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Abstract

Microbial communities of animals play a role in health and disease, including immunocom-

promised conditions. In the northeastern United States, cold-stunning events often cause

endangered Kemp’s ridley turtles (Lepidochelys kempii) to become stranded on beaches in

autumn. These sea turtles are admitted to rehabilitation facilities when rescued alive and

are presumed immunocompromised secondary to hypothermia. To better understand the

role that microbes play in the health of cold-stunned sea turtles, we characterized the oral

and cloacal microbiome from Kemp’s ridley turtles at multiple timepoints during rehabilita-

tion, from admission to pre-release, by using Illumina sequencing to analyze the 16S rRNA

gene. Microbial communities were distinct between body sites and among turtles that sur-

vived and those that died. We found that clinical parameters such as presence of pneumo-

nia or values for various blood analytes did not correlate with oral or cloacal microbial

community composition. We also investigated the effect of antibiotics on the microbiome

during rehabilitation and prior to release and found that the type of antibiotic altered the

microbial community composition, yet overall taxonomic diversity remained the same. The

microbiome of cold-stunned Kemp’s ridley turtles gradually changed through the course of

rehabilitation with environment, antibiotics, and disease status all playing a role in those

changes and ultimately the release status of the turtles.

Introduction

Kemp’s ridley turtles (Lepidochelys kempii) are listed as Critically Endangered by the Interna-

tional Union for the Conservation of Nature [1]. The species faces global challenges due to

fisheries interactions, legal and illegal harvest, habitat loss, pollution, vessel strike, and climate

change [2–4]. In addition to anthropogenic causes of population decline, sea turtles are also

susceptible to several diseases and presumed immunocompromising conditions that require
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rehabilitation and medical intervention [3,5]. One example of this is cold-stunning, or hypo-

thermia. Cold-stunning occurs when turtles are exposed to water temperatures below 10˚C

[3,5–7]. Large cold-stunning events involving juvenile Kemp’s ridley, green (Chelonia mydas),
and loggerhead turtles (Caretta caretta) occur annually in Massachusetts when turtles do not

migrate south before water temperatures drop during autumn [7,8]. Cold-stunned turtles

cease swimming and may become stranded on beaches when forced ashore by tidal activity

and wind. Warming sea water temperatures are predicted to cause a continued trend of

increasing numbers of stranded Kemp’s ridley turtles by increasing the distribution of turtles

to the northeastern United States and creating a bridge from the Gulf Stream to nearshore

waters [9]. Common sequelae resulting from chronic cold-stunning include cardiorespiratory

depression, dehydration, reduced renal function, pneumonia, sepsis, osteomyelitis, and death

[10–17]. Kemp’s ridley turtles comprise the majority of turtles that strand each year in the

northeastern US, and when found alive, they are transported to wildlife hospitals, such as the

New England Aquarium (NEAq), for medical care. NEAq is the primary rehabilitation center

for sea turtles stranded in Massachusetts, where turtles are triaged and rehabilitated over sev-

eral months until released or transported to secondary facilities for continued care. Affected

turtles often require intensive medical management over several months of hospitalization,

during which they are serially evaluated by physical examinations, hematology and plasma bio-

chemical evaluations, radiography, and other methods needed to guide their recovery [3,5]. It

is not known whether cold-stunned turtles’ microbial communities are affected during reha-

bilitation, but it is possible that medical management and the captive environment could lead

to a dysbiosis, or shift in the microbiome of the affected turtles.

Chronic disease conditions or environmental stressors can cause dysbiosis in humans and

other animals, but there is limited information on sea turtle microbiomes [18–21]. Research

from other species reveals that these chronic diseases may not be caused by a single agent, but

rather by dysbiosis of the microbial communities that play a role in health and immunity [21–

23]. Perturbation of natural microbial communities drives many chronic diseases in humans,

including gut, oral, skin, and lung disorders; thus, understanding dysbiosis may improve diag-

nostic and therapeutic management [23]. Further, dysbiosis of one body site may affect other

sites because of microbial communities’ effect on the host immune system. For example, the

gut microbiome plays a role in host immune system function, directly influencing diseases of

the gut, but also affecting other sites such as the nervous system or respiratory tract [22].

One conceptualization of dysbiosis is that healthy microbiomes are similar, but a dysbiotic

or unhealthy microbiome is each altered in a unique way [21,24]. Healthy microbiomes have

little variability, while stressed or diseased microbiomes have a wider range of altered composi-

tions compared to the healthy microbiomes [21]. For example, frogs infected with the fungus,

Batrachochytrium dendrobatidis (Bd) showed more variability in their skin microbiome than

frogs that were not infected [25]. Thus, it is important to understand whether microbial com-

munity response to disease states is stochastic, or if it is driven by deterministic processes trig-

gered by environmental surroundings [21]. Diseases of corals, such as black band disease and

white-plague disease, are associated with variable shifts in microbial communities, including

increases in opportunistic pathogens, polymicrobial infection, reduction in commensal bacte-

ria, or enrichment of bacteria with pathogenic potential [23,26]. Many stressors may lead to

dysbiosis of sea turtles during rehabilitation, including the initial cold-stunned event, stress of

rehabilitation, antibiotic treatment, and captive diet.

Thus far, insights into the microbiome of sea turtles primarily focused on the cloacal or

fecal microbiome of loggerhead and green turtles [27–32] or only focused on adult nesting

female turtles of all species [33]. The fecal microbiome was distinct between wild-captured

green turtles and stranded green turtles, with stranded animals having a higher proportion of
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Proteobacteria, specifically Gammaproteobacteria, compared to wild turtles that had feces

dominated by Firmicutes [28]. Rehabilitation also appears to affect the microbiome. The cloa-

cal microbial communities differed before and after rehabilitation of green turtles, with post

rehabilitation turtles having more similar microbiomes due to both environmental effects and

controlled diet during hospitalization [29]. Green turtles in rehabilitation also have shifts in

their microbiome attributed to receiving a high protein diet during recovery [34]. Length of

rehabilitation and antibiotic exposure also affects the fecal microbiome of Kemp’s ridley turtles

in rehabilitation [35].

During rehabilitation for cold-stunning, Kemp’s ridley turtles are treated with antibiotics to

prevent or treat secondary infections [36,37]. Although antibiotics are important to treating

infectious diseases, these medications interact with entire microbial communities, which can

affect immune homeostasis of the host and potentially lead to dysbiosis [38–40]. In humans,

even a short term course of antibiotic treatment can have a long lasting impact. For example,

the microbiome of the throat and gut became altered after just one week of treatment with

clarithromycin and metronidazole, and the microbiome remained perturbed, in some cases,

for up to four years after treatment [41]. Different antibiotics have different effects on the shift

in microbial community assemblage, but all generally result in a decrease in diversity of the

microbial community, coupled with varying timeframes until the community returns to the

pretreatment state [38]. Exposure to antibiotics can also lead to antibiotic resistance due to

increases in antibiotic resistance genes in the microbial community [41–43]. Understanding

the effect that antibiotic treatment, and the rehabilitation process more broadly, has on the

microbiome of Kemp’s ridley turtles is important for optimizing their chances for success

once they are reintroduced to the wild.

In this study, we investigated the microbial communities of cold-stunned Kemp’s ridley

turtles through the time course of rehabilitation at NEAq. Our first objective was to character-

ize the oral and cloacal microbiome of the cold-stunned turtles. We hypothesized that there

was a distinct and diverse microbial community at each body site. Second, we identified bacte-

ria that were associated with mortality versus survival and we evaluated the microbiome at

admission to determine if there were correlations with clinical variables such as hematologic

parameters (i.e. complete blood counts) or disease status (i.e. pneumonia). We also evaluated

temporal effects of rehabilitation to determine alterations to the turtle microbiome from the

time they were admitted to the hospital through the end of their hospitalization. We hypothe-

sized that the microbiome of turtles at intake (i.e. directly from the wild) would shift when

cold-stunned turtles were hospitalized, brought to appropriate body temperatures, and medi-

cally managed. We also hypothesized that antibiotics would alter microbiomes compared to

turtles that were not administered antibiotics and that the microbial community assemblages

would converge toward that of the turtles that did not receive antibiotics once they were con-

sidered clinically healthy (i.e. after discontinuing antibiotics and prior to release).

Materials and methods

Ethics statement

This study was approved by the NEAq Institutional Animal Care and Use Committee (Proto-

col #2015–16) and conducted under the US Department of the Interior Fish and Wildlife Ser-

vice Permit# TE-697823.

Sample collection

We collected oral and cloacal samples from juvenile Kemp’s ridley turtles admitted to NEAq

during the 2015 cold-stun event (November and December 2015). We chose turtles at random
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to be enrolled in the study and to have radiographs taken prior to their intake exam to assess

the degree of lung abnormalities. The attending veterinarian categorized the turtle as pneumo-

nia or not based on their interpretation of the radiographs, hereafter referred to as Pneumonia

or Non-Pneumonia turtles [44,45]. We collected blood during physical exams from the dorsal

cervical sinus and analyzed it immediately using a blood gas and biochemical analyzer (pHOx

Ultra, NOVA Biomedical, Waltham, MA). Since the analyzer generates data for blood at 37˚C,

we used the patient’s body temperature to perform previously published calculations to mathe-

matically correct for temperature-dependent variables, including pH, partial pressure of car-

bon dioxide, and partial pressure of oxygen, and we calculated ionized calcium with the

temperature corrected pH [10,46–49]. We calculated bicarbonate using the Henderson-Has-

selbalch equation [47,50]. At day three of rehabilitation, additional blood samples were col-

lected and transported to a commercial veterinary diagnostic laboratory (IDEXX Laboratories,

North Grafton, MA) where a complete blood count and chemistry panel was performed [12].

Prior to the intake physical exam on day 0, we collected samples for microbiome analysis

from the oral cavity and cloaca of each animal. We took an oral swab by gently swabbing the

glottis of the turtle with a sterile cotton tipped applicator, using a sanitized bite block (Nyla-

bone Products, Neptune City, NJ, USA) to keep the mouth open. We then took a cloacal swab

by inserting a cotton tipped applicator gently into the cloaca approximately 2.5 cm and swab-

bing the mucosa. We placed swabs into individual cryovials and immediately placed them on

dry ice after collection, then moved them to an ultra-low freezer (-80˚C) within 15 minutes for

later DNA extraction and sequencing.

NEAq veterinarians prescribed antibiotics (ceftazidime 22 mg/kg intramuscularly every 3

days or oxytetracycline 42 mg/kg subcutaneously every 6 days) for the turtles, as necessary,

based on radiograph findings and blood analysis [36,51]. Selection of the initial antibiotic was

based on an unrelated study, with ~50% of the turtles receiving one of the two drugs. In some

cases, additional antibiotics or a change in antibiotic was prescribed later in rehabilitation

based on clinical needs. We sampled the surviving turtles throughout rehabilitation at time-

points dependent on clinical status. We collected oral and cloacal swabs at a second timepoint,

four weeks after the turtles were admitted. Timepoint 3 was slated to be at eight weeks after

admittance but, in some cases, was conducted as early as six weeks to ensure that the sample

was collected prior to the discontinuance of antibiotics. Timepoint 4a was collected when the

turtle was classified as convalescent, or clinically healthy, which was defined as 30 days after

antibiotics were discontinued. If a turtle was not on antibiotics, convalescence was determined

based on when the animal was ready for release, which depended on appetite, physical exam,

and transport preparation. We collected oral and cloacal swabs at an additional timepoint,

timepoint 4b, prior to release if the turtle remained at NEAq more than 4 weeks after time-

point 4a was collected. Overall, turtles in the longitudinal study received 2 to 5 oral and cloacal

swabs during their time in rehabilitation, except those that died after intake sampling (Fig 1).

During rehabilitation, turtles were maintained in tanks of filtered saltwater at approximately

24˚C and they were offered food items of herring and squid once to twice daily.

DNA extraction

We extracted DNA from the swabs using a phenol:chloroform:isoamyl extraction protocol

adapted from Mettel et al. [52]. We first suspended the swabs in 700 μL of PBL lysis buffer (6%

water saturated phenol, 5 mM disodium EDTA, 0.1% (wt/vol) sodium dodecyl sulfate, 5 mM

Tris HCL, pH 5.7) by vortexing for 5 minutes and centrifuging for 2 minutes at 17,000 x g. We

removed the supernatant and placed it in a clean 2 mL tube. After removal of the supernatant,

we added 700 μL TPM buffer (50 mM Tris, pH 7.0, 1.7% (wt/vol) polyvinyl pyrrolidone, and
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20 mM MgCl2) to the swab; after vortexing for 1 minute and centrifuging for 2 minutes at

17,000 x g, we then added the second supernatant to the tube with the first supernatant. We

supplemented the combined supernatant with 800 μL of a phenol:chloroform:isoamyl alcohol

solution (pH 6.7+, 25:24:1) and centrifuged for 7 minutes at 17,000 x g. We transferred the

upper aqueous layer to a sterile tube and added 0.7 volumes of 100% isopropanol and 0.1 vol-

umes of 3 M sodium acetate. After centrifugation for 4 minutes at 17,000 x g, the supernatant

was decanted, we washed the pellet with 70% ethanol, and allowed it to air dry. We then resus-

pended the dried pellet in 50 μL nuclease-free water and stored it at -80˚C until amplification.

We verified all DNA extracts by gel electrophoresis, including negative controls of unused ster-

ile swabs, to ensure there was no contamination from supplies and solutions used in the

extraction.

After verification, we amplified DNA extracts in triplicate using bacterial specific (515F and

806R), uniquely barcoded, 16S rRNA gene primers containing adaptors for Illumina sequencing

[53]. Each 25 μL PCR reaction contained 12.5 μL Phusion Master Mix (ThermoFisher), 0.5 μL

primers, 11 μL diethylpyrocarbonate (DEPC) water, and 1 μL of DNA. Thermal cycling condi-

tions using S1000 thermal cycler (Bio-Rad, Hercules, CA, USA) had an initial denaturation at

98˚C for 3 min, then 40 cycles consisting of 45 seconds at 98˚C, 60 seconds at 51˚C, and 90 sec-

onds at 72˚C. The triplicate PCR product was verified via gel electrophoresis, and we excised

the target bands and purified them using the QIAquick PCR Purification Kit (QIAGEN, Valen-

cia, CA, USA) following the manufacturer’s protocols. We then quantified the purified product

using a Qubit 2.0 Fluorometer (ThermoFisher, Waltham, MA, USA) and pooled all samples

together in equimolar concentrations. Sequencing was performed on the Illumina MiSeq plat-

form with a paired-end V2 300 cycle kit at the University of Massachusetts, Boston.

Fig 1. Oral and cloacal samples collected through rehabilitation. Swabs collected for each individual turtle (y axis)

during rehabilitation. Each color denotes the timepoint in rehab. Convalescence (TP4a) is when the turtle is

considered clinically healthy. Prerelease (TP4b) was only collected on turtles that remained in the hospital>30 days

after TP4a was collected. Whether antibiotics were received or not is indicated on the y axis. � indicates that the turtle

died after that sample was collected.

https://doi.org/10.1371/journal.pone.0252086.g001
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Any samples that had poor sequencing read quality or low sequencing depth were reampli-

fied in triplicate as described above. However, for these samples we purified the resulting PCR

product using AMPure XP (Beckman Coulter, Inc. Indianapolis, IN, USA) following manufac-

turers guidelines using the 0.8:1.0 ratio of bead-to-sample to target 300 bp and above. After

purification, we quantified the DNA using the Agilent D1000 ScreenTape System (Agilent

Technologies, Inc, Waldbronn, Germany) following manufacturers guidelines for more pre-

cise quantification and band size visualization. We pooled the purified PCR product to equi-

molar concentration based on the concentration of the desired band size range. We used a

BluePippin™ (Sage Science Inc., Beverly, MA, USA), following manufacturer’s instructions, to

size select the target bands. We also sequenced these samples on an Illumina MiSeq platform

using a paired-end V2 300 cycle kit. We analyzed all runs together since we did not find sub-

stantial run effects that interfered with addressing our hypotheses (S1 Fig).

Data analysis

Paired-end reads were demultiplexed using Illumina-utils version 2.0.2 [54]. We performed

quality filtering, merging of paired reads, and amplicon sequence variant (ASV) clustering

using DADA2 version 1.12.1 [55] in R version 3.6.1 [56]. We assigned taxonomy using

IDTAXA from the DECPHER package version 2.12.0 [57] with the Silva Small Subunit (SSU)

132 training set for classification. We used the phyloseq package version 1.28.0 in R to perform

diversity metric visualizations and statistical tests [58].

The difference between body sites (oral cavity and cloaca) were evaluated using Bray-Curtis

distance metrics. We tested for significant differences of Bray-Curtis distance metrics using

permutational multivariate analysis of variance (PERMANOVA) for variables including sur-

vival, disease condition (Pneumonia vs. Non-Pneumonia), and arrival day at NEAq (day of

stranding or next day) for each body site. We performed hierarchical clustering using the sim-

ple average method to evaluate the differences between intake samples and convalescent sam-

ples (timepoint 4a). Random forest models were used to determine which ASVs were

associated with survival (survived vs. died) using the randomForest package version 4.6–14

[59]. To analyze the differences in dispersion between the groups that survived and died, we

used the betadisper function and tested for significance with analysis of variance (ANOVA)

in R.

Correlation between microbial communities at each body site and clinical parameters were

determined using the envfit function with the vegan package version 2.5–6 in R [60]. This

function fits vectors representing environmental factors, in this case hematologic values, to

ordination plots and tests for statistical significance with 999 random permutation tests. The

blood gas, biochemical, and hematologic analytes included pH, partial pressure of carbon

dioxide (pCO2), partial pressure of oxygen (pO2), bicarbonate (HCO3), sodium (Na), potas-

sium (K), chloride (Cl), ionized calcium, glucose, blood urea nitrogen (BUN), uric acid, lactate,

hematocrit (Hct), white blood cell count, relative heterophil count, and relative lymphocyte

count. Uric acid was the only analyte selected from the day 3 chemistry panel due to its rele-

vance to renal function and disease [14,17].

Within a given body site (oral cavity or cloaca), we used principal coordinate analysis

(PCoA) of Bray-Curtis distance metrics to visualize variations in the microbial communities

across timepoints and days in rehabilitation, and we tested for significant differences between

timepoints using pairwise PERMANOVA with p values adjusted for multiple comparisons

using the false discovery rate (FDR) method, also known as the Benjamini-Hochberg proce-

dure. Shannon diversity index was calculated for each body site at each timepoint, and signifi-

cance was tested by pairwise Wilcoxon tests for data not normally distributed or a pairwise

PLOS ONE Microbiome of cold-stunned Kemp’s ridley turtles

PLOS ONE | https://doi.org/10.1371/journal.pone.0252086 May 27, 2021 6 / 22

https://doi.org/10.1371/journal.pone.0252086


Student’s t-test for normally distributed data (S2 Table). A p value of<0.05 was considered

statistically significant following application of the Benjamini-Hochberg procedure.

To test the hypothesis that antibiotics affected the microbial communities of turtles and

that the microbiome became similar at convalescence to turtles that were not on antibiotics,

we calculated Bray-Curtis dissimilarity for the communities at each timepoint. We used pair-

wise PERMANOVA to determine significant differences based on antibiotic exposures or anti-

biotic type. A p value of<0.05 was considered statistically significant following application of

the Benjamini-Hochberg procedure to correct for multiple comparisons. If there was a signifi-

cant difference between antibiotic types at a timepoint, we performed a similarity percentages

breakdown (SIMPER) analysis [61], to identify abundant ASVs that contribute most to the

Bray-Curtis dissimilarity between antibiotic groups. To test whether alpha diversity changed

based on antibiotic exposure or drug type, we calculated Shannon diversity, and performed

significance testing by pairwise Wilcoxon tests for data not normally distributed or a pairwise

Student’s t-test for normally distributed data (S2 Table). A p value of<0.05 was considered

statistically significant following application of the Benjamini-Hochberg procedure.

Results

At intake, we collected oral and cloacal swabs from a total of 35 Kemp’s ridley turtles (Fig 1).

Seven turtles died shortly after being admitted to the hospital, and two turtles died later in

rehabilitation (after timepoint 2 samples were collected). Overall, 26 turtles had serial samples

from intake to convalescence, varying from two to five timepoints depending on clinical status

(Fig 1). Of the 35 turtles, veterinarians categorized 15 turtles as Non-Pneumonia and 20 as

Pneumonia based on initial radiographs. Five of the turtles categorized as Non-Pneumonia

were placed on antibiotics, while the remainder were not. All turtles with pneumonia were

placed on antibiotics. Veterinarians did not prescribe antibiotics to 11 turtles (4 of these died)

and prescribed antibiotics to 24 turtles (5 of these died), including oxytetracycline (n = 8 sur-

viving turtles) or ceftazidime (n = 11 surviving turtles). Veterinarians prescribed additional

antibiotics to five of the turtles that initially received ceftazidime because their disease condi-

tion was not improving (typically after one or two months of rehabilitation). These additional

antibiotics varied depending on diagnostics, so they are reported as ‘ceftaz, other’ for the pur-

pose of this study. Seven turtles that survived did not receive any systemic antibiotics. Though

the median number of days until convalescent samples was 70 days, there was a difference in

medians for the turtles on antibiotics and those that were not. Turtles on antibiotics were in

rehab for a median of 76 days (range 55 to 201 days) and those not on antibiotics had a median

of 50 days (range 24–104 days).

Out of 230 oral and cloacal samples, sequencing of the 16S rRNA gene resulted in 2,309,082

reads after joining paired-end reads and quality filtering, which included the removal of chi-

meras, singletons, chloroplasts, mitochondrial DNA, and Archaea. The mean sequence counts

per sample was 10,039 (median 7,429) and range was 777 to 80,792 counts per sample. These

sequences were assigned to 1,528 unique ASVs across 218 different families.

Oral samples had significantly higher Shannon diversity than cloacal samples at intake (t-

test, p< 0.001; oral mean ± standard deviation 3.45 ± 0.47; cloacal mean ± standard deviation

2.90 ± 0.52), and the oral and cloacal microbiomes were significantly different from each other

at intake based on Bray-Curtis dissimilarity (PERMANOVA, p = 0.001), which we visualized

via hierarchical clustering of the Bray-Curtis dissimilarity values (Fig 2). The oral microbial

communities at intake were dominated by Bacteria in the family Flavobacteriaceae, with a

mean abundance of 30.0%, followed by Rhodobacteraceae (13.7%), Vibrionaceae (9.0%), and

Porticoccaceae (6.0%). The microbiome of cloacal samples at intake were dominated by
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Vibrionaceae (23.1%), Arcobacteraceae (11.8%), Shewanellaceae (7.7%), and Rhodobactera-

ceae (6.7%). There was significant clustering within the oral (PERMANOVA, p = 0.035) and

cloacal (PERMANOVA, p = 0.047) microbiomes by survival, based on Bray-Curtis dissimilar-

ity (Fig 2). Other variables that did not contribute to clustering include disease condition

(Pneumonia vs. Non-Pneumonia) and arrival day (same day as stranding or next day). There

were no significant correlations between blood analytes and microbial communities for either

body site at intake.

Random forest modelling predicted ASVs that differ between the turtles that survived and

those that died for both oral samples (Fig 3A) and cloacal samples (Fig 3B). These analyses had

an out-of-bag error rate of 22.9% and 25.7%, respectively. The model correctly predicted turtle

survival based on the microbiome from 26 oral samples (100%), however, it correctly predicted

turtle mortality in only one oral sample (12%). For cloacal samples, the model correctly pre-

dicted turtle survival of 25 cloacal samples (96%), but correctly predicted turtle mortality in

only one cloacal sample (12%). Thus, although good at predicting survival, the model struggled

to find key indicators that could be used to predict turtle mortality. The top 10 ASVs most

important in distinguishing those turtles that survived included taxa from the families Flavo-

bacteriaceae and Rhodobacteraceae for oral samples (Table 1). The oral samples from turtles

that died were more variable in the abundance of the important ASVs, but primarily had lower

abundance of ASV1513, Thalassobius sp., from the family Rhodobacteraceae. For cloacal sam-

ples, the top 10 ASVs that differed between those turtles that survived and those that did not

included diverse taxa from 9 different families (Table 1). There was high variability in the com-

position of these ASVs in the turtles that died, with some of the turtles having high proportions

of Rhodobacteraceae, Fusobacteriaceae, and Ruminococcaceae, and lower abundance of Bur-

kholderiaceae compared to turtles that survived. Overall, the oral microbiome had greater

Fig 2. Turtle microbial communities at intake. Hierarchical clustering of intake samples is shown as the dendrogram on the left, with the tips each

representing a sample. On the right are the corresponding stacked bar plots representing relative abundance of community composition at the family level

(top 30 families). Colored bars at the center specify body site (left bar) and survival (right bar) corresponding to each sample.

https://doi.org/10.1371/journal.pone.0252086.g002
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variance in turtles that died compared to those that survived (ANOVA, p = 0.041), however

the difference in variance in the cloacal microbiome of turtles that died was not statistically dif-

ferent than from those that survived (ANOVA, p = 0.074).

There was a slight trend of increasing Shannon diversity from intake to rehabilitation sam-

ples for both the oral and cloacal microbiome (Fig 4, S2 Table). We found significant differ-

ences between TP4b (pre-release) and intake for oral samples (t-test, p = 0.01), between TP3

(in rehab) and intake for cloacal samples (Wilcoxon, p = 0.028), and between TP3 and TP2 for

cloacal samples (Wilcoxon, p = 0.028). The PCoA of each body site for all samples showed sig-

nificant differences between timepoints based on Bray-Curtis dissimilarity (S3 Table, Fig 5).

Fig 3. Random forest model predictions for survival. The 10 most significant ASVs at intake that differ between turtles that

survived and those that died for oral samples (A) and cloacal samples (B). Taxonomy information for these ASVs is provided in

Table 1.

https://doi.org/10.1371/journal.pone.0252086.g003
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The largest separation along the principal axis resulted from the difference between intake

samples and the remaining samples for both the oral and cloacal communities (Fig 5). After

intake, the turtles were in a shared environment at a consistent temperature so we further visu-

alized shifts in microbial communities during rehabilitation by excluding the intake samples

(Fig 6). The microbial communities of both oral and cloacal samples continued to shift based

on the number of days in rehabilitation. The shift appeared to stabilize after approximately 100

days, with less variability in the microbiome the longer the turtles were in rehabilitation (Fig

6). It is important to note that these shifts during rehabilitation were consistent among turtles

that received antibiotics and those that did not.

We observed changes in turtle microbiomes due to antibiotic exposure at specific time-

points during rehabilitation. At timepoint 2 (approximately four weeks after the start of antibi-

otic treatment, for those turtles that received antibiotics), there was a significant difference by

antibiotic type based on Bray-Curtis distance for cloacal samples, but not for oral samples (Fig

7). Turtles not receiving antibiotics, as well as those on specific antibiotic types (ceftazidime,

oxytetracycline, ‘ceftaz, other’), had distinct cloacal microbial communities except for the com-

parison of Ceftaz vs. ‘Ceftaz, other’ (S3 Table). SIMPER analysis indicated that the families

Bacteroidaceae, Enterobacteriaceae, and Pseudomonadaceae were more abundant in cloacal

samples of turtles receiving oxytetracycline (Fig 8). Vibrionaceae was more prevalent in the

cloacal samples of turtles not receiving antibiotics, while Flavobacteriaceae was more abundant

in the cloacal samples of turtles receiving ceftazidime (+/- other). Shewanellaceae was consis-

tently present in the cloaca of turtles that received oxytetracycline and in those that received

no antibiotic. There was no significant difference in Shannon diversity based on antibiotic

type during rehabilitation for oral samples and cloacal samples.

Table 1. Taxonomy of the top 10 ASVs predicting survival. Survival was predicted by random forest modelling for both oral and cloacal samples at intake.

ORAL Taxonomy

ASV Class Order Family Genus

ASV24 Gammaproteobacteria Cellvibrionales Porticoccaceae Porticoccus
ASV72 Gammaproteobacteria Arenicellales Arenicellaceae HTCC5015

ASV410 Bacteroidia Flavobacteriales Flavobacteriaceae Aquimarina
ASV1108 Alphaproteobacteria Rhodobacterales Rhodobacteraceae NA

ASV1202 Bacteroidia Flavobacteriales Flavobacteriaceae NA

ASV1301 Bacteroidia Flavobacteriales Flavobacteriaceae Kordia
ASV1406 Alphaproteobacteria Rhodobacterales Rhodobacteraceae Pseudophaeobacter
ASV1423 Gammaproteobacteria Vibrionales Vibrionaceae NA

ASV1513 Alphaproteobacteria Rhodobacterales Rhodobacteraceae NA

ASV1611 Alphaproteobacteria Rhizobiales Stappiaceae NA

CLOACAL Taxonomy

ASV Class Order Family Genus

ASV24 Gammaproteobacteria Cellvibrionales Porticoccaceae Porticoccus
ASV514 Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium
ASV543 Gammaproteobacteria Alteromonadales Shewanellaceae Shewanella
ASV834 Gammaproteobacteria Betaproteobacteriales Burkholderiaceae NA

ASV983 Alphaproteobacteria Rhodospirillales Rhodospirillaceae Candidatus Riegeria
ASV1031 Fusobacteriia Fusobacteriales Fusobacteriaceae Cetobacterium
ASV1044 Alphaproteobacteria Rhodobacterales Rhodobacteraceae NA

ASV1137 Clostridia Clostridiales Ruminococcaceae NA

ASV1496 Campylobacteria Campylobacterales Arcobacteraceae Arcobacter
ASV1579 Gammaproteobacteria Alteromonadales Shewanellaceae Shewanella

https://doi.org/10.1371/journal.pone.0252086.t001
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Bray-Curtis distances at convalescence, defined as 30 days after the antibiotic was discon-

tinued, were significantly affected by administration of ceftazidime in addition to another anti-

biotic compared to no antibiotics, just ceftazidime, and just oxytetracycline for the oral

samples. Only oxytetracycline turtles were significantly different from no antibiotic turtles for

cloacal samples at convalescence. (Fig 9, S3 Table). SIMPER analysis indicated that turtles

receiving any type of antibiotics had, at convalescence, oral samples with higher abundance of

an ASV in the family Microscillaceae (Microscilla sp.). Oral samples of convalesced turtles that

never received antibiotics had higher prevalence of Saprospiraceae (Aureispira sp.), and turtles

Fig 4. Shannon diversity index of turtles through rehabilitation. Oral samples (left) and cloacal samples (right) at

each timepoint during rehabilitation. Different letters above boxplots indicate significant differences in means of

Shannon diversity (p < 0.05; S2 Table).

https://doi.org/10.1371/journal.pone.0252086.g004

Fig 5. Microbial communities across all timepoints. Principal coordinate analysis (PCoA) plots of oral samples (A)

and cloacal samples (B) based on Bray-Curtis distance. Color indicates timepoint in rehabilitation from intake to

convalescence (TP4a)/pre-release (TP4b).

https://doi.org/10.1371/journal.pone.0252086.g005
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that received antibiotics in addition to ceftazidime (‘ceftaz, other’) had higher abundances of

ASVs specific to the families Flavobacteriaceae (Maritimimonas sp.), Rubritaleaceae (Rubrita-
lea sp.), and Kangiellaceae (Aliikangiella sp.), all of which are marine bacteria. At convales-

cence, the cloacal samples from turtles that had received antibiotics had an increased presence

of the Vibrionaceae Photobacterium sp. (more consistent with turtles that never received anti-

biotics), but the turtles that had other antibiotics in addition to ceftazidime (‘ceftaz, other’)

also had some samples with higher abundance of Fusobacteraceae (Fusobacterium sp.) at con-

valescence. All of the ASVs in these families, except for Vibrionaceae, made up a low relative

abundance compared to other ASVs in the same families found in the samples collected at

convalescence. There was no significant difference in Shannon diversity based on antibiotic

type at convalescence for oral samples and cloacal samples.

At convalescence, we also observed that Bray-Curtis distance remained significantly differ-

ent between oral and cloacal samples (PERMANOVA, p = 0.001, Fig 9). Since convalescent

samples were different from intake samples, we also wanted to characterize the differences

between body sites prior to release (Fig 9). The oral microbial communities at convalescence

were dominated by bacteria in the family Flavobacteriaceae (22.5%) and Rhodobacteraceae

(20.6%) followed by an unassigned Gammaproteobacteria family (12.1%) and Saprospiraceae

Fig 6. Microbial communities during rehabilitation to convalescence. Principal coordinate analysis (PCoA) plots of

oral samples (A) and cloacal samples (B) based on Bray-Curtis distance. Color indicates number of days in

rehabilitation. Shape indicates whether a turtle was not on antibiotics (circle, N) or on antibiotics (triangle, Y) during

rehabilitation.

https://doi.org/10.1371/journal.pone.0252086.g006

Fig 7. Microbial communities during rehabilitation and antibiotics. Principal coordinate analysis (PCoA) plots of

oral (A) and cloacal (B) samples based on Bray-Curtis distance during rehabilitation (TP2). Colors specify the type of

antibiotic the turtle was on during hospitalization.

https://doi.org/10.1371/journal.pone.0252086.g007
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(10.8%). The microbiome of cloacal samples at convalescence were dominated by Flavobacter-

iaceae (17.0%), Vibrionaceae (13.6%), Arcobacteraceae (10.3%), and Rhodobacteraceae

(9.1%). The Shannon diversity of oral microbial communities remained higher compared to

the cloacal samples at convalescence (t-test, p< 0.001; oral mean ± standard deviation

3.64 ± 0.39; cloacal mean ± standard deviation 3.19 ± 0.44).

Fig 8. ASVs of cloacal samples at timepoint 2. Relative abundance of ASVs (colored by family) that significantly

contribute to the differences between antibiotic type of cloacal samples while in rehab.

https://doi.org/10.1371/journal.pone.0252086.g008

Fig 9. Turtle microbial communities at convalescence. Hierarchical clustering of convalescent samples (timepoint 4a) is shown as the

dendrogram on the left, with the tips each representing a sample. On the right are the corresponding stacked bar plots representing relative

abundance of community composition at the family level (top 30 families). Colored bars at the center specify body site (left bar) and antibiotic

type (right bar) corresponding to each sample.

https://doi.org/10.1371/journal.pone.0252086.g009
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Discussion

We characterized the oral and cloacal microbiomes of cold-stunned Kemp’s ridley turtles

through the course of rehabilitation, from stranding to release. This is the first investigation of

the microbiome during rehabilitation after cold stunning for any turtle species. In Kemp’s rid-

ley turtles, the oral and cloacal microbial communities were distinct from each other in com-

position and taxonomic diversity when they arrived at the rehabilitation center and remained

distinct through the course of treatment. The lower Shannon diversity of cloacal samples com-

pared to oral samples is not unique to Kemp’s ridley sea turtles and is thought to be due to

greater interaction with transient microbes from the environment that enter the turtle via the

oral cavity [62,63].

Compared to wild healthy Kemp’s ridley turtles from the Gulf of Mexico, the oral micro-

biome of cold-stunned turtles at intake shared similar predominant bacterial families, includ-

ing Flavobacteraceae and Rhodobacteraceae [64]. The cloacal samples, by contrast, were

different between the healthy wild Kemp’s ridley turtles and the cold-stunned stranded turtles

with no shared dominant families between the two groups [64]. Cardiobacteraceae, Flavobac-

teraceae, and Neisseriaceae were most prevalent in the wild healthy turtles, while Vibrionaceae,

Arcobacteraceae, Shewanellaceae, and Rhodobacteraceae were prevalent from the intake cloa-

cal samples of cold-stunned turtles. This difference in cloacal samples could be due to diet dif-

ferences between the regions, last meal for the cold-stunned turtles (which tend to be

malnourished due to stranding), temperature, or a more integrated relationship of immune

system with gastrointestinal microbes.

Cold-stunned turtles strand with a variety of clinical derangements. Plasma biochemical

and hematologic analyses are important for evaluating the health and monitoring the recovery

of these animals [5]. We did not find a correlation of blood analytes with the microbiome of

either the cloaca or oral cavity of cold-stunned turtles. This was slightly unexpected since

blood parameters are useful in diagnosing diseases, metabolic disorders, and immunological

disorders that have been linked to the microbiome in other organisms [24,65,66], although

flatback turtles (Natator depressus) were also found to have no correlation between the micro-

biome and blood parameters [67]. Some blood analytes of turtles had great variability at intake,

which could be one reason for lack of correlation with microbial communities. For example,

glucose at admission was highly variable, with hypoglycemia likely indicating exhaustion,

anorexia, or sepsis, and hyperglycemia indicating a stress response, liver disease, or pancreatic

disease [10,12,68]. White blood cell counts also can be indicative of several conditions includ-

ing inflammation, immune response, or systemic pathologic conditions [12], but were variable

in these turtles at stranding, resulting in no clear association with the microbiome. Blood pH,

pCO2, pO2, and potassium concentrations in particular are good predictors of mortality in

cold-stunned Kemp’s ridley turtles [69], yet they were also not associated with the turtle micro-

biome. It is possible that other factors were overriding the microbiome correlations, such as

reduced renal function, dehydration, and sepsis [11–14,17]. Another possibility is that the clo-

aca is not truly representative of the gut, as there is regional variability along the gastrointesti-

nal tract [75], and thus may be less involved in immune and metabolic disorders. Future

studies focusing on adrenal function and specific immune assays of Kemp’s ridley sea turtles,

in addition to these traditional blood analytes, and examining other sections of the gastrointes-

tinal tract, might provide further insight into the relationship between the microbiome, health,

and the immune system for this species.

Although the clinical parameters and disease conditions did not strongly predict the micro-

biomes of cold-stunned turtles at admission, we were able to identify ASVs that were different

between turtles that survived and those that died. For example, ASV1044, from the genus
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Phaebacter, was found in higher abundance in initial cloacal samples of turtles that died (Fig

3). This genus is an antibiotic producing bacterium that is found in sea water and on marine

surfaces [70]. Phaebacter sp. strongly shaped the microbiome of microalgae by changing the

proportions of other metabolite producing bacteria such as Vibrio sp. [71], so this genus could

play an important role in altering the sea turtle microbial communities. Cloacal samples of tur-

tles that died also had higher abundance of ASVs in families that are common to marine envi-

ronments such as Shewanellaceae and Rhodobacteraceae. The oral microbiome of turtles that

died were more variable in composition compared to turtles that survived, and random forest

models largely failed to detect a diagnostic microbial community associated with the turtles

that died. This may be an indication of dysbiosis, in which more diseased animals show greater

variability in microbial composition [21,24]. Increased variability in the microbial community

has also been associated with coral mortality, in which above average temperatures caused

increases in various opportunistic microbes leading to stochastic changes [21]. Although all

stranded cold-stunned turtles are not considered healthy, the turtles that died had greater vari-

ability in their microbiomes than those that survived. Increased variability of the microbiome

of turtles that died could be associated with other events that affect survival, such as aspiration

of sea water, resulting in severe pneumonia, respiratory acidosis, and severe electrolyte imbal-

ances [10–12,16,69]. Thus, mortality may be further associated with stochastic changes in the

microbial communities rather than to the presence of specific pathogens.

The turtles that survived had microbiomes that shifted through rehabilitation as they stabi-

lized in a controlled environment and recovered from cold-stunning. The local environment

shapes distinct microbial communities, as seen in other reptiles and aquatic animals

[62,63,72,73]. Shannon diversity was also lower in the intake samples compared to later time-

points in rehabilitation, further suggesting a dysbiosis resulting from cold-stunning (Fig 4).

Initially, turtles may remain inappetent for days to weeks after stranding, which could cause

differences in the microbiome until they are eating consistently [74,75]. Other reptiles had

lower alpha diversity during periods of fasting compared to during the feeding season [74].

Thus, disease recovery and feeding status may be variables that further shift the oral and cloa-

cal microbiome during rehabilitation. There are also changes in the number of turtles in the

tanks during the first few months of rehabilitation, which influences the bioload of the system,

adding additional variables that could influence microbial community composition. During

the first few months of rehabilitation, cold stunned turtles are in various states of disease and

drug exposure. It may take several months before turtles recover from cold-stunning, and this

appears to apply to their microbiome as well.

In addition to microbiome changes over time, we found changes due to antibiotic exposure,

but not as many changes as might be expected based on what is known about the effect of anti-

biotics in other animals. For example, we did not see the typical reduction in Shannon diver-

sity of turtles on antibiotics versus those not on antibiotics [38,41], but we did find differences

in beta diversity (Fig 7), which was a similar finding to rehabilitating Kemp’s ridley turtles that

were incidentally captured in Mississippi [35]. The ASVs that were more abundant in cloacal

samples of turtles receiving oxytetracycline were from the families Pseudomonadaceae, Vibrio-

naceae, and Enterobacteriaceae. Although these are all bacterial families targeted by the drug,

antibiotic resistance and transient microbes continuously passing through the gastrointestinal

tract cause them to remain present in the microbiome. We may be capturing transient

microbes that are constantly being introduced by the local environment and food, thus antibi-

otics would not affect their presence in the samples collected. Ceftazidime and oxytetracycline

are so commonly used in sea turtles that antibiotic resistance is a concern at rehabilitation

facilities [37]. Although antibiotic resistance was outside the scope of what we investigated,

bacteria in the families Pseudomonadaceae and Enterobacteriaceae have shown high resistance
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to tetracycline classes of antibiotics, such as oxytetracycline, in sea turtles [76,77]. There were

also some strains that were resistant to ceftazidime, though the majority were susceptible in

loggerhead turtle cultures [77]. In addition to some bacterial families that were present despite

being targets of the antibiotics, several ASVs were reduced in the cloacal samples of turtles that

received antibiotics compared to those that did not, revealing that the antibiotics were having

an influence despite transient microbes and potential antibiotic resistance. Vibrionaceae, spe-

cifically the ASV matching to Photobacterium damselae, which is a marine bacterium capable

of causing infection in animals [78], was more prevalent in turtles that did not receive antibiot-

ics. Shewanellae algae was identified as the ASV in the Shewanellaceae family that had lower

abundance in the cloaca of turtles that received ceftazidime, showing the effect these antibiot-

ics have on a variety of bacteria.

During rehabilitation, antibiotics did not affect the oral microbiome as much as they

affected the cloacal microbiome. Different body sites may be affected by antibiotics in different

ways. The salivary microbiome of humans was not affected by antibiotics although fecal micro-

bial communities were highly affected [43]. Route of administration (injectable or oral) may

also play a role, especially depending on drug excretion routes [79]. Drugs such as ceftazidime

and oxytetracycline are excreted through the kidneys [37], therefore there may be minimal

drug exposure of the oral cavity if delivered by injection [79].

At convalescence, the oral and cloacal microbiomes were both different based on antibiotic

type (Fig 9), primarily when comparing ‘ceftaz, other’ to other antibiotics for oral samples and

comparing oxytetracycline to no antibiotics for cloacal samples. Although there are no analo-

gous studies in turtles, in humans, throat and gut microbiomes were also both perturbed by

antibiotics, but each subject responded uniquely [41]. The time of recovery to a pre-treatment

state varied as well, ranging from weeks to several years in humans [41]. The length of time in

rehabilitation may also be influencing differences in the microbiome for turtles that were on

antibiotics versus those that were not. In several instances, the turtles not on antibiotics were

considered convalescent earlier than those on antibiotics. The longer a turtle is in rehabilita-

tion, the likelihood that the environment, including diet, continues to influence shifts in the

microbiome and should be considered.

There were several differences in composition between convalescent microbial communi-

ties and intake samples for each body site of turtles. Flavobacteriaceae became the most abun-

dant bacterial family of the cloaca at convalescence and remained the most abundant in oral

samples. Oral samples also had higher proportions of the marine environmental bacteria

Saprospiraceae and an unknown family of Gammaproteobacteria at convalescence. Differ-

ences from intake cloacal samples to convalescence were seen in green turtles as well, and the

presence of Salmonella in convalescent samples specifically indicated introduction from the

hospital tanks [29]. We did not see Salmonella in our samples, although we did have the closely

related Citrobacter sp., which is also a coliform bacterium from the family Enterobacteraceae,

but this was present in low abundance in both the intake and convalescent samples indicating

the hospital environment was not the primary source for this family of bacteria. In addition to

the local environment, captivity also plays a role in altering microbial communities due to diet,

so mimicking the wild is important to maintaining proper functioning upon release [80,81].

During rehabilitation, Kemp’s ridley turtles are fed high calorie herring and squid compared

to the crustaceans they eat in the wild. Shifting the diet to crustaceans during rehabilitation

may aid in restoring normal cloacal microbial communities, as was suggested for green turtles

transitioning to an herbivorous diet as soon as possible in rehabilitation [34]. However, dietary

adjustments away from existing successful protocols should be considered carefully, as items

that are less easily digested may cause gastrointestinal disorders in compromised patients [82].

Further evaluating diet as well as the functional microbiome might be a useful method of
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future studies to determine differences between wild healthy turtles and captive turtles prior to

release.

Conclusions

We characterized the oral and cloacal microbiome of cold-stunned Kemp’s ridley turtles

throughout rehabilitation, allowing us to investigate differences in microbial communities

based on survival and disease condition. We sampled at multiple timepoints in rehabilitation,

from admission to the hospital, during rehabilitation, and at convalescence, providing first

glimpses into the changes that occur during recovery from cold-stunning. We identified ASVs

that are important to predicting survival of turtles after stranding. An important contributing

variable to microbial communities is exposure to antibiotics, which we investigated as well and

found that antibiotics did lead to an altered state. Our findings indicate that the microbiome of

cold-stunned Kemp’s ridley turtles is affected by disease status, the local environment, and

antibiotics, all of which ultimately play a role in the recovery and release status of the turtles.

Investigating the functional microbiome and additional clinical parameters from cold-stun-

ning, such as adrenal function, blood cultures, and specific immune assays, might also provide

further insight into microbial communities of Kemp’s ridley turtles.
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