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Abstract

To improve the understanding of the middle-ear hearing mechanism and assist in the diagnosis of 

middle-ear diseases, we are developing a high-speed digital holographic (HDH) system to measure 

the shape and acoustically-induced transient displacements of the tympanic membrane (TM). In 

this paper, we performed measurements on cadaveric human ears with simulated common middle-

ear pathologies. The frequency response function (FRF) of the normalized displacement by the 

stimulus (sound pressure) at each measured pixel point of the entire TM surface was calculated 

and the complex modal indicator function (CMIF) of the middle-ear system based on FRFs of the 

entire TM surface motions was used to differentiate different middle-ear pathologies. We also 

observed changes in the TM shape and the surface motion pattern before and after various middle-

ear manipulations. The observations of distinguishable TM shapes and motion patterns in both 

time and frequency domains between normal and experimentally simulated pathological ears 
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support the development of a quantitative clinical holography-based apparatus for diagnosing 

middle-ear pathologies.

Keywords

frequency transfer functions; high-speed digital holography; human tympanic membrane; middle-
ear pathologies

1. Introduction

The human middle ear, including the eardrum or the tympanic membrane (TM), transmits 

sound energy from the environment to the inner ear for hearing [1,2]. The mechanism of this 

energy transmission through the middle ear is intrinsically multifaceted and is affected by 

the TM’s complex geometry (shape and thickness), spatially varied mechanical properties 

and microstructure (radial and circumferential fibers), as well as the load from the ossicular 

chain and inner ear [3–15]. Middle-ear pathologies such as TM perforation, otitis media with 

effusion, otosclerosis, and ossicular discontinuity can result in mild to severe conductive 

hearing loss. Currently, in otology and audiology clinics, there is no perfect objective 

diagnostic tool to differentiate middle-ear diseases, and the gold standard for the diagnosis 

of ossicular disorders is surgical exploration with an elevation of the eardrum to visualize the 

ossicular chain.

Over the past decade, various non-invasive optical methods, for example, holographic 

interferometric methods, were developed to quantify TM dynamics such as excitation-

induced displacements, and physical characteristics such as shape and thickness [11,16–26]. 

However, a study on the live subject remains challenging due to the natural noise, such as 

motions due to respiration, heartbeat, muscle tremor, etc. and high sensitivity of the optical 

tools. Researchers utilized a high-speed digital holographic method to minimize these 

undesirable effects and made quantitative measurements on live subjects possible [24,27–

30].

The high-speed digital holographic system we developed measures the TM’s shape and 

transient acoustic-induced displacement nearly instantaneously (<200 ms) with a spatial 

shape resolution of 50–200 μm and a displacement resolution of 15 nm at an acquisition rate 

of 67,200 Hz [24,28,30–32]. This high-speed system takes into account the holographic-

sensitivity vector variations due to the sample’s shape and optical configuration to derive the 

true surface normal motion of the TM.

To investigate if such a high-speed digital holographic (HDH) system can be used as a 

diagnostic tool for middle-ear pathologies, this paper describes a study on the shape and 

displacement measurements on post-mortem temporal bones with different experimentally 

introduced middle-ear pathologies. We compared the full-field-of-view shape measurements 

and the time and frequency domain analysis of displacements under various middle-ear 

conditions (open and closed middle-ear cavity, two levels of fluid injection into the middle-

ear cavity, stapes immobilization, and incudo-stapedial (IS) joint interruption) to identify 

TM motion patterns, and data trends associated with each middle-ear condition.
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2. Materials and Methods

2.1. Principle of High-Speed Holographic for Shape and Displacement Measurements

2.1.1. Multiple Wavelength Holographic Interferometry (MWHI) Method for 
Shape Measurement—The multiple wavelength holographic interferometry (MWHI) 

shape measurements are based on the principle of variations in the wavelength of 

illumination with a constant optical path length (OPL)(i.e., a stationary sample) [33–37]. 

The relation between the interference phase Δγ, the constant OPL, and wavelengths λ1 and 

λ 2 at two hologram exposures is described as follows:

Δγ = 2π
λ1

OPL − 2π
λ2

OPL = 2π
Λ OPL, (1)

where Λ is the synthetic wavelength:

Λ = λ1λ2
λ2 − λ1

. (2)

The synthetic wavelength Λ defines the sensitivity of the measurement. Assuming several 

synthetic wavelengths, the longest one determines the unambiguous measurement range, 

while the shortest synthetic wavelength gives the lowest uncertainty.

As described in [31], the MWHI method has been designed to sweep the synthetic 

wavelength allowing multiple measurements of shape in a short time. A tunable laser 

operating in open loop mode is used as a coherent light source, and continual wavelength 

tuning is achieved by changing the laser cavity length while keeping the number of waves in 

the cavity constant [38]. In this paper, a temporal unwrapping approach is applied to ensure 

that the measurement always yields the maximum resolution of a given wavelength tuning 

without spatial unwrapping errors.

During the wavelength tuning, N phase-shifted high-speed digital holograms are captured. 

The Pearson correlation of a 3 by 3 pixel kernel of the first image in the high-speed array 

and the rest are calculated, which gives information about optical phase change Δϕ [32] as 

follows:

ρ I1(x, y), In(x, y) = (r + 1)2 + 4rcos(Δϕ)
(r + 1)2 + 4r

, (3)

where ρ( ) is the Pearson correlation operator, I1 is the first hologram, In is the nth 

holograms, and r is the object and reference beam ratio r = Io/Ir.

Holograms with phase change Δϕ of π/2,π, and 3π/2 are identified from the image arrays to 

calculate the optical phase F of the measurement at each wavelength using the 4 step phase 

shifting equation [39]:
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F = arctanI3π/2 − Iπ/2
I1 − Iπ

, (4)

where Iπ, Iπ/2, and I3π/2 are the π/2, π, and 3 π/2 phase shifted holograms.

The optical phase difference ΔFN−1 of two consecutive high-speed phase measurements are 

calculated, and 2D Goldstein’s branch cut method [40] is applied to remove any phase 

jumps. The differential approach provides measurements with lower dynamic ranges, and 

therefore, the spatial unwrapping is more reliable. Moreover, if the number of phase 

sampling N is high enough, the optical phase difference has no 2π phase jumps, so the 

spatial unwrapping can be completely avoided.

The total phase change Δγ of the entire wavelength tuning, ensuring the lowest uncertainty, 

is

Δϒ = ∑2
N ΔΦk . (5)

Assuming perpendicular illumination and observation of the object, the surface z component 

of a point (x, y) on the sample is

z(x, y) = Λ
4πΔϒ (x, y) . (6)

2.1.2. High-Speed Digital Holographic (HDH) Method for Displacement 
Measurement—We have previously developed and implemented the HDH method based 

on correlation interferometry that could “instantaneously” measure the full-field-of-view 

(>200,000 points at 67,200 camera frame rate) transient displacements of the TM in 

response to impulsive acoustical and mechanical excitations [24,28,30]. As described in 

[31], the HDH uses Pearson’s correlation to locate two reference frames Iref and Iref +π/2 

with 0 and π/2 prior to the sample’s excitation based on Equation (3). The zero-order terms 

of all correlated kernels are removed by summation of reference frames that are within one 

period of optical phase shifts. The interference phase Δθ as a result of the sample’s motion 

of a small window centered at (x, y) is

Δθ(t) = arctan ρ Iref, Idef(t)
ρ Iref+π/2, Idef(t) . (7)

Studies of in-plane and out-of-plane motions of the human tympanic membrane [41] confirm 

that TM has a thin-shell structure with the dominant displacement component along the 

surface normal. Using the information of the shape and the geometry of the experiment 

setup, the surface normal (n) of the TM surface and the sensitivity vectors (K) [28] of the 

holographic measurement are computed at each point of the TM surface. The magnitude of 

the displacement s(t), therefore, can be expressed as
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s(x, y, t) = Δθ(x, y, t)
K(x, y)Δn(x, y) . (8)

2.2. Experimental Setup and Procedures

The schematic diagram of the HDH system used in this study is shown in Figure 1. The 

details of the HDH system and acoustic measurement setups can be found in our previous 

publication [31]. Three fresh non-fixed human postmortem temporal bones were used for the 

measurements. The cartilaginous and bony parts of the ear canal were removed to provide 

optical access to the TM. The middle-ear cavity was opened to check the health of the 

middle-ear ossicles, and then it was sealed using the sealing cement. A small metal tube was 

installed through the eustachian tube for injecting fluid into the sealing cement. A small 

metal tube was installed through the eustachian tube for injecting fluid into the middle-ear 

cavity. The TM surface was sprayed with a thin layer of HOLBEIN water soluble oil color 

(commercial trade name: TITANIUM WHITE) using a commercially available airbrush 

(MASTER® Model S68).

Primary experiments measured the transient TM responses to a short acoustic click (i.e., a 50 

μs square pulse) generated by a speaker, as shown in Figure 1, and the TM shape 

information to calculate the true out-of-plane motion of the entire TM [4]. We also acquired 

the acoustic excitation profile using a high-frequency microphone situated close to the TM, 

as shown in Figure 1. After the control measurement on the normal ear (closed middle-ear 

cavity), the sample was subjected to a series of manipulations that simulated different 

middle-ear conditions and pathologies. The manipulations included: (i) open middle-ear 

cavity, (ii) closed middle-ear cavity, (iii) injecting saline into the middle-ear cavity to the 

level of half TM in contact with fluid, as shown in Figure 2b, (iv) injecting saline until the 

full TM was in contact with fluid, (v) removing the injected fluid, (vi) immobilizing the 

footplate of the stapes with super glue, and (vii) interrupting the incudo-stapedial (IS) joint, 

as shown in Figure 2c. The shape and transient acoustic-induced displacements were 

measured at each manipulation (experimental setup is shown in Figure 2a). The human 

temporal bone study was approved by the Institutional Review Board of the Massachusetts 

Eye and Ear Infirmary. The use of de-identified human cadaveric tissue (only age and gender 

information are available) does not require a human subject study protocol.

2.3. Experimental Modal Analysis

Frequency response function (FRF) matrices computed from the ratio of the output 

displacements s and the input sound pressure p in the frequency domain were calculated for 

all the TM surface points with various middle-ear manipulations.

FRF(x, y, ω) = FFT (s(x, y, t))
FFT (p(t)) , (9)

where x, y are the coordinates of TM points, t is time, and ω is the frequency.

FRF(x, y, ω) was then flattened into a 2D matrix H(n,ω) where n is the number of the nodes. 

FFT denotes fast Fourier transform.
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Complex mode indicator functions (CMIFs) were calculated by taking singular value 

decomposition ([17], Equation (1)) of each FRF matrix,

[H] = [U][Σ][V ]H, (10)

where [H] is the flattened frequency response function matrix; [U] is the left singular vector 

matrix (unitary); [Σ] is the singular value matrix (diagonal); [V] is the right singular vector 

matrix (unitary); and []H marks the Hermitian (conjugate transpose) of matrix. The CMIF is 

defined as the main diagonal elements of the singular value matrix.

CMIF = diag[Σ] (11)

3. Results

3.1. Representative Shape Measurement Results

The MWHI method has been verified to reach an accuracy of 0.045 mm and exhibited 

repeatable measurements with 17 μm accuracy on a (National Institute of Standards and 

Technology) traceable ball and artificial samples [31]. This paper presents the results of TM 

shape measurements from three post-mortem human temporal bones (TB3, TB4, and TB5) 

under different manipulations. The 3D shapes of the TM of the three samples measured with 

a closed middle-ear cavity are shown in Figure 3a–c with laser continuous wavelength 

tuning from 779 to 779.4 nm (i.e., maximum synthetic wavelength 1.7 mm), while N (N = 

17) of phase samplings are performed to capture the optical phase at different wavelengths 

during wavelength tuning. The depth of the TM is rendered by color as shown in the color 

bar, where the TM annulus is set as zero (yellow), and the value increases negatively towards 

the middle-ear cavity side. In Figure 3d–h, the difference of the TM shape along the solid 

black line across the TM surface, as shown in Figure 3a, between the closed cavity (as 

reference) and different manipulations are shown. The comparison between the open cavity 

and the closed cavity shows no significant TM shape change in all three TBs (Figure 3d). 

The fluid injection induces more significant TM shape change where the fluid in contact 

with the TM pushes the TM surface outwards towards the ear canal side, yielding positive 

TM shape change values as shown in Figure 3e,f. Note in Figure 3e only half of the TM (to 

the right side of the plot) is in contact with the fluid. Stapes immobilization did not introduce 

significant TM shape change, as shown in Figure 3g. The IS joint interruption induced more 

significant changes to the TM shape which generally occurred at the posterior part of the 

TM, and the direction of the shape change was towards the middle-ear cavity (as shown in 

negative values in Figure 3h).

We used the shape information to derive TM transient surface-normal displacements. We 

investigated using the root mean square (RMS) of the motion of the entire TM surface to 

define an indicator to evaluate and distinguish different middle-ear manipulations. We also 

compared the umbo displacement in the time domain among different middle-ear 

manipulations. Figures 4–6 show the RMS of TM surface motions over the first 3 ms after 

the TM receives the acoustic excitation for three TBs—under different middle-ear 

conditions. Figures 7–9 show the umbo motion during the same time period under different 
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manipulations for three bones. From the RMS results, we observed that an open cavity case 

always has a more complex distribution of the RMS than a closed cavity case. For half fluid 

injection cases, only the area not in contact with fluid shows significant RMS values of 

motion (right side of the TM in Figures 4c and 5c and left side of the TM in Figure 6c, the 

difference is caused by the different sides of the ear these specimens come from (TB3: 75 

year old female, left ear; TB4: 61 year old male, left ear; TB5: 76 year old female, right 

ear)). When the middle-ear cavity is fully filled with fluid, the RMS value of TM motions is 

almost zero. Stapes immobilization and IS joint injection exhibit RMS motion patterns that 

are similar to those observed in the normal case.

The umbo displacement profiles with time show distinguishable differences among different 

middle-ear conditions for all three bones, as shown in Figures 7–9. In an open cavity case, 

the umbo undergoes more periods of motion compared to a closed cavity case, or umbo 

motion damps out faster in the closed cavity case. Half-fluid and full-fluid injections 

suppress umbo motion to very little or no sensible motion. The stapes immobilization and IS 

joint interruption alter the umbo motion in an analogous fashion with little distinguishable 

differences between the two cases.

Figure 10 shows the displacement of TB3 under an open middle-ear cavity. Figure 10a 

shows the measured optical phase at an arbitrary time, Figure 10b shows the unwrapped and 

scaled surface’s normal displacement calculated from Figure 10a, and Figure 10c is the time 

waveform of the acoustic excitation signal (first row) and displacements of six discrete 

points marked in Figure 10b. The results show that different regions of the TM respond to 

the excitation differently, and that different regions of the TM reach displacement maximum 

and minimum at different times, and eventually settling at different times. The time of delay 

for each point to start the motion compared to the acoustic signal is also different point by 

point, suggesting that there are traveling waves forming on the surface of TM.

3.2. Frequency Analysis: Complex Mode Indicator Functions

To visualize and compare all the data of the entire surface of the TM across different 

manipulations, the complex mode indicator function (CMIF) was used as a generalized 

presentation of the membrane’s frequency response. Figure 11 shows CMIFs computed from 

all three temporal bones with different middle-ear manipulations. The horizontal axis is the 

frequency in kHz (kilohertz), and the vertical axis is the singular value in decibels, which are 

the square root of the eigenvalues of the frequency response function (FRF) matrix. We 

observed that CMIF changes with different middle-ear conditions. We defined the closed 

cavity condition, as shown in the second row of Figure 11, as the baseline and subtracted 

other obtained CMIF data from this baseline for further comparison in Figure 12. The open 

cavity condition generally decreases CMIF amplitude at low frequencies around 1 kHz and 

induces a major peak at 3 to 5 kHz in all three TBs. A half fluid condition in TB3 and TB4 

shows lower CMIF amplitude across the entire frequency spectrum compared to the baseline 

closed cavity case, although the decrease of CMIF in TB5 is relatively small. Also, for the 

full fluid case, all three samples have the lowest CMIF amplitudes, consistent with TM 

motions that are significantly reduced by fluid inside the middle-ear cavity. The CMIFs 

under the stapes immobilization condition at low-frequency ranges(0.5–2.5 kHz) for TB3 
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and TB4 are significantly reduced. However, this reduction is not obvious in TB5. Finally, 

the IS joint interruption condition introduces several additional peaks for CMIFs, 

particularly at mid- and high-frequency ranges.

4. Discussion

This study provides a complete description of TM mechanics, including the 3D shape 

information and full-field TM surface normal vibration in both the time and frequency 

domains.

The shape results show that the TM shape is affected by various middle-ear manipulations. 

The different manipulations overall introduce a maximum shape change of less than 0.3 mm. 

The fluid injection pushes the TM to deform towards the ear canal side, while the IS joint 

interruption seems to pull the TM toward the middle-ear cavity side, which is interesting and 

may suggest the cochlear load produced tension on the TM. No differentiable shape change 

is identified for open cavity and stapes immobilization.

Displacements in the time domain show we can confidently distinguish half fluid injection 

and full fluid injection by checking the RMS results and the open cavity case. Fluid 

injections will surpass the TM motion. Opening the cavity causes the TM surface to displace 

more compared to the normal middle-ear cavity condition (closed cavity).

In the frequency domain, we observed trends in different CMIFs associated with different 

middle-ear conditions. In open cavity cases, the first significant CMIF peak appears around 

4 kHz(3.7 kHz for TB3, 3.5 kHz for TB4, and 4.3 kHz for TB5). Half fluid and full fluid 

injections decrease the CMIF across the whole frequency range. Stapes immobilization 

reduces the CMIF at a lower frequency up to 2.5 kHz for TB3 and TB4 and increases it for 

TB5 at a higher frequency (12–14 kHz). IS joint interruption adds additional peaks to the 

CMIF at different frequencies.

Time domain and frequency domain analysis results can separate different middle-ear 

pathologies, suggesting the potential for clinical diagnosis. In the future work, we will 

investigate the accuracy of potential diagnostics through further experiments—identify 

trends in the data associated with different pathologies and test the sensitivity and selectivity 

of these analyses for clinical diagnosis. Artificial intelligence (AI) and data mining will be 

applied to automate the analysis process and assist in the separation of normal and diseased 

states.
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Figure 1. 
Schematic of high-speed digital holographic (HDH) system [4]. Schematic of high-speed 

digital holographic (HDH) system [4]. The 532 nm laser is used for displacement 

measurements, and the 770–780 nm tunable laser is used for shape measurements. The two 

lasers are coupled into the same optical path two lasers are coupled into the same optical 

path to ensure the shape and displacement measurements are in the same coordinate system 

avoiding the need for image registration.
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Figure 2. 
(a) Shows the setup, measuring instrumentations, and the sample; and (b) is a photograph of 

the human postmortem tympanic membrane (TM) with half level saline injected. The yellow 

contour shows the level of fluid. (c) Shows the incudo-stapedial (IS) joint. The red dash 

shows where the IS joint is interrupted.
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Figure 3. 
(a):TB3 shape when the middle-ear cavity is closed; (b):TB4 shape when the middle-ear 

cavity is closed;(c): TB5 shape when the middle-ear cavity is closed; Comparison of TM 

shape along the black solid line marked in the left panel in TB 3~5 (d): between open and 

closed cavity condition; (e): between half fluid injection and closed cavity condition; (f): 
between full fluid injection and closed cavity condition; (g): between Stapes fixation and 

closed cavity condition; (h): between IS point interruption and closed cavity condition.3.2. 

Representative Displacement Measurement Results
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Figure 4. 
Root mean square (RMS) of TB3 displacement under different conditions. (a) Open cavity; 

(b) closed cavity; (c) half fluid in contact; (d) full fluid in contact; (e) stapes immobilization; 

and (f) IS joint interruption.
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Figure 5. 
RMS of TB4 displacement under different conditions. (a) Open cavity; (b) closed cavity; (c) 

half fluid in contact; (d) full fluid in contact; (e) stapes immobilization and (f) IS joint 

interruption.
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Figure 6. 
RMS of TB5 displacement under different conditions. (a) Open cavity; (b) closed cavity; (c) 

half fluid in contact; (d) full fluid in contact; (e) stapes immobilization; and (f) IS joint 

interruption.
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Figure 7. 
Umbo displacement of TB3 under different cases (umbo location is marked as the 

intersection of the solid black and dashed black lines in Figure 3a).
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Figure 8. 
Umbo displacement of TB4 under different cases (umbo location is marked as the 

intersection of the solid black and dashed black lines in Figure 3b).
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Figure 9. 
Umbo displacement of TB5 under different cases (umbo location is marked as the 

intersection of the solid b lack and da shed black lines in Figure 3c).
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Figure 10. 
Waveforms of six points of the surface of the TM of TB3 when the middle-ear cavity is 

open. (a)Wrapped optical phase 0.56 ms after excitation; (b) TM surface normal 

displacement 0.56 ms after excitation; and (c) time waveforms of six points marked in part 

(c).
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Figure 11. 
The complex model indicator function of TB3–5 under different conditions.
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Figure 12. 
The complex model indicator function subtracted by the closed cavity case of TB3–5.
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