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Background and Objective: Ferroptosis, a form of programmed cell death driven by lipid peroxidation 
and dependent on iron ions, unfolds through a sophisticated interplay of multiple biological processes. These 
include perturbations in iron metabolism, lipid peroxidation, aberrant amino acid metabolism, disruptions 
in hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) axis, and endoplasmic reticulum (ER) stress. 
Recent studies indicate that ferroptosis may serve as a promising therapeutic target for hypoxia-associated 
brain injury such as hypoxic-ischemic brain damage (HIBD) and cerebral ischemia-reperfusion injury (CIRI). 
HIBD is a neonatal disease that can be fatal, causing death or mental retardation in newborns. HIBD is a 
kind of diffuse brain injury, which is characterized by apoptosis of nerve cells and abnormal function and 
structure of neurons after cerebral hypoxia and ischemia. At present, there are no fundamental prevention 
and treatment measures for HIBD. The brain is the most sensitive organ of the human body to hypoxia. 
Cerebral ischemia will lead to the damage of local brain tissue and its function, and CIRI will lead to a series 
of serious consequences. We hope to clarify the mechanism of ferroptosis in hypoxia-associated brain injury, 
inhibit the relevant targets of ferroptosis in hypoxia-associated brain injury to guide clinical treatment, and 
provide guidance for the subsequent treatment of disease-related drugs.
Methods: Our research incorporated data on “ferroptosis”, “neonatal hypoxic ischemia”, “hypoxic ischemic 
brain injury”, “hypoxic ischemic encephalopathy”, “brain ischemia-reperfusion injury”, and “therapeutics”, 
which were sourced from Web of Science, PubMed, and comprehensive reviews and articles written in 
English.
Key Content and Findings: This review delineates the underlying mechanisms of ferroptosis and 
the significance of these pathways in hypoxia-associated brain injury, offering an overview of therapeutic 
strategies for mitigating ferroptosis.
Conclusions: Ferroptosis involves dysregulation of iron metabolism, lipid peroxidation, amino acid 
metabolism, dysregulation of HIF-PHD axis and endoplasmic reticulum stress (ERS). By reviewing the 
literature, we identified the involvement of the above processes in HIBD and CIRI, and summarized a series 
of therapeutic measures for HIBD and CIRI by inhibiting ferroptosis. We hope this study would provide 
guidance for the clinical treatment of HIBD and CIRI in the future.
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Introduction

Hypoxia in the neonatal brain can lead to a spectrum of 
outcomes, ranging from reduced cognitive processing and 
reflex responses to irreversible neurological damage. The 
most common hypoxia-associated brain injuries include 
hypoxic-ischemic brain damage (HIBD) and cerebral 
ischemia-reperfusion injury (CIRI) (1,2). Ferroptosis, 
a newly recognized form of programmed cell death, is 
iron-dependent and characterized by the accumulation of 
lipid peroxidation products and cytotoxic reactive oxygen 
species (ROS) (3). Distinct from apoptosis and autophagy, 
ferroptosis exhibits unique cellular morphologies—there is 
an absence of cell shrinkage, chromatin condensation, or 
autophagic vacuole formation (4). The ferroptotic process 
is catalyzed by ferrous ions or lipoxygenases, which initiate 
lipid peroxidation in polyunsaturated fatty acids, abundant 
in cell membranes, leading to cell death (5). The principal 
mechanisms involved in ferroptosis encompass dysregulated 
iron metabolism, oxidative stress, and impaired glutathione 
(GSH) metabolism (6,7). 

Evidence suggests that ferroptosis plays a significant 
role in hypoxia-associated brain injury (8,9), and given that 
the main pathways of ferroptosis are implicated in these 
conditions, this review explores the association between 
ferroptosis and hypoxia-associated brain injury. We present 
this article in accordance with the Narrative Review 
reporting checklist (available at https://tp.amegroups.com/
article/view/10.21037/tp-24-47/rc).

Methods

Our research incorporated data on “ferroptosis”, “neonatal 
hypoxic ischemia”, “hypoxic ischemic brain injury”, “hypoxic 
ischemic encephalopathy”, “brain ischemia-reperfusion injury”, 
and “therapeutics”, which were sourced from Web of Science, 
PubMed, and comprehensive reviews and articles written 
in English. The detailed search strategy is shown in Table 1.  
Upon thorough examination of the mentioned literature 
and subsequent comprehensive discussions, we synthesized 
the insights on the role of ferroptosis in hypoxia-associated 
brain diseases, aiming to provide perspectives on enhancing 
the treatment of these conditions through the pathway of 

ferroptosis.

Mechanisms of ferroptosis 

Ferroptosis is a form of programmed cell death dependent 
on iron ions, characterized by lipid peroxidation, 
GSH depletion, and glutathione peroxidase 4 (GPX4) 
inactivation (10). It involves a multifaceted mechanism 
encompassing iron metabolism, lipid peroxidation, amino 
acid metabolism, alterations in the hypoxia-inducible factor-
prolyl hydroxylase (HIF-PHD) axis, and endoplasmic 
reticulum stress (ERS). This review focuses on these 
biological processes that underpin ferroptosis initiation and 
progression.

Iron metabolism abnormalities 

Iron metabolism comprises three key phases: uptake, 
storage, and release (11). In the dietary uptake phase, non-
heme iron is primarily absorbed in the duodenum and 
proximal small intestine via divalent metal ion transporter 
1 (DMT-1). Duodenal cytochrome b (Dcytb) and other 
reductants convert dietary Fe3+ to Fe2+, which is then 
internalized by DMT-1 (12). During the storage phase, 
ferroportin 1 (FPN1) translocates Fe2+ from intestinal 
epithelial cells to the extracellular space, where multicopper 
oxidase facilitates its oxidation to Fe3+, which subsequently 
complexes with transferrin (TF) as the TF-Fe3+ complex (13).  
In the release phase, Fe3+ transported by FPN1 enters 
the cell; intracellularly, it is reduced back to Fe2+ by ferric 
reductases and released to the cellular iron pool (14,15). 
Excess free Fe2+ can catalyze the formation of ROS via the 
Fenton reaction, promoting the onset of ferroptosis (16). 

Iron homeostasis is regulated by key proteins, such as iron 
regulatory protein 1 (IRP1), which modulates iron transport 
and storage in response to intracellular iron levels. When 
intracellular iron is scarce, IRP1 associates with the iron-
responsive element (IRE) situated at the 3' terminus of the 
gene, elevating the transcription of DMT1 and transferrin 
receptor (TFR), and thus enhancing iron absorption (17,18). 
Conversely, IRP1 can attach to the IRE of the ferritin 
(FTN) gene at its 5' terminus and suppress FTN synthesis, 
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curtailing iron storage. On the other hand, in the presence 
of abundant cellular iron, IRP1 binds to iron-sulfur clusters, 
adopting a role as a cis-aconitase. This switch results in 
augmented FTN levels and reduced TFR and DMT1 
expression, consequently diminishing iron concentrations 
within the cell. Research has revealed that a marked 
reduction in IRP1 significantly impedes ferroptosis (19).  
IRP1 deficiency has been observed to significantly 
inhibit ferroptosis. Moreover, hepcidin, a cysteine-rich 
antimicrobial peptide produced by the liver, maintains 
iron homeostasis by binding to FPN1, accelerating its 
degradation and lowering iron release. Hepcidin has 
demonstrated a protective role against ferroptosis (20).

Lipid peroxidation

Lipid peroxidation is a pivotal process in the dysregulated 
mechanism leading to ferroptosis, a form of cell death 
characterized by iron dependency. This oxidative process 
involves the reaction of lipids with oxygen, resulting in 
the production of reactive oxygen species (ROS) and lipid 
peroxides (LPOs) (21). Iron plays a crucial role by serving 
as a cofactor for the enzyme oxidase that catalyzes lipid 
peroxidation. Moreover, enzymes like lipoxygenases can 
facilitate ferroptosis by promoting lipid peroxidation (22). 

Polypeptide unsaturated fat (PUFA), located on cell 
membranes, are instrumental in preserving membrane 
fluidity and reducing blood cholesterol levels (23). The 
accumulation of lipid peroxidation products due to PUFA 
oxidation at the cell membrane serves as a significant 
initiator of ferroptosis. PUFAs with multiple unsaturated 
bonds are particularly vulnerable to ROS, leading to 
increased lipid peroxidation production (24). There are 
three primary mechanisms of lipid peroxidation: enzyme-

catalyzed reactions, non-enzymatic autoxidation mediated 
by iron, and iron-induced lipid ROS generation via the 
Fenton reaction (25). It is well known that hydrogen 
peroxide plays an important role in the occurrence of 
Fenton reaction. The presence of hydrogen peroxide 
with ferrous iron generates hydroxyl radicals that oxidize 
PUFA to alkyl radicals (L•). L• reacts with oxygen 
molecules to produce lipid peroxyl radical (LOO•), 
which results in the accumulation of lipid hydroperoxides 
(LOOH) (26), phospholipid hydroperoxide (P-LOOH) 
production can lead to structural  damage of  cel l 
membrane. Specifically, the lipid peroxidation pathway 
involving PUFAs entails the enzyme long-chain acyl-
CoA synthetase-4 (ACSL4), which converts PUFAs into 
peroxidation-susceptible acyl-coenzyme A derivatives. 
Subsequently, lysophosphatidylcholine acyltransferase 3 
(LPCAT3) incorporates these derivatives into membrane 
phospholipids, producing PUFA-phospholipid peroxides 
upon oxidation by lipoxygenase family (LOXs), thus 
contributing to ferroptosis (27,28). Inhibition of ACSL4, 
LPCAT3, or LOXs has been shown to significantly curb the 
ferroptosis process (29).

Amino acid metabolism abnormalities

Abnormalities in amino acid metabolism are closely 
associated with the dysregulation of the System Xc−/GSH/
GPX4 axis (30), a key mechanism underlying ferroptosis. 
GSH, a tripeptide composed of glutamic acid, cysteine, 
and glycine, features a γ-amide bond and sulfhydryl groups 
and is synthesized at a rate limited predominantly by 
cysteine availability (31). As a critical component of the 
body’s antioxidant system, GSH exists in both reduced 
(GSH) and oxidized [glutathione disulfide (GSSG)] forms 

Table 1 The search strategy summary

Items Specification

Date of search September 1st, 2023 to January 2nd, 2024

Databases and other sources searched PubMed, Web of Science

Search terms used “ferroptosis”, “neonatal hypoxic ischemia”, “hypoxic ischemic brain injury”, “hypoxic 
ischemic encephalopathy”, “brain ischemia-reperfusion injury”, and “therapeutics”

Timeframe 1948–2023

Inclusion criteria English language studies were included

Selection process Independently selected by authors



Feng et al. Inhibition of ferroptosis to treat hypoxia-associated brain966

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2024;13(6):963-975 | https://dx.doi.org/10.21037/tp-24-47

and performs multiple functions including antioxidant 
protection, immune system support, and detoxification (32).  
It  is  the most prevalent intracellular antioxidant, 
safeguarding cells against ROS-induced damage (33). GSH 
facilitates the transport of glutamate out of the cell and the 
import of cystine for its subsequent reduction to cysteine, 
which is crucial for GSH synthesis. This transporter is 
constituted by the light chain solute carrier family 7, 
member 11 (SLC7A11) and the heavy chain solute carrier 
family 3, member 2 (SLC3A2) (34,35). On the other hand, 
GPX4 catalyzes the conversion of GSH to GSSG while 
concurrently reducing harmful phospholipid hydroperoxides 
to non-toxic hydroxyl PEG-modified liposomes (PL-
OH) (36). Recent studies highlight the role of GPX4 as an 
essential inhibitor of ferroptosis, unique in its capacity to 
directy reduce phospholipid hydroperoxides in membranes 
and lipoproteins and prevent lipid peroxidation, aided by 
α-tocopherol (vitamin E) (37). The necessity of GPX4 
is underscored by the embryonic lethality of GPX4-null 
mice and the survival challenges exhibited by neural-
specific GPX4 knockout neonatal pups (38,39). Given 
that GPX4 enzymatic activity requires GSH, ferroptosis 
susceptibility is influenced by GSH levels (39). System Xc−/
GSH/GPX4 axis dysfunction significantly contributes to 
ferroptosis, with System Xc− inhibition impairing GSH 
synthesis and triggering ferroptosis (40). Altering GPX4 
expression modulates cellular vulnerability to ferroptosis, 
where diminished GPX4 expression increases susceptibility, 
whereas increased levels confer resistance (41). The P53 
oncogene can suppress System Xc− activity by SLC7A11 
expression (42). Moreover, impeding System Xc− function 
elevates the transcription of cation transport regulator-like 
protein 1 (CHAC1), a gene implicated in ERS responses, 
thus linking amino acid metabolism abnormalities with ER 
stress and subsequent ferroptosis (40).

HIF-PHD axis

HIFs are transcriptional activators induced by hypoxic 
stress, comprising two subunits: α and β. While HIF-β 
serves a structural purpose, HIF-α acts as the functional 
subunit and binds to the hypoxia-responsive element 
(HRE) promoter regions, modulating gene expression 
(43,44). PHDs are a family of non-heme, iron-dependent 
dioxygenases that require oxygen, α-ketoglutarate, 
and divalent iron ions for catalytic activity (45). PHDs 
facilitate the degradation of HIF by hydroxylating specific 

proline residues on HIF-α under normoxic conditions, 
a modification that targets HIF-α for recognition by 
the von Hippel-Lindau protein (pVHL) and subsequent 
ubiquitin proteasome-mediated degradation. During 
hypoxia, however, PHD activity diminishes, resulting in the 
stabilization and accumulation of HIF (46). Iron ions are 
crucial for the PHD-mediated hydroxylation of HIF, and 
their abnormal accumulation can enhance PHD activity, 
leading to increased HIF degradation—a process that is 
associated with ferroptosis (47). Furthermore, the HIF-
PHD axis influences the expression of key players in iron 
metabolism, such as TF and divalent metal transporter 1 
(DMT1), as well as the PUFA content in lipid metabolism, 
all of which are implicated in ferroptosis (28,48). These 
findings suggest that the HIF-PHD pathway may be 
intricately connected with the ferroptosis pathway.

ERS and ferroptosis

The endoplasmic reticulum (ER) is pivotal in sustaining 
cellular homeostasis, overseeing protein synthesis, folding, 
maturation, quality control, and trafficking. Disturbances 
to the structural and functional equilibrium of the ER—
whether induced by internal or external stimuli—trigger 
molecular alterations, culminating in the obstruction of 
protein processing and transfer. This leads to considerable 
accumulation of unfolded or misfolded proteins within 
the ER, a condition termed ERS (49). In response, the 
unfolded protein response (UPR) is initiated as a protective 
mechanism against ERS, halting protein synthesis to 
mitigate the stress, promoting the degradation of misfolded 
proteins, and activating signaling pathways that recruit 
additional molecular chaperones for protein refolding (50). 
Severe ERS can compromise ER physiological functions and 
instigate cell death. Excessive ERS overwhelms the UPR, 
resulting in heightened autophagy and subsequent cellular 
degradation, which in turn may trigger ferroptosis (51).  
The ERS marker Atf4 modulates various UPR target genes, 
while Atf3 bolsters the expression of transcription activator 
Ddit43, which is implicated in apoptosis post-cerebral 
hemorrhage, thereby diminishing neuronal survival (52). 
Bioinformatic analysis has revealed upregulation of Atf3 
in HIBD, reinforcing the association between ERS and 
ferroptosis (53).

As previously addressed, ferroptosis involves disturbances 
in iron metabolism, dysregulation of lipid peroxidation, 
impairment of the System Xc−/GSH/GPX4 axis, and 
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accumulation of iron ions that contribute to the dysfunction 
of the HIF-PHD axis and ERS. Consequently, targeting 
these pathways presents a clinical opportunity to prevent 
ferroptosis and thereby treat neonatal hypoxia-ischemic 
encephalopathy. The subsequent section will explore the 
contribution of ferroptosis to hypoxia-associated brain 
injury and prospective therapeutic interventions in depth.

The impact of ferroptosis on HIBD

HIBD originates from perinatal ischemia and hypoxia, 
posing significant risk factors for central nervous system 
(CNS) injury and neonatal mortality. Clinically, HIBD is 
characterized by symptoms such as lethargy, convulsions, 
and coma, with the potential  for l i fe-threatening 
synchronized limb flexion during myoclonic episodes in 
acute cases (1). The pathophysiology of HIBD is intricate, 
with apoptosis and ferroptosis implicated in its progression 
(54,55). Moreover, the neonatal brain’s susceptibility to 
oxidative damage is heightened due to an elevated metabolic 
demand for oxygen, a rich presence of unsaturated fatty 
acids, and a paucity of antioxidants. Subsequent analysis 
will elaborate on the relationship between HIBD and 
ferroptosis, focusing on dysregulated iron metabolism, lipid 
peroxidation, imbalances in amino acid metabolism, the 
HIF-PHD pathway, and ERS.

Association between abnormal iron metabolism and HIBD

Following hypoxia-ischemia, the body’s iron cycle 
undergoes significant alterations, precipitating iron 
metabolism dysregulation in the brain as the disease 
progresses. This dysregulation manifests as an appreciable 
elevation in brain tissue iron levels. Iron ions exacerbate 
HIBD by facilitating ROS production. The neonatal brain, 
which is characteristically rich in iron yet has comparatively 
weak antioxidant defenses, is particularly vulnerable to 
iron metabolism perturbations when contrasted with 
the adult brain. During the initial stages of HIBD, a low 
intracellular pH contributes to the liberation of iron 
from proteins, leading to its rapid accumulation within 
damaged neurons and the periventricular white matter 
of neonates (56). Studies have identified significant iron 
buildup in the periventricular white matter and basal 
ganglia of neonates with HIBD (57). Moreover, analyses 
have revealed anomalies in serum iron metabolism within 
the peripheral blood of affected children (58), implying 

a contributory role of iron metabolism disorders in the 
pathogenesis of HIBD. With advancements in perinatal 
medicine, the incidence of HIBD in term infants has 
significantly decreased, making HIBD in preterm infants 
a major clinical issue (59). Preterm delivery interrupts 
intrauterine extramedullary hematopoiesis prematurely; 
concurrently, bone marrow hematopoiesis in these infants is 
underdeveloped compared to that in term infants, rendering 
them less capable of adapting to rapid postnatal growth 
and development. Additionally, maternal iron acquisition is 
limited before the eighth month of gestation but increases 
thereafter; premature birth, therefore, reduces the neonate’s 
iron reserves. Consequently, blood transfusions and iron 
supplementation are considered necessary to manage anemia 
in preterm infants (60). However, frequent transfusions and 
excessive iron supplementation can lead to iron overload, 
surpassing the body’s TF binding capacity and resulting 
in an excess of non-TF-bound iron. This excess iron then 
participates in the Fenton-Haber-Weiss reaction with 
hydrogen peroxide, produced through superoxide anion 
disproportionation, as previously described (61).

Research in animal models has further substantiated the 
involvement of iron metabolism abnormalities in HIBD. 
Palmer et al. induced hypoxic-ischemic injuries in the right 
cerebral hemispheres of 7-day-old rats. Enhanced Perls’ 
stain for iron detection in cryosections from rat brains 
showed an escalation in iron levels, inciting oxidative 
stress in the neonatal rat brain post hypoxia-ischemia (62).  
Hu et al. conducted a comprehensive examination of 
iron distribution, content, and malondialdehyde (MDA) 
levels across various brain regions—including the parietal 
cortex, corpus callosum, and hippocampus—in neonatal 
rats over an 84-day period following hypoxic ischemia. 
The findings revealed disparate degrees of cerebral iron 
deposition within the initial 28 days, with peak iron 
staining of hypoxic-ischemic brain injury on the third 
day. The trajectory of MDA closely mirrored the iron 
content, lending further credence to the critical role of 
iron metabolism disruption in HIBD progression (63).  
Neuroprotective effects have been observed through the 
administration of deferoxamine, an iron ion chelator, in 
neonatal rodent models of brain injury, with outcomes 
surpassing those of control subjects (64). Additionally, 
intracerebroventricular injections of iron death inhibitors, 
such as ferrostatin-1 or resveratrol, ameliorated CIRIs in 
neonates (65). Collectively, these studies underscore the 
therapeutic promise of interventions targeting irregular iron 
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metabolism in HIBD patients.

Links between lipid peroxidation and HIBD

Preterm brains are particularly vulnerable to ROS attack 
because they are rich in polyunsaturated fatty acids but low 
in antioxidants (66). Newborns are in a state of high oxidative 
stress during pregnancy, delivery and postpartum, and they 
experience an environmental transition from intrauterine 
hypoxia to postnatal hyperoxia (during the process from 
intrauterine environment to extrauterine environment, 
the fetus changes from intrauterine environment of 
20–25 to 100 mmHg PO2), resulting in increased ROS  
production (67). During HIBD, the body generates an 
abundance of free radicals, which react with unsaturated 
fatty acids to form neurotoxic LPOs. This reaction is 
evidenced by a marked increase in plasma LPO levels in 
HIBD patients, leading to further neuronal cell damage (67). 
Free radicals initiate lipid peroxidation, producing MDA—
a cytotoxic compound that can induce cross-linking and 
polymerization of vital macromolecules such as proteins 
and nucleic acids. MDA is considered a key indicator 
of pronounced perinatal asphyxia in newborns, with its 
elevated levels in patients correlating with the severity 
of HIBD (68). These findings imply a substantial link 
between lipid peroxidation and HIBD. Studies show that 
17β-estradiol can mitigate brain MDA levels. In a particular 
study involving a rat model of hypoxic-ischemic brain 
injury, treatment with 17β-estradiol resulted in reduced 
lipid peroxidation by diminishing the expression of nitric 
oxide synthase and nitric oxide, thereby offering protection 
against brain injury post hypoxia-ischemia (69).

Association between abnormal amino acid metabolism and 
HIBD

An abnormal rise in glutamate levels is a critical precursor 
to ferroptosis. This anomalous glutamate accumulation 
disrupts GSH metabolism, resulting in excessive LPO 
and consequent cellular ferroptosis. HIBD is associated 
with disturbances in the System Xc−/GSH/GPX4 axis. 
Notably, glutamate levels are found to be elevated in the 
basal ganglia, central semiovale, thalamus, and regions 
adjacent to the lateral and third ventricles during HIBD (70). 
These observations point to a strong correlation between 
HIBD and disruptions in amino acid metabolism. Research 
has revealed that melatonin mitigates the pathological 

alterations induced by HIBD, hinders neuronal ferroptosis, 
and enhances the survival of hippocampal neurons through 
the downregulation of GPX4 expression (70).

Association between the HIF-PHD axis and HIBD

HIF-1α holds a pivotal position in neonatal HIBD, serving 
dual roles: it endows neuroprotection and, paradoxically, 
incites neurotoxic effects. From a protective standpoint, 
during HIBD, HIF-1α triggers the transcriptional activation 
of various genes that promote erythropoiesis, confer 
apoptosis resistance, and stabilize neuronal structures (71). 
Li et al. explored postnatal day 10 Sprague-Dawley (SD) 
rats, analyzing the protein levels of HIF-1α and activated 
caspase-3 following hypoxia exposure. Their findings 
indicated an inverse relationship between HIF-1α expression 
and activated caspase-3, with HIF-1α levels inversely 
correlated with the extent of histopathological damage in 
HIBD, implying a protective influence on neurons post 
hypoxia (72). Conversely, HIF-1α has also been implicated 
in contributing to cell necrosis through its interaction with 
calcium and calpain, as well as exacerbating cerebral edema 
by amplifying blood-brain barrier (BBB) permeability (73).  
Furthermore, conditions such as hypoxia inhibit PHD 
expression, leading to upregulated HIF levels (46). 
Consequently, the interplay between HIF and the PHD axis 
may significantly influence the regulation of HIBD.

Association between ERS and HIBD

Apoptosis represents a key mechanism in HIBD, with 
ERS being a vital pathway that mediates this process. 
Accumulation of excessive unfolded proteins within the 
ER triggers a chain reaction culminating in apoptosis, 
which significantly impacts HIBD (74). Caspase-12, 
specific to ERS, has been found to increase notably 
after 72 hours of hypoxic-ischemic exposure in neonatal 
rats, alongside a significant rise in neuronal apoptosis, 
pointing to the activation of ERS. The administration of 
caspase-12 inhibitors resulted in reduced caspase-12 protein 
expression and enhanced neuronal survival, highlighting the 
significance of ERS in HIBD development (75).

Although the intricacies of ferroptosis in the neonatal 
brain remain to be fully elucidated, especially in the context 
of HIBD, vital mechanisms implicated in its process, such 
as abnormal iron metabolism, lipid peroxidation, amino 
acid metabolism disorders, the HIF-PHD axis, and ERS, 
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are intricately linked with the onset of HIBD. As such, it is 
hypothesized that ferroptosis substantially contributes to 
the promotion of HIBD through these mechanisms during 
its progression.

The role of ferroptosis in brain ischemia-
reperfusion

Ischemia-reperfusion injury (IRI) is a phenomenon wherein 
tissue damage escalates, potentially to irreversible levels, 
upon the restoration of blood flow after an ischemic 
event, representing a primary cause of organ failure (76). 
Ferroptosis plays a significant role in the pathogenesis of 
CIRI and consequent neuronal demise. In the context of 
CIRI, the processes of iron accumulation and redistribution, 
glutamate build-up, oxidative stress, lipid peroxidation, 
and epigenetic modification are all implicated in the 
advancement of ferroptosis (77).

Role of abnormal iron metabolism in cerebral ischemia-
reperfusion

As mentioned above, FTN is an essential regulator of iron 
homeostasis. Recent research has identified substantial 
downregulation of FTN in a cerebral arterial occlusion rat 
model. This decrease in FTN levels is vital in mediating 
p53 and SLC7A11-dependent ferroptosis in hippocampal 
neurons following cerebral ischemia. Furthermore, FTN 
markedly reduces both hyperphosphorylation of tau 
protein and oxidative stress (78). IRI further leads to FTN 
degradation through autophagic pathways, increasing 
neuronal free iron in a process known as ferritinophagy. 
Studies suggest that nuclear receptor coactivator 4 
(NCOA4) regulates ferritinophagy in specific cell lines, and 
its absence significantly impedes ferritinophagy, thereby 
safeguarding neurons against ferroptosis (79). Additionally, 
iron ion concentrations are closely linked with ferroptosis; 
in models of CIRI, intranasal delivery of the iron chelator 
deferoxamine substantially minimizes brain injury, offering 
notable neuroprotection (80).

Role of lipid peroxidation in CIRI

Oxidative stress has been acknowledged as a ubiquitous 
mediator of post-ischemic injury by various inflammatory 
cells (81). Ischemia can result in iron accumulation and 

subsequent toxicity within the CNS, triggering a cascade of 
free radicals that lead to neuronal damage and irreversible 
brain injury. It has been demonstrated that PTRF expression 
is elevated in neuronal cells both in vitro and in vivo 
following brain IRI. This upregulation boosts the activity 
of PLA2G4A, which alters lipid metabolism and accelerates 
lipid peroxidation and ferroptosis (82). The newly 
identified antioxidant enzyme UBIAD1, which catalyzes 
the biosynthesis of CoQ10 in the Golgi membrane, plays a 
role analogous to GPX4 in the mechanism of ferroptosis. 
It is involved in lipid peroxidation regulation within the 
non-mitochondrial CoQ10 system. UBIAD1 may influence 
ischemia-reperfusion-induced ferroptosis by restoring 
mitochondrial and Golgi functions in afflicted brain tissue 
and neurons (83,84).

Role of abnormal amino acid metabolism in CIRI

The brain experiences a cascade of cellular, biochemical, and 
metabolic disruptions during ischemia-reperfusion, such as 
oxidative stress, intracellular calcium overload, glutamate-
induced neurotoxicity, inflammation, and apoptosis (70). 
The inactivation of GPX4 has been tightly linked to CIRI. 
Baicalein has demonstrated the ability to decrease brain iron 
levels, reduce lipid peroxidation, and mitigate ferroptosis 
in murine models both ex vivo and in vivo by modulating 
the GPX4/ACSL4/ACSL3 axis (85). Inhibitors like calyxin 
exert neuroprotective effects by adjusting iron content, 
various iron-related proteins, and redox systems, offering 
therapeutic benefits comparable to ferrostatin-1 (86).  
Additionally, natural compounds such as galangin (87),  
chamomile (88), and astragaloside IV (89) have been 
indicated to influence the GPX4 pathway in reducing 
ferroptosis, with the potential for clinical application.

The role of ERS in CIRI

CIRI can precipitate depolarization of neuronal membranes 
and activation of voltage-gated calcium channels, resulting 
in substantial calcium influx into the ER and initiating 
ERS. C/EBP homologous protein (CHOP), a key marker 
of apoptosis, is upregulated when PERK proteins in the ER 
membranes are activated, enhancing ATF4 translation and 
leading to apoptosis (90). Apoptosis triggered by the ERS 
pathway is a significant route to neuronal death in CIRI. 
Cerebral ischemic preconditioning has been shown to 
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offer neuroprotection against IRI by mitigating ER stress-
induced apoptosis through the classical PERK pathway (91). 
Additionally, Panax notoginseng saponin R1 diminishes ER 
stress-induced apoptosis via the estrogen receptor pathway, 
conferring protection against neuronal apoptosis and brain 
damage, thus representing a promising therapy for hypoxic-
ischemic encephalopathy (HIE) (92). Compound Tongluo 
Tang facilitates angiogenesis and suppresses ER stress-
induced ferroptosis by activating the SHH pathway in 
cerebral infarction (93). Moreover, a combination therapy 
comprising Rhizoma Ligustici Chuanxiong and Paeonia 
Lactiflora surpasses monotherapy in protecting the BBB 
through the ER stress-dependent apoptotic signaling 
pathway, improving outcomes in middle cerebral artery 
occlusion (MCAO)-induced focal cerebral ischemia (94). 
Lastly, progranulin (PGRN) has been found to alleviate 
CIRI by reducing ER stress and dampening the NF-κB 
signaling pathway (95).

Role of the HIF-PHD axis in CIRI

Transcriptional control of gene expression is significantly 
altered during cerebral ischemia. In this condition, there is 
a metabolic shift from fatty acid oxidation to more efficient 
glucose glycolysis, which sustains cellular vitality under 
ischemic stress (96). HIF-1, a key transcription factor, 
serves as the principal regulator of oxygen equilibrium. This 
metabolic shift is governed by HIF, with its stability under 
low oxygen conditions being managed by PHD enzymes, 
particularly three isoforms (PHD1–3) (97). The adaptive 
responses to hypoxia prompted by these enzymes support 
the development of novel therapeutic interventions for 
ischemia and reperfusion, including PHD inhibitors.

Furin, recognized as the first mammalian proprotein 
convertase, facilitates the proteolytic maturation of 
proprotein substrates in the secretory pathway (98). 
Furin is a connecting factor between iron overload and 
cognitive impairment and is upregulated in response to 
iron deficiency and hypoxia, influencing HIF-1α stability 

(99,100). Iron excess suppresses furin levels, but treatment 
with iron chelators can restore furin, mitigating iron-
mediated synaptic harm and memory loss in mice (101). 
Moreover, cardamonin has been found to reduce brain 
injury in MCAO models and activate the HIF-1α pathway, 
offering protection from CIRI (102).

Conclusions

The activation of ferroptosis is multifaceted, playing 
a significant role in HIBD and CIRI (103,104). The 
susceptibility of neonates to ferroptosis and the mechanisms 
of ferroptosis occurrence in neonatal hypoxia-related 
encephalopathy is shown in Figure 1. Consequently, 
future clinical interventions for HIBD and CIRI may 
focus on inhibiting ferroptosis. In this review, we begin 
by outlining the primary mechanisms that instigate 
ferroptosis, followed by an examination of why neonates 
are particularly susceptible to this form of cell death. We 
then establish the strong correlation between ferroptosis 
mechanisms and the pathogenesis of HIBD and CIRI and 
underscore the intimate link between ferroptosis and these 
conditions. Furthermore, we review therapeutics that target 
ferroptosis for HIBD and CIRI treatment, we conclude that 
deferoxamine could provide neuroprotection by chelating 
iron ions and maintaining iron homeostasis; 17β-estradiol 
can treat HIBD by reducing lipid peroxidation, and the 
neuroprotective agent UBIAD1 can also reduce lipid 
peroxidation and protect the nerve. As for amino acid 
metabolism disorders, treatment with baicalein, galangin, 
chamomile and melatonin reduced GPX4 expression and 
inhibited neuronal ferroptosis; The modulators of HIF-
PHD axis represented by cardamonin can protect the nerves 
through HIF-PHD. Panax notoginsenoside R1, caspase-12 
inhibitor and other drugs can reduce neuronal ferroptosis 
by inhibiting ERS. Taken together, these results suggest 
that iron homeostasis, reducing lipid peroxidation, amino 
acid metabolism disorders, reducing ERS and regulating 
HIF-PHD axis can reduce neuronal ferroptosis. Thus, we 
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hope to provide ideas for the clinical treatment of hypoxia-
associated brain injury. Thus, we hope to provide ideas for 
the clinical treatment of hypoxia-associated brain injury.
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