally, with ZnO
NPs [22,23]. Different shapes of nanoparticles are reported in the literature describing
experiments with UV protective layers: non-spherical [17] and spherical [18–20,24]. This
research investigates the properties of planar TiO2 particles. The coating, apart from tra-
ditional brushing [22] or spraying [23], may be deposited in different forms: the sol-gel
deposition process with dip-coating [19,20], hydrothermal methods [18], or the use of
plasma [24]. Due to elevated temperatures, the last two methods may lead to the formation
of a chemical hydrogen bonding between wood surface and TiO2 NPs [18,24], otherwise
TiO2 is reported to be inert, and only physical interactions between wood and TiO2 layers
may be expected because of UV energy absorption.

While most of the studies on TiO2 as a wood preservative show the results of color
change [8,9,15,22,23], mechanical properties [15,26], or microbiological tests [7–9,15], little
is known about microscopic and molecular changes occurring in wood under the influence
of powerful nanoparticles. Infrared spectroscopy (FTIR-ATR) has been used in only a few
studies [8,9,15,19,24,26]. To the best of the authors’ knowledge, none of the studies on
TiO2 and wood used transmission electron microscopy (TEM) to observe changes on the
level of wood ultrastructure. Usually, TEM studies addressed wood morphology or wood
biodegradation [29–31].

Chemical changes in wood composition, caused by degradation, are reflected in wood
cells. The ultrastructure of wood has been studied extensively since the 1930s, using
various analytical techniques (optical and electron microscopy, X-ray diffraction, infrared
and Raman spectroscopy, and others) [1]. The general organization of a wood cell is well-
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known, and the nomenclature established is presented in Figure 1. The wood cell wall
consists of: ML—middle lamella, P—primary wall, secondary walls, which are built from
layers—S1 (outer), S2 (middle), S3 (inner), W or WL—warty lamella, L—lumen (empty part
inside the fiber). This research uses transmission electron microscopy (TEM) to investigate
the changes occurring under the influence of UV radiation in the wood cell ultrastructure
of pine and beech wood coated and not coated with TiO2.
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Figure 1. Model of a wood cell. Drawing by S. Svorová Pawełkowicz.

The aim of this paper is to study interactions between planar titanium dioxide
particles and wood matter. The paper focuses on describing the phenomena occurring
as the UV energy is absorbed by a TiO2 layer built from amorphous, so, by definition,
non-photocatalytic TiO2 particles. The key issue is whether this energy can affect the
morphology and molecular composition of wood’s surface. For the study, beech wood (a
representative of broadleaved trees) and pine wood (a representative of conifer trees)
were chosen, as both are easily degradable by UV light [32]. Beech and pine sapwood
are woods most commonly used for degradation tests because of their low resistance to
biological decay (see standards EN 113 [33], EN 839 [34], and EN 252 [35]). Furthermore,
pine sapwood is recommended in standards EN 927-3 [36] and EN 927-6 [37] for testing
the durability of coating materials and coating systems for exterior constructions. Wood
specimens have been coated with planar particles of TiO2 mixed with water, acrylic
resin, and water glass. The use of binders complicated the system but at the same
time made the study more realistic as, in the long run, nanoparticles will not stick to
a wood surface exposed to external conditions with van der Waals forces only. The
choice of acrylic resin was dictated by its popularity and nontoxicity, and its mechanical
properties (elasticity) [26]. Nevertheless, an additional reaction between organic acrylic
matrix and TiO2 was expected, as reported in the literature [6,26,38]. That is why we
looked for an inorganic matrix, such as water glass. Wood specimens were submitted to
artificial aging simulating environmental conditions. The absorbance of UV radiation
of TiO2 particles was measured by UV-VIS spectroscopy. X-ray fluorescence (XRF)
mapping was helpful in locating the proper place for extracting samples for further
measurement from the wood specimens. Irradiated and reference wood specimens
were inspected with transmission electron microscopy (TEM) to describe changes in
the wood’s ultrastructure, and with Fourier transform infrared spectroscopy (FTIR) to
describe the chemical changes triggered by the interaction of TiO2 and UV light. The
efficiency of TiO2 coating has been proved, albeit to a limited extent. Fissures in the
wood matter of beech wood were observed around clusters of TiO2 particles.
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2. Materials and Methods
2.1. Materials
2.1.1. Wood Specimens

Two species of wood were chosen for the study: beech (Fagus sylvatica) and pine
sapwood (Pinus sylvestris). Defect-free samples were selected from the boards according to
the requirements of EN 927-6 [37]. They were cut into specimens of 20 × 37 × 150 mm.

2.1.2. Titanium Dioxide

For the experiment, amorphous, non-photoactive (so by definition safe for organic
matter) planar particles have been synthetized from titanium (IV) oxysulfate dihydrate
(TiOSO4·2H2O) with an optimized method reported earlier [27,39]. In the final step, the
solid product was annealed at 230 ◦C. Because of their morphology (Figure 2), these TiO2
planar particles could theoretically organize in a snakeskin-like hydrophobic layer. Previous
research [27] showed that the morphology of the samples was not fully homogeneous and
that minute quantities of crystalline phase anatase in the form of small 2–10 nm individual
crystals were also present.
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2.1.3. Specimens’ Preparation. Binders and Concentrations of TiO2 in the Mixtures

Wood pieces were coated with waterborne dispersions of TiO2, in different concen-
trations, as described in Table 1. Binders were used undiluted, in manufacturers’ concen-
trations. The coatings were applied by brushing, which resulted in an uneven thickness
of the layers, ranging from approximately 1 µm for water as binder to up to 10 µm in
the case of water glass and acrylic resin as binder. Not all the layers became transparent.
After coatings application, best results in terms of coating transparency were achieved
with acrylic water dispersion with 1 wt. % of TiO2 (Figure 3). After UV irradiation, all
the coatings showed signs of degradation—the coatings became whitish or white, opaque,
and were covered with micro-cracks. Reference specimens—native beech and pine wood
without any coating—were prepared as well. For FTIR-ATR and TEM studies, samples with
the highest TiO2 concentrations (3 wt. %) were chosen, as it was expected the interactions
between TiO2 particles and the wood matter could be better articulated.
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Table 1. Binders and concentrations of TiO2 in the mixtures.

Binder Concentrations (wt. %)

H2O 0.5 1.5 3
Potassium water glass

(MM 1.6 by Vodnisklo a.s.) 0.5 1.5 3

Acrylic water dispersion
(Primal® SF016 by Rohm&Haas) 0.5 1.5 3
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2.1.4. Accelerated Aging Test

Accelerated aging tests were performed according to the standard EN 927-6 [37].
Exposure of wood coatings to artificial aging using fluorescent UV lamps and water was
conducted on coated and native wood specimens. Each specimen was exposed to nine
cycles, and each cycle corresponded to 168 h of artificial aging. One cycle consisted of
two steps:

• 1st step—(24 h) Temperature 45 ± 3 ◦C, Water-Spray (off), UV (off)
• 2nd step—sub-cycle (A + B)—3 h

# A (2.5 h) Temperature = 60 ± 3 ◦C, UV Irradiance = 0.89 W/m2 at 340 nm
# (B 0.5 h) Temperature 20 ± 1 ◦C, Water-Spray (on), UV (off)

Sub-cycle (A + B): 48 sub-cycles 3 h of one, i.e., together 144 h

Wood specimens have been exposed to UV radiation for a total of 1080 h.

2.2. Methods of Characterization
2.2.1. Sample Preparation

Pure TiO2 planar particles were characterized with UV-VIS spectroscopy. Small sam-
ples were extracted from uncoated and coated specimens, treated and untreated with
UV light for further analysis (FTIR-ATR, TEM/STEM-EELS). Prior to the extraction of
samples from the specimens, XRF mapping was performed to localize the proper place for
sample extraction.

Samples for FTIR were cut out from the wood specimens.
For TEM observations, ultrathin samples were prepared. Small pieces of wood were

cut out from the specimens. Samples with natural humidity (about 12 wt. %) were embed-
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ded in epoxy resin, placed in a vacuum chamber for 15 min, and left for 24 h. Once set, they
were cut in the shape of a frustum pyramid. The upper surface of the frustum pyramid
had the dimension of approximately 0.1 mm. The samples were cut on an ultramicrotome
machine fitted with a diamond knife. The cut sections were collected from the water surface
on a holey carbon copper grid. As wood is non-conductive, the samples were coated with
a carbon layer; for STEM and TEM observations the carbon layer was 2–4 nm thick at both
sides. This step made the samples conductive, and more stable in a vacuum and under the
electron beam.

2.2.2. UV-VIS Absorption Spectra of TiO2 Planar Particles

UV-VIS spectroscopy was measured with a Perkin Elmer Lambda 35 spectrometer.
The spectra were recorded in the transmission mode on a quartz plate. This nonstandard
mode was chosen to simulate the real effect of a TiO2 layer covering the wood. Absorption
coefficient (Aλ = log(I0/I)) was recalculated to area yield of the TiO2 layer. The measurement
was repeated several times with various thicknesses of the layer. The final absorption value
was calculated from five measurements.

2.2.3. Macro X-ray Fluorescence (MAXRF)

X-ray fluorescence was recorded with an energy dispersive M6 JetStream XRF macro
scanner from Bruker Nano GmbH. It utilizes an X-ray tube with a rhodium anode running
at 50 kV/600 µA with a policapillary lens for beam focusing. The instrument is equipped
with a 30 mm2 SDD (Silicon Drift Detector). The examination was conducted in air. All
specimens were scanned together over the area of 610 × 345 mm2 in 479,140 pixels with
25 ms acquisition time in one pixel. The total live time of acquisition was 6:54 h. The
presence of titanium was detected at Ti:Kα line: 4.509 keV.

2.2.4. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance
(FTIR-ATR)

FTIR spectra of the wood surface were recorded on Nicolet iS10 FT-IR spectrometer
equipped with Smart iTR, using attenuated total reflectance (ATR) sampling accessory—
ZnSe crystal (Thermo Fisher Scientific). The spectra were registered at an absorbance mode
(A) from 4000 to 400 cm−1 at a spectral resolution of 4 cm−1, and 32 scans were used.
Measurements were performed on four replicates per sample.

2.2.5. Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) and scanning transmission electron mi-
croscopy (STEM) were used to investigate the ultrastructure of wood. Chemical composi-
tion of the samples was studied with electron energy loss spectroscopy (EELS). TEM and
STEM measurements were carried out using a FEI Tecnai TF20 X-twin microscope operated
at 200 kV acceleration voltage (Thermo Fisher Scientific, Brno, Czech Republic). EELS
resolution was around 0.8 eV. Additionally, a Jeol JEM-1200EX (Jeol Ltd., Tokyo, Japan) was
used for TEM observations of the samples. The accelerating voltage was 120 kV.

3. Results and Discussion
3.1. UV-VIS Absorption Spectra of TiO2 Planar Particles

UV radiation is a powerful degradation agent capable of triggering delignification
and crystallization of cellulose. The binding energy between atoms in cellulose and lignin
macromolecules is smaller than the energy of UV light photon, that is why UV light photon
is capable of breaking these bonds. TiO2 coating, as shown in UV-VIS spectra, absorbs some
quantity of the UV and VIS radiation, but also some energy will pass through the TiO2
layer. Figure 4 shows UV-VIS absorption spectra of TiO2 planar particles in the range of
200–800 nm. The absorption maximum is at 254 nm. Absorption coefficient is recalculated
to area yield of the TiO2 layer 1 g/m2. The value of the absorption coefficient is 1.28 at
254 nm for the layer 1 g/m2. Intensity of incident light with a wavelength of 254 nm will
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be attenuated 19 times after passing through the TiO2 layer with a “thickness” of 1 g/m2;
in other words, only 5% of UV radiation (254 nm) will pass through the layer and reach the
wood matter.
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Nano-sized TiO2 is reported to be quite an effective UV protective material [14,16,18–20,24–26].
The UV-VIS absorption measurement should provide information not only about UV-
VIS spectra, but particularly about the UV protective function of the TiO2 coating. The
measured absorption coefficient was therefore normalized to a TiO2 planar particles coating
layer with an area yield (“thickness”) of 1 g of TiO2 spread to 1 m2. These measurements
were conducted on pure TiO2 planar particles, and therefore take into account only the
UV-protective function of TiO2.

3.2. X-ray Intensity Maps

After artificial aging, some of the TiO2 coatings looked cracked and, in places, it looked
as if the TiO2 coating had been removed from the wood surface. This was particularly
the case with the specimens where water was used as binder. Besides, some of the white
areas did not correspond to high TiO2 concentrations, but to areas of photodegradation. To
correctly localize the TiO2 coated areas, X-ray intensity maps were developed. The maps
showed exactly where the TiO2 coating was still present in wood specimens (Figure 5) after
exposition to artificial ageing.
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dispersions of TiO2 in different concentrations (3%) in water (w), water glass, and acrylic, before and
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3.3. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)

When studying photodegradation of wood, bands at 800–1800 cm−1 are considered
as the fingerprint region [40,41]. According to Cogulet et al. [40], in the first step of the
photodegradation process, yellowing of wood matter is directly linked to lignin photodegra-
dation, while the appearance of silver patina marking the final step of photodegradation is
related to generation of carbonyl compounds observable at 1615 cm−1 in the FTIR spectra.
Lignin is the chemical component that is the most sensitive to UV light [42]. As stated by
Cogulet et al., hemicelluloses are more sensitive to photodegradation than cellulose. Bands
at 1420–1430 cm−1 are associated with the crystalline structure of cellulose [43]. Table 2
lists the bands described in the literature and observed in the studied samples.

Table 2. Assignment of IR characteristic bands for wood degradation after Cogulet [40], Bari [44],
Ozgenc [41], Dirckx [45], and Pandey [46].

Literature
Band (cm−1)

Observed
Band (cm−1) Compound or Chemical Group

806, 812, 813 806 C-C deformation and stretching vibration in mannans [45]

- 827–831 Observed in beech wood only

895–897 893–897 C-H deformation in cellulose [40,44]
C1-H group vibration in cellulose and hemicelluloses [41,46]

1026, 1029, 1030, 1031, 1033 1024, 1028, 1030–1032

C-O stretching vibration in cellulose [46], hemicelluloses [40,41],
C=O stretching vibration in cellulose, hemicelluloses, and lignin

[44]
C-O of primary alcohol, C-H in guaiacyl [46]

1050–51, 1052, 1059 1045, 1051, 1053 C-O stretching vibration in cellulose [46] and hemicelluloses
[40]

1097 1099 Aromatic C-H in-plane deformation and C=O stretch O-H
association band in cellulose and hemicelluloses [44]

1104, 1109, 1115 1101, 1103 Aromatic skeletal vibration and C-O stretch [40]
C-O and O-H stretching vibration [45]

1134, 1152, 1155, 1156, 1157,
1160, 1163, 1165 1155–1157 C-O-C vibration in cellulose and hemicelluloses [40,41,44] and

lignin [45]

1200, 1208 1201 O-H deformation in (1200 cm−1) cellulose [46] and CH2 and
O-H deformation (1208 cm−1) hemicelluloses [45]

1222, 1230, 1233, 1234 1230–1236

C=O stretching vibrations in lignin, acetyl and carboxyl
vibrations in xylans [44]

C-O stretch in lignin [45] and xylan [41]
Syringyl ring [41]

1252, 1260, 1265, 1266, 1267,
1268, 1280 1262–1265

Guaiacyl ring breathing [41]
C-O stretch in lignin and mannans [40,41,45]

C-O linkage in guaiacyl aromatic methoxyl groups [41]

1309, 1313, 1314, 1316–1326,
1318 1315–1317, 1327–1329

C-H vibration in cellulose [40,41]
CH2 wagging in cellulose [46]

C1-O vibration in syringyl derivatives [41,44]
CH2 and O-H deformations in cellulose and hemicelluloses [45]

1330, 1333, 1335 1335 shoulder CH2 wagging [45] and O-H deformation in cellulose [45,46]

1367, 1368–1372, 1375 1369–1371 C-H deformation in cellulose [46] and hemicelluloses [40,41,44]
and lignin [45]

1408, 1417, 1419, 1421,
1422–1424, 1425, 1430 1419–1421

C-H asymmetric deformation in –OCH3 [44,46]
Aromatic skeletal vibrations [44]

C-H deformation in lignin [46] and carbohydrates [41,44]
CH2 and CH3 deformation in cellulose, lignin and

hemicelluloses [45]
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Table 2. Cont.

Literature
Band (cm−1)

Observed
Band (cm−1) Compound or Chemical Group

1451-56, 1452, 1455, 1458, 1460,
1462, 1463 1452–1462

C-H deformation in lignin [40,46] and carbohydrates [41]
CH2 deformation vibrations in lignin and xylans [44]

CH2 and CH3 deformation in cellulose, lignin and xylans [45]

1502, 1504, 1506–1509, 1510 1504–1508 Aromatic skeletal vibration in lignin [40,41,44,46]
C=C stretching of the aromatic ring in guaiacyl [44,45]

- 1541 C=O stretching vibration

1592, 1593, 1595, 1598, 1605,
1606, 1610 1592

C=C stretching of the aromatic ring in syringyl [44,45]
Aromatic skeletal vibrations and C=O stretching [44,46]

Conjugated C-O stretching [41]

1615 - C=O stretching conjugated to double bond [40]

1635, 1640 1639–1645 H-O-H deformation vibration of absorbed water [44,46]
C=O stretching in lignin [44,45] and in cellulose [46]

1720, 1730–1732, 1734 1730–1732 C=O stretch of acetyl or carboxylic acid in hemicelluloses [40]
C=O stretching in xylans (unconjugated) [41,44]

2800–3000 2850, 2883, 2893, 2895,
2916–2918, 2920, 2924–2928 C-H stretching [44,45]

3300–4000 3282–3304, 3334, 3342–3346 Strong broad O-H stretching absorption band [45]

Chemical composition of beech (Fagus sylvatica) and pine sapwood (Pinus sylvestris)
is not identical, but similar. The spectra of native pine wood differ from those of beech
wood (see Figure 6) by the presence of bands at 1265 and 806 cm−1, absence of bands at 830
and 2850 cm−1, and a decrease in band intensity at 1608 cm−1 in pine wood (as compared
to beech). Pine wood is a coniferous wood composed of cellulose (40.3%), hemicelluloses
(28.7%), and mannan lignin (15–36%). Beech wood is a deciduous wood composed of
cellulose (39.2%), hemicelluloses (35.3%), and lignin (20.9%) [47].
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3.3.1. Fourier Transform Infrared Spectroscopy of Specimens with Water as Binder

Figures 7 and 8 show that TiO2 coating is not well-visible in the FTIR-ATR spectra.
The wide band at 400–800 cm−1 attributed to Ti-O-Ti stretching vibration [18,24] overlaps
with the band present in the wood spectra. Generally, bands from an uncoated sample are
stronger than those from a coated one, especially at 1031 and 1045 cm−1. The exception to
the rule are the bands at 1641, and between 3000 and 3500 cm−1—in these cases, intensities
of absorptions are slightly increased in comparison to those of an uncoated sample, and can
be assigned to water absorption and hydrogen bonds development [43]. Figure 8 shows
substantial changes in the molecular structure of wood without any coating irradiated with
UV light. Intensities in the spectrum of the irradiated sample decreased (e.g., 1024, 1461,
and 1645 cm−1), and some bands seem not to be present in the spectrum anymore (e.g.,
831, 1236, 1327, 1504, 1540, and 1592 cm−1). This should be attributed to the loss of water
(1645 cm−1), delignification (see wavelength assignments for 1236, 1461, and 1504 cm−1 in
Table 2), and decrease in cellulose crystallinity (see wavelength assignments for 1024 and
1327 cm−1 in Table 2). After irradiation of the uncoated sample, due to the destruction of
some bonds under UV light, some bands, which, in native wood, were hidden in envelope
curves, became more visible, i.e., bands at 1051 (C-O stretching vibration in cellulose
and hemicelluloses), 1201 (CH2 and O-H deformation in cellulose), 1315 (C-H vibration
in cellulose and C1-O vibration in syringyl), and 1335 cm−1 (CH2 wagging and O-H
deformation in cellulose). Additionally, in the TiO2-coated sample treated with UV light, a
band appeared in the spectrum at 2895 rather than at 2850 and at 2915 cm−1, and a shoulder
at 3334 cm−1. The increase in band height at 897 and 1155 cm−1 should be assigned to
C1-H and C-O-C vibration in cellulose and hemicelluloses respectively. Figures 7 and 8
show reduced absorbance values for the uncoated sample irradiated with UV light as
compared to the coated one, thus proving that the TiO2 layer, to a small extent, effectively
protects the wood specimen. Limited effectiveness of TiO2-based UV-protective layers is
consistent with the previous studies. Unfortunately, most of the layers do not withstand
weathering—depolymerized wood components leak through the micro-cracks [22].
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Figure 7. FTIR-ATR spectra of beech wood samples: (blue) reference sample of native beech wood, (red)
beech wood with 3% TiO2 coating with water as binder, (yellow) UV-irradiated beech wood without
TiO2 coating, and (purple) UV-irradiated beech wood with 3% TiO2 coating with water as binder.
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Figure 8. FTIR-ATR spectra of beech wood samples in the fingerprint region 800–1800 cm−1: (blue)
reference sample of native beech wood, (red) beech wood with 3% TiO2 coating with water as binder,
(yellow) UV-irradiated beech wood without TiO2 coating, and (purple) UV-irradiated beech wood
with 3% TiO2 coating with water as binder.

Figures 9 and 10 show pine wood’s reaction to UV light, with and without TiO2 coating.
Like in the case of beech wood, the TiO2 coating is not well-visible in the spectrum. There
is a clear decrease in band intensities in the spectrum of the sample coated with TiO2 as
compared to the uncoated one, except for the band at 1730 cm−1 assigned to C=O stretch of
acetyl or carboxylic acid in hemicelluloses. Most of the intensities in the spectrum of the
uncoated UV-irradiated sample decreased compared to the sample of native pine wood
(e.g., 1028, 1051, 1103, 1157, 1230, 1262, 1315, 1335, 1369, 1419, 1452, 1643, 1730, 2883, 3282,
and 3344 cm−1). Some bands are no longer present in the spectrum (e.g., bands at 806,
1508, 1600, and 2920 cm−1), which shows the bonds’ degradation induced by UV light.
Some bands, present as minute shoulders in the spectra of samples untreated with UV light,
became more visible in the spectra of the irradiated samples; this is the case of bands at
1201 cm−1 (CH2 and O-H deformation in cellulose [46]), and 2893 cm−1. The spectra of
uncoated and coated specimens irradiated with UV light show similar trends; at certain
wavenumbers, they overlap (see 806–1201 cm−1), or the spectrum of the uncoated sample
shows slightly reduced absorbance (see 1317–1639 cm−1). In the range 2800–3500 cm−1,
there is a clear decrease in band intensity in the spectrum from the uncoated sample as
compared to the coated one. In the case of pine wood, the protective effect of TiO2 coating
is not so clearly visible as in the case of beech wood samples.

3.3.2. Fourier Transform Infrared Spectroscopy of Specimens with Acrylic Resin as Binder

Spectra acquired from specimens coated with TiO2 acrylic dispersion are much more
complicated, as the influence of the synthetic polymer is visible. Therefore, only the
fingerprint region (bands at 800–1800 cm−1) was analyzed (Figures 11 and 12).
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Figure 9. FTIR-ATR spectra of pine wood samples: (green) reference sample of native pine wood, (red)
pine wood with 3% TiO2 coating with water as binder, (yellow) UV-irradiated pine wood without
TiO2 coating, and (purple) UV-irradiated pine wood with 3% TiO2 coating with water as binder.
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Figure 10. FTIR-ATR spectra of pine wood samples in the fingerprint region 800–1800 cm−1: (green)
reference sample of native pine wood, (red) pine wood with 3% TiO2 coating with water as binder,
(yellow) UV-irradiated pine wood without TiO2 coating, and (purple) UV-irradiated pine wood with
3% TiO2 coating with water as binder.
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Figure 11. FTIR-ATR spectra of beech wood samples in the fingerprint region 800–1800 cm−1: (blue)
reference sample of native beech wood, (red) beech wood with 3% TiO2 acrylic coating, (yellow)
UV-irradiated beech wood without TiO2 coating, and (purple) UV-irradiated beech wood with 3%
TiO2 acrylic coating.
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Figure 12. FTIR-ATR spectra of pine wood samples in the fingerprint region 800–1800 cm−1: (green)
reference sample of native pine wood, (red) pine wood with 3% TiO2 acrylic coating, (yellow) UV-
irradiated pine wood without TiO2 coating, and (purple) UV-irradiated pine wood with 3% TiO2

acrylic coating.
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In the case of beech wood, the intensities in the spectra of the irradiated samples
(coated and uncoated) decreased compared to the native wood’s spectrum (Figure 11).
Clear signs of delignification were observed with the decrease in intensities at 1236, 1460,
and 1504 cm−1. The most significant decrease in intensities was observed at 1030, 1047,
and 1100 cm−1 assigned to C=O, C-O, and O-H stretching vibration in cellulose, hemi-
celluloses, and lignin [40,44–46]. In this area, the bands of the coated sample are much
higher than of those of the uncoated one, proving the efficiency of the coating. In the region
1200–1800 cm−1, the spectra of the coated and uncoated samples overlap.

In the case of pine wood, the intensities of the coated irradiated sample are higher than
those of the uncoated irradiated sample, and both are lower in the range of 1200–1800 cm−1

than the ones of native pine wood (Figure 12). Interestingly, the bands at 1022, 1050, and
1103 cm−1 in the spectrum from the coated irradiated sample are stronger or equal to the
intensities observed for native pine wood (at 1026, 1049, and 1103 cm−1).

3.3.3. Fourier Transform Infrared Spectroscopy of Specimens with Water Glass as Binder

Spectra of samples with water glass as binder are the most difficult to analyze as
the intensities of water glass dominate over native wood in the range of 800–1250 cm−1,
both in the case of beech and pine wood (Figures 13 and 14). Spectra of coated irradiated
samples of beech and pine wood copy the trend of the not-irradiated coated samples—
especially in the range of 800–1250 cm−1. In the range of 1300–1800 cm−1, spectra of coated
irradiated samples start to copy the trend of uncoated irradiated samples. Nevertheless,
the intensities of coated samples are much lower than those of the uncoated ones—which,
given the impact of the water glass binder, is not necessarily related with depolymerization
of wood but rather reflects the vibrations coming from the binder.
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Figure 13. FTIR-ATR spectra of beech wood samples in the fingerprint region 800–1800 cm−1: (blue)
reference sample of native beech wood, (red) beech wood with 3% TiO2 water glass coating, (yellow)
UV-irradiated beech wood without TiO2 coating, and (purple) UV-irradiated beech wood with 3%
TiO2 water glass coating.
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Figure 14. FTIR-ATR spectra of pine wood samples in the fingerprint region 800–1800 cm−1: (green)
reference sample of native pine wood, (red) pine wood with 3% TiO2 water glass coating, (yellow)
UV-irradiated pine wood without TiO2 coating, and (purple) UV-irradiated pine wood with 3% water
glass TiO2 coating.

3.3.4. Photodegradation Parameters

Cogulet et al. [40] adopted a ratio of lignin band at 1510 cm−1 to the carbohydrate
band at 1375 cm−1 (I1510/I1375) for the observation of the delignification rate caused by UV
irradiation and a ratio of bands at 1316 to 1335 cm−1 (I1316/I1335) to monitor the crystallinity
of cellulose.

The observed changes in the molecular structure of wood exposed to UV irradiation
are in compliance with the literature [40,42], especially as far as delignification is concerned.
Delignification was proved on the basis of calculated ratio I1510/I1375 (Table 3). The lower
the ratio, the more depolymerized the lignin. It was shown that a TiO2 coating with all
the tested binders did not prevent lignin from depolymerization in either beech or pine
wood. In the case of pine wood, the value of I1510/I1375 obtained for the sample coated
with TiO2 and water as binder was even lower than for the uncoated one. Higher indexes
calculated for the samples coated with TiO2 dispersions in acrylic resin or water glass
do not necessarily mean the depolymerization rate is lower, as the results are strongly
influenced by the presence of binders.

Cogulet et al. [40] reported an increase in cellulose crystallinity in the first step of the
woods’ photodegradation, followed by a decrease in cellulose crystallinity and depoly-
merization. They proposed an index based on the ratio of bands at 1316 and 1335 cm−1

(I1316/I1335)—the higher the index, the higher the crystallinity of cellulose. The results of
this study are not fully consistent with those of Cogulet et al. The index slightly increased
in the case of irradiated pine wood (both coated and uncoated). As far as beech wood
is concerned, the index of the irradiated uncoated sample decreased, but it increased for
irradiated coated samples. No difference in I1316/I1335 was observed in the results from
samples coated with acrylic resin (irradiated and not irradiated).
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A simultaneous decrease in band intensities at 1508 and 1730 cm−1 and the lack of a
band at 1615 cm−1 is contrary to Cogulet et al. [40] and Muller et al. [48], who observed
a decrease in the range of 1510–1600 cm−1 along with an increase in bands at 1615 and
1700–1650 cm−1, respectively, and interpreted it as formation of conjugated carbonyl groups
accompanying the decay of the aromatic structure of lignin.

Table 3. Photodegradation parameters: rate of delignification (ratio of band at 1510 to 1375 cm−1),
crystallinity of cellulose (ratio of band at 1316 to 1335 cm−1).

Sample I1510/I1375 I1316/I1335

native_beech_wood 0.62 0.94
UV-irradated_beech_wood_0%TiO2 0.09 0.87

beech_wood_3%TiO2 in water 0.49 0.93
UV-irradiated_beech_wood_3%TiO2 in water 0.09 1.43

beech_wood_3%TiO2 in acrylic 0.14 1.09
UV-irradiated_beech_wood_3%TiO2 in acrylic 0.09 1.09

beech_wood_3%TiO2 in water glass 3.32 0.79
UV-irradiated_beech_wood_3%TiO2 in water glass 0.17 1.12

native_pine_wood 0.87 1.07
UV-irradiated_pine_wood_0%TiO2 0.08 1.12

pine_wood_3%TiO2 in water 0.63 1.05
UV-irradiated_pine_wood_3%TiO2 in water 0.07 1.11

pine_wood_3%TiO2 in acrylic 0.14 1.16
UV-irradiated_pine_wood_3%TiO2 in acrylic 0.10 1.08

pine_wood_3%TiO2 in water glass 3.49 0.87
UV-irradiated_pine_wood_3%TiO2 in water glass 0.15 1.12

In all the samples irradiated with UV light, a loss of water molecules was observed.
However, in the case of samples with a TiO2 coating, the decrease in relevant intensities was
slightly less important. This phenomenon could be explained by referring to the properties
of TiO2 to chemisorb water on its surface under UV light [11].

3.4. Transmission Electron Microscopic (TEM) Study of Beech and Pine Wood’s Cell
Walls Ultrastructure

TEM micrographs show how the molecular and chemical changes visible in the FTIR-
ATR spectra result in changes on the level of the ultrastructure of wood’s cell walls. In the
reference samples of native beech and pine wood untreated with UV light, the wood’s cell
walls ultrastructure remains intact. It is possible to discern the constituents of the wood
cell: middle lamella (ML), primary wall (P), secondary walls (S1, S2, S3), and lumen (L)
(Figure 15).

Micrographs from samples irradiated with UV light and uncoated with TiO2 show
significant changes occurring especially in the middle layer of the secondary wall (S2).
Both in beech and pine wood, numerous fissures appear, mostly perpendicular to the S1
layer. The fissures start in the area of the S3 layer. Small perforations forming fissures are
visible in the S2 layer of the beech (Figure 16e) and pine wood cells (Figure 16d,f).

The presence of TiO2 in the samples of coated wood was confirmed with EELS. Fragile,
several-micron-large planar TiO2 particles, when mixed with water to create a coating,
broke into smaller planar particles of hundreds of nanometers or minute individual particles
of 25–30 nm as seen in Figure 17. In only a few places, the TiO2 coating stayed on the
wood’s surface (Figure 17a). In some cases, clusters of TiO2 particles were found in the
lumen (Figure 17b) or in the wood’s structure (Figure 17d). Fissures and holes appeared in
the vicinity of TiO2 clusters (Figure 17d).
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Figure 17. TEM micrographs of TiO2 coated samples before irradiation: (a,c) beech and (b,d) pine
wood’s cell wall ultrastructure.

TEM observations of samples extracted from specimens coated with TiO2 and exposed
to UV light irradiation confirmed the observations made after the FTIR-ATR analysis of the
samples. The wood’s cell wall ultrastructure showed evident signs of degradation. Fissures
were present, especially in the S2 layer perpendicular to the S1 layer (Figure 18a). In the
case of beech wood, in some cells, the S3 layer detached from the S2 layer (Figure 18b). In
the case of pine wood, the wood’s cell walls underwent strong deformation (Figure 18b,f).
The S2 layer shrank and the walls started to curl. No evident changes were observed
around the clusters of TiO2 in the case of pine wood. As for beech wood, perforations and
fissures appeared in the vicinity of the TiO2 clusters (Figure 19).
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wood’s cell wall ultrastructure.
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Figure 19. TEM micrograph of TiO2 cluster in the coated and irradiated sample of beech wood (left),
and EELS spectrum of TiO2 (right).

4. Conclusions

UV-VIS spectroscopy confirmed that the planar TiO2 particles absorb UV and VIS
radiation, with the absorption maximum peak at 254 nm, and that some energy passes
through the TiO2 layer. Comparison of FTIR-ATR spectra demonstrated the relatively low
effectiveness of a TiO2 protection layer against UV radiation for beech (Fagus sylvatica)
and pine (Pinus sylvestris) wood. The coating was slightly more efficient in the case of
beech wood than pine wood. The expected organization of TiO2 planar particles in a
snakeskin-like hydrophobic layer has not been observed. On the contrary, large particles
broke into smaller ones and moved into the wood’s structure.

The FTIR-ATR spectra demonstrated that depolymerization of lignin in UV-irradiated
samples was slightly more noticeable in the case of pine wood coated with TiO2 than in
uncoated pine wood. As far as beech wood is concerned, the TiO2 coating had no effect
on delignification. Nevertheless, TEM micrographs revealed fissures and holes around
TiO2 clusters in the case of UV-irradiated beech wood, proving an interaction between TiO2
particles and wood matter. Micrographs from samples irradiated with UV light, uncoated
and coated with TiO2, show significant signs of degradation in the wood cell ultrastructure.

Author Contributions: Conceptualization, P.S. and S.S.P.; methodology, P.S.; software, P.S.; validation,
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