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Post-transcriptional regulation plays a leading role in gene regulation and RNA binding

proteins (RBPs) are the most important posttranscriptional regulatory protein. RBPs had

been found to be abnormally expressed in a variety of tumors and is closely related

to its occurrence and progression. However, the exact mechanism of RBPs in bladder

cancer (BC) is unknown. We downloaded transcriptomic data of BC from the Cancer

Genome Atlas (TCGA) database and used bioinformatics techniques for subsequent

analysis. A total of 116 differentially expressed RBPs were selected, among which 61

were up-regulated and 55 were down-regulated. We then identified 12 prognostic RBPs

including CTIF, CTU1, DARS2, ENOX1, IGF2BP2, LIN28A, MTG1, NOVA1, PPARGC1B,

RBMS3, TDRD1, and ZNF106, and constructed a prognostic risk score model. Based on

this model we found that patients in the high-risk group had poorer overall survival (P <

0.001), and the area under the receiver operator characteristic curve for this model was

0.677 for 1 year, 0.697 for 3 years, and 0.709 for 5 years. Next, we drew a nomogram

based on the risk score and other clinical variables, which showed better predictive

performance. Our findings contribute to a better understanding of the pathogenesis,

progression and metastasis of BC. The model of these 12 genes has good predictive

value and may have good prospects for improving clinical treatment regimens and

patient prognosis.

Keywords: bladder cancer, RNA binding proteins, prognostic model, overall survival, bioinformatics

INTRODUCTION

Bladder cancer (BC) is one of the most common malignant tumors worldwide and
the most common malignant tumor in the urinary system, with more than 400,000
new cases diagnosed and 160,000 deaths annually (Torre et al., 2015; Antoni et al.,
2017). BC is a heterogeneous tumor with two subtypes: non-muscle-invasive BC (NMIBC)
and muscle-invasive BC (MIBC). NMIBC rarely progresses, but half of patients develop
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tumor recurrence within 5 years, and 20–30% of NMIBC patients
progress to MIBC (Chamie et al., 2013). MIBC progresses
frequently, and the 5-year survival rate is as low as 8.1%
(Abdollah et al., 2013). Although multiple studies have revealed
potential biomarkers and therapeutic targets for BC (Cancer
Genome Atlas Research Network, 2014; Knowles and Hurst,
2015; Pietzak et al., 2017), and significant advances have
been made in surgical techniques and adjuvant chemotherapy,
the mortality rate for advanced BC remains high, and the
pathogenesis and progression of BC remain unclear (Siegel
et al., 2015). Therefore, further understanding of the molecular
mechanisms of BC occurrence, progression, and invasion may
improve the early detection and diagnosis of BC.

Post-transcriptional regulation plays a leading role in gene
regulation, and RNA-binding proteins (RBPs) are the most
well-known post-transcriptional regulators. RBPs are widely
expressed in cells and can bind to and function with a variety
of RNA types, including mRNAs, tRNAs, rRNAs, ncRNAs,
snRNAs, miRNAs, and snoRNAs (New et al., 2019; Otsuka
et al., 2019). Currently, 1542 human RBP genes have been
experimentally verified, accounting for 7.5% of all protein-coding
genes (Gerstberger et al., 2014). By binding to RNA, RBPs
form ribonucleoprotein complexes to regulate cell metabolism
and coordinate the maturation, transportation, stabilization,
and degradation of various RNAs (Gerstberger et al., 2014).
RBPs have been associated with various human diseases.
Defects in ribosomal proteins and rRNA biogenic factors
in RBPs severely affect bone marrow and skin functions,
leading to Diamond-Blackfan anemia and Shwachman-Diamond
syndrome (Narla and Ebert, 2010). The occurrence of various
neuromuscular diseases is related to abnormal RNA or
protein aggregation due to mutations in RBPs (Cooper et al.,
2009). However, studies on the role of RBPs in tumors
remain rare.

Several studies have shown that RBPs are abnormally
expressed in tumor tissues and are associated with patient
prognosis (Patry et al., 2003; King et al., 2011; Wurth et al.,
2016). However, few RBPs have been thoroughly studied
and identified as having key roles in tumors. One study
showed that antagonizing HuR protein expression significantly
reduced the proliferation of ovarian, cervical, breast, and colon
cancer cells (Abdelmohsen et al., 2008). Additionally, ZEB1
inhibits epithelial splice regulatory protein 1 mRNA expression,
leading to increased invasiveness in lung, breast and pancreatic
cancer cells (Preca et al., 2015). Therefore, in this study, we
systematically analyzed the molecular function and clinical
significance of RBPs in BC to fully understand the role of
RBPs in BC and aid in developing potential therapeutic targets
and biomarkers.

Abbreviations: BC, Bladder cancer; TCGA, The Cancer Genome Atlas; KEGG,

Kyoto Encyclopedia of Genes and Genomes; GO, Gene ontology; FC, Fold change;

OS, Overall survival; DFS, Disease free survival; LASSO, Least absolute shrinkage

and selection operator; ROC, Receiver operating characteristic; AUC, Area under

the receiver operating characteristic curve; FDR, False discovery rate; TFs,

Transcription factors; TIDE, The Tumor Immune Dysfunction and Exclusion.

MATERIALS AND METHODS

Preprocessing Data and Identifying
Differential RBP Expression
Transcriptomic data from 19 normal bladder tissue samples
and 411 BC tissue samples were downloaded from The Cancer
Genome Atlas (TCGA) database https://portal.gdc.cancer.gov/).
We used the edgeR package (http://www.bioconductor.org/
packages/release/bioc/html/edgeR.html) to preprocess raw data,
remove genes with average expression values <1 and standardize
the data. We identified the differentially expressed RBPs based on
|log2 FC| >1.0 and a false discovery rate (FDR) <0.05.

Functional Enrichment Analysis
We performed a comprehensive pathway and functional
enrichment analysis using the WEB-based Gene Set Analysis
Toolkit (WebGestalt, http://www.webgestalt.org/) online analysis
tool. The Gene Ontology (GO) terms, including cellular
component, biological process, and molecular function, as well
as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, were enriched using the WebGestalt online tool. Only
FDR values and P-values < 0.05 were considered significant.

Screening for Prognostic-Related RBPs
We identified prognostic-related RBPs using the survival R
package for univariate Cox regression analysis of differentially
expressed RBPs. We performed the least absolute shrinkage and
selection operator (LASSO) algorithm on significant RBPs to
further screen for their prognostic significance. Finally, we used
multivariate Cox regression analysis to further screen RBPs with
prognostic value. P < 0.05 was considered significant.

Construction and Evaluation of the
Prognostic Model
We constructed a predictive model based on the RBPs screened
via the multivariate Cox regression analysis. With this model,
we calculated each patient’s risk score according to the
following formula:

Risk score =

n∑

i=1

Expiβi,

where β is the regression coefficient of each prognostic gene,
and Exp is the expression value of the corresponding gene. We
then divided the BC patients from TCGA into high-risk and
low-risk groups based on their median risk score and compared
the differences in overall survival (OS) between both groups
to evaluate the predictive efficacy of the model. We used the
survivalROC R package to draw receiver operating characteristic
(ROC) curves to assess the model’s predictive performance. To
further verify the model’s predictive power, we downloaded a
GSE13507 dataset containing information on 256 samples from
the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) database as a validation cohort.
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Correlation Between the
Prognostic-Related Model and Clinical
Variables
To explore the clinical significance of the prognostic-related
model for different clinical variables, we stratified patients
according to clinical parameters and performed survival analysis.
We also explored the relationship between eight prognostic RBPs
and clinical variables. P < 0.05 was considered significant.

Independence of the RBP-based
Prognostic Model From Patients’ Clinical
Characteristics
We performed univariate and multivariate Cox regression
analyses based on clinical characteristics including age, sex,
tumor grade, tumor stage, T stage, N stage, and M stage in
patients with BC to determine whether the RBP-based prognostic
model was an independent prognostic factor. We used the rms
R package to generate a nomogram to predict the OS, and we
performed Kaplan-Meier survival and ROC curve analyses of the
nomogram based on TCGA and GEO patient data to evaluate its
clinical applicability. P < 0.05 was considered significant.

Exploration of the Regulatory Network of
Prognostic-Related RBPs and Its
Relationship With Immune Cell Infiltration
We downloaded the transcription factors associated with
tumorigenesis and progression from the CISTROME project
(www.cistrome.org) to investigate the role of the prognostic gene
regulatory network. We then performed coexpression analysis
to explore the expression regulation relationship between
transcription factors and prognostic genes. Additionally, we
calculated the abundance of infiltrating immune cells in each
sample using a deconvolution algorithm and based on data from
22 groups of genes related to infiltrating immune cells. We used
CIBERSORT and its supplied gene set, LM22, to estimate the
degree of immune cell infiltration in different clusters. P < 0.05
was considered significant.

Expression Level and Prognostic
Significance Verification of
Prognostic-Related RBPs
We used the Kaplan-Meier plotter online tool (https://kmplot.
com/analysis/) to assess the prognostic significance of these
prognostic-related RBPs in patients with BC. We used the
Human Protein Atlas (HPA, https://www.proteinatlas.org/)
online database to verify the protein expression levels of these
prognostic-related RBPs.

Cell Culture
SVHUC1, J82, T24, 5637, and RT4 cells were purchased from
the Type Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). SVHUC1 is a normal bladder epithelial
cell that serves as an experimental control. RT4 is a low-
grade non-invasive bladder cancer cell, 5637 is a moderately
invasive bladder cancer cell, while T24 and J82 are both
high-grade and highly invasive bladder cancer cells. SVHUC1

cells were cultured in F12K medium (N3520) (Sigma-Aldrich,
St. Louis, Missouri, USA) containing 10% fetal bovine serum
(FBS) (Gibco, Grand Island, NY, USA); J82, T24, and 5637
cells were cultured in RPMI-1640 containing 10% FBS; RT4
cells were cultured in McCOY’s 5A (M4892) (Sigma-Aldrich,
St. Louis, Missouri, USA) containing 10% FBS in a humidified
atmosphere of 5% CO2 at 37◦C. The medium is renewed
every 2–3 days. The experiments were then carried out on
passage 3–5 cells.

Real-Time Quantitative Polymerase Chain
Reaction Verification
Total RNA was extracted with Trizol reagent (Beyotime, Jiangsu,
China). The total RNA was reverse transcribed into cDNA
using the PrimeScriptTM RT reagent Kit (Perfect Real Time)
(TaKaRa, Japan) and RT-QPCR assay was performed using the
TB Green R© Premix Ex TaqTM II (Tli RNaseH Plus) (TaKaRa,
Japan) in an ABI Prism 7300 system (Thermo Fisher Scientific).
The GAPDH was used as the reference gene and 2−11Ct

method was used to calculate the fold change of the target
gene. All primers sequences used in the study were shown in
Supplementary Table 1.

RESULTS

Identifying Differentially Expressed RBPs in
BC Patients
We systematically analyzed the roles of RBPs in patients with
BC. Figure 1 shows the research flow chart. The BC patients’
transcriptomic data were downloaded from TCGA, including 19
normal bladder tissue samples and 411 tumor tissue samples.
We used edgeR software to process the data and identify the
differentially expressed RBPs. As per the study criteria (|log2
FC| >1.0, FDR < 0.05), we selected 116 differentially expressed
RBPs from 1,542 RBPs (Gerstberger et al., 2014). Of these,
61 were upregulated, and 55 were downregulated. Figure 2

shows the expressions and distributions of these differentially
expressed RBPs.

GO and KEGG Enrichment Analysis of
Differentially Expressed RBPs
To investigate the biological functions and molecular
mechanisms of these differentially expressed RBPs, we
conducted GO and KEGG functional enrichment analysis
of upregulated and downregulated RBPs through the
WebGestalt online tool (Table 1). The biological processes
indicated that the upregulated RBPs were significantly
enriched in gene silencing, posttranscriptional regulation
of gene expression, regulation of gene expression, epigenetics,
DNA modification, RNA catabolic processes, regulation
of cellular amide metabolic processes, cellular processes
involved in reproduction in multicellular organisms,
methylation, dsRNA processing, and RNA modification.
The downregulated RBPs were significantly enriched in
mRNA processing, regulation of mRNA metabolic processes,
posttranscriptional regulation of gene expression, regulation of
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FIGURE 1 | The flow chart for analyzing the RBPs in BC.

FIGURE 2 | The differentially expressed RBPs in BC. (A) Volcano plot; (B) Heat map.

cellular amide metabolic processes, RNA splicing, cytoplasmic
translation, RNA catabolic processes, response to oxygen
levels, epithelial cell apoptotic processes, and response
to ischemia. The upregulated and downregulated RBPs
were both enriched in the cellular component associated
with the ribonucleoprotein granule. Regarding molecular

functions, the upregulated RBPs were significantly enriched in
catalytic activity, acting on RNA, mRNA binding, translation
regulator activity, nucleotidyltransferase activity, pre-mRNA
binding, double-stranded RNA binding, nuclease activity,
ribonucleoprotein-complex binding, lipopolysaccharide binding,
and regulatory RNA binding. The downregulated RBPs were
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TABLE 1 | KEGG pathway and GO enrichment analysis of differentially expressed RBPs.

GO term P-value FDR

Up-regulated RBPs Gene silencing 1.53E-13 1.30E-10

Posttranscriptional regulation of gene expression 4.95E-12 2.11E-9

Regulation of gene expression, epigenetic 6.75E-11 1.91E-8

DNA modification 1.08E-10 2.30E-8

RNA catabolic process 1.66E-9 2.82E-7

Regulation of cellular amide metabolic process 6.50E-9 9.21E-7

Cellular process involved in reproduction in Multicellular organism 2.41E-8 2.64E-7

Methylation 2.48E-8 2.64E-7

dsRNA processing 6.70E-7 6.33E-5

RNA modification 9.50E-7 8.08E-5

Ribonucleoprotein granule 9.13E-10 1.57E-7

Catalytic activity, acting on RNA 9.88E-15 2.79E-12

mRNA binding 1.35E-9 1.91E-7

Translation regulator activity 1.11E-7 1.04E-5

Nucleotidyltransferase activity 6.98E-7 4.92E-5

Pre-mRNA binding 8.30E-6 4.68E-5

Double-stranded RNA binding 1.21E-5 5.67E-4

Nuclease activity 1.51E-5 6.09E-4

Ribonucleoprotein complex binding 1.53E-4 0.005

Lipopolysaccharide binding 3.00E-4 0.009

Regulatory RNA binding 4.18E-4 0.012

MicroRNAs in cancer 5.45E-5 0.018

Down-regulated RBPs mRNA processing <0.001 <0.001

Regulation of mRNA metabolic process 1.36E-13 4.64E-11

Posttranscriptional regulation of gene expression 1.64E-13 4.64E-11

Regulation of cellular amide metabolic process 1.26E-12 2.67E-10

RNA splicing 5.92E-11 1.01E-8

Cytoplasmic translation 6.22E-7 8.81E-5

RNA catabolic process 1.79E-6 2.17E-4

Response to oxygen levels 1.28E-4 0.014

Epithelial cell apoptotic process 3.42E-4 0.030

Response to ischemia 3.53E-4 0.030

Ribonucleoprotein granule 5.14E-9 8.84E-7

mRNA binding <0.001 <0.001

AU-rich element binding 5.03E-12 7.09E-10

Translation factor activity, RNA binding 6.41E-10 6.03E-8

Translation regulator activity 5.69E-8 4.01E-6

Single-stranded RNA binding 6.34E-7 3.58E-5

snRNA binding 3.55E-4 0.017

Ribonucleoprotein complex binding 0.001 0.045

Progesterone-mediated oocyte maturation 5.19E-5 0.017

Oocyte meiosis 1.25E-4 0.020

significantly enriched in mRNA binding, AU-rich-element
binding, translation factor activity, RNA binding, translation
regulator activity, single-stranded RNA binding, snRNA
binding, and ribonucleoprotein-complex binding. KEGG
analysis indicated that the upregulated RBPs were significantly
enriched in microRNAs in cancer, and the downregulated RBPs
were significantly enriched in progesterone-mediated oocyte
maturation and oocyte meiosis.

Screening for Prognosis-Associated RBPs
We performed a univariate Cox regression analysis of
all the differentially expressed RBPs to determine their
prognostic significance and obtained 22 prognostic RBPs
(Figure 3). We then performed LASSO regression analysis
on these RBPs and obtained 12 RBPs with prognostic value
including ZNF106, CTIF, RBMS3, NOVA1, PPARGC1B, MTG1,
DARS2, CTU1, ENOX1, LIN28A, IGF2BP2, and TDRD1
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FIGURE 3 | Univariate Cox regression analysis of differentially expressed RBPs.

(Supplementary Figure 1). We further performed multivariate
Cox regression analysis on the 12 RBPs and finally identified 12
genes for subsequent analysis.

Constructing and Validating
Prognostic-Related Genetic Risk Score
Model
We built a predictive model based on the 12 RBPs screened
via multivariate Cox regression analysis (Table 2). The risk
score for each patient with BC was calculated using the
formula, risk score = (0.0678 ∗ ExpZNF106) + (0.1601 ∗

ExpCTIF) + (0.0642 ∗ ExpRBMS3) + (0.0172 ∗ ExpNOVA1)
+ (−0.1390 ∗ ExpPPARGC1B) + (−0.1443 ∗ ExpMTG1) +

(0.4480 ∗ ExpDARS2) + (−0.2467 ∗ ExpCTU1) + (0.0392 ∗

ExpENOX1)+ (0.1514 ∗ ExpLIN28A)+ (0.0384 ∗ ExpIGF2BP2)
+ (0.0235 ∗ ExpTDRD1).

We then divided 411 BC patients into high-risk and low-risk
groups based on the median risk score and performed a survival
analysis to evaluate their predictive performance. Patients in
the high-risk group had poorer OS than did those in the low-
risk group (P < 0.001; Figure 4A). We further conducted a
time-dependent ROC analysis to assess the predictability of this
model, and the areas under the ROC curve (AUCs) of this
model were 0.677 for 1 year, 0.697 for 3 years, and 0.709 for
5 years (Figure 4B). Figures 4C,D show the risk curve and
expression heat map, respectively, of the 12 genes between both

TABLE 2 | Multivariate Cox regression analysis to identify prognosis-related hub

RNA binding proteins.

Gene Coef Exp(coef) se(coef) z Pr(>|z|)

ZNF106 0.0678 1.0702 0.1555 0.4363 0.6626

CTIF 0.1601 1.1737 0.1299 1.2329 0.2176

RBMS3 0.0642 1.0663 0.0711 0.9037 0.3661

NOVA1 0.0172 1.0173 0.0499 0.3441 0.7308

PPARGC1B −0.1390 0.8703 0.0765 −1.8161 0.0694

MTG1 −0.1443 0.8656 0.1317 −1.0964 0.2729

DARS2 0.4480 1.5653 0.1340 3.3444 0.0008

CTU1 −0.2467 0.7814 0.1201 −2.0535 0.0400

ENOX1 0.0392 1.0400 0.0601 0.6525 0.5141

LIN28A 0.1514 1.1634 0.0592 2.5571 0.0106

IGF2BP2 0.0384 1.0392 0.0398 0.9653 0.3344

TDRD1 0.0235 1.0238 0.0519 0.4536 0.6501

groups. We used the same calculation formula for the GSE13507
dataset to evaluate whether the model had similar predictive
performances for the other BC patient cohorts. Patients in the
high-risk group had a poorer OS (P < 0.001, Figure 4E), and the
AUC of this model was 0.728 for 1 year, 0.691 for 3 years, and
0.649 for 5 years (Figure 4F). Figures 4G,H show the risk curve
and expression heat map, respectively, of the 12 genes between
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FIGURE 4 | Risk score analysis of 12 genes prognostic model in the TCGA and GSE13507 cohorts. (A) Survival curve for high-risk and low-risk groups in the TCGA

cohort; (B) ROC curves in the TCGA cohort; (C) Risk score distribution in the TCGA cohort; (D) Expression heatmap in the TCGA cohort; (E) Survival curve for

high-risk and low-risk groups in the GSE13507 cohort; (F) ROC curves in the GSE13507 cohort; (G) Risk score distribution in the GSE13507 cohort; (H) Expression

heatmap in the GSE13507 cohort.

the two groups. The results showed that the model had good
predictive performance.

Prognostic Significance of the
Prognostic-Related Model Stratified by
Clinical Variables
To explore the clinical significance of the RBP-based prognostic
model in BC patients stratified by clinical variables, we stratified
the patients from TCGA according to age, sex, grade, stage,
T stage, N stage, and M stage. Kaplan-Meier survival curve
analysis showed that the OS was significantly shorter for patients
in the high-risk group than for those in the low-risk group
(Figure 5). Therefore, the RBP-based prognostic model can be
used to predict the prognosis of BC patients without considering
clinical variables.

Correlation Between the
Prognostic-Related Model and Clinical
Variables
We analyzed the correlation between the RBP-based prognostic
model and clinical variables to explore whether the prognostic
model affected BC tumor progression. We found no significant
correlation between age and sex (Figures 6A,B). However, the
risk score for low tumor grades was significantly lower than that
for high tumor grades (Figure 6C); the risk score for stages I–II
was significantly lower than that for stages III–IV (Figure 6D);
the risk score for T1–2 was significantly lower than that for
T3–4 (Figure 6E); the risk score for N0 was significantly lower

than that for N1–3 (Figure 6F), and the risk score for M0 was
significantly lower than that for M1 (Figure 6G). These results
showed that the prognostic model was significantly correlated
with BC tumor progression.

Correlation Between Prognostic-Related
RBPs and Clinical Variables
Based on those results, we analyzed the relationship between
prognostic-related RBPs and clinical variables to further
investigate the role of prognostic RBPs in BC. DARS2, ENOX1,
IGF2BP2, MTG1, PPARGC1B, RBMS3, and ZNF106 were
significantly correlated with grade; CTIF, DARS2, ENOX1,
IGF2BP2, MTG1, NOVA1, PPARGC1B, RBMS3, and TDRD1
were significantly correlated with stage; DARS2, ENOX1,
IGF2BP2, NOVA1, PPARGC1B, RBMS3, TDRD1, and ZNF106
were significantly correlated with T stage; CTIF, IGF2BP2,
LIN28A, MTG1, PPARGC1B, and RBMS3 were significantly
correlated with M stage; and DARS2 and PPARGC1B were
significantly correlated with N stage (Table 3).

Establishment and Validation of a
Nomogram Based on Clinical Variables
To clarify whether the RBP-based prognostic model is an
independent prognostic factor when other conventional clinical
variables are considered in TCGA, we performed univariate
regression analysis to assess the predictive values of clinical
features in BC patients. Age, tumor stage, primary tumor
location, lymph node infiltration, distant metastasis and risk
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FIGURE 5 | Kaplan-Meier survival curves analysis stratified by different clinical variables. (A) Age ≤ 65; (B) Age > 65; (C) Male; (D) Female; (E) Stage III–IV; (F) High

grade; (G) T stage 1–2; (H) T stage 3–4; (I) M0; (J) M1-X.

score of BC patients were significantly related to OS (Figure 7A).
Subsequently, multivariate regression analysis showed that age
(P = 0.001), tumor stage (P = 0.042), lymph node infiltration
(P = 0.017), and risk score (P < 0.001) were independent
prognostic factors associated with OS (Figure 7B). Next, we
constructed a nomogram based on the RBP-based prognostic
model and other conventional clinical variables to establish a
quantitative prognostic evaluation method for BC (Figure 7C).
Drawing a vertical line between the prognosis axis and the total
point axis enabled estimation of the 1-year, 3-year, and 5-year
survival rates for patients with BC. The established calibration
curve showed good consistency between the predicted results and
the actual results (Figures 7D–F). Kaplan-Meier survival analysis
in TCGA showed that the individual risk stratification of patients
with BC based on the nomogram better distinguished patients
with low survival rates (P < 0.001; Figure 7G). The AUCs of the
nomogramwere 0.755 for 1 year, 0.758 for 3 years, and 0.766 for 5
years (Figure 7H). We also used the GSE13507 dataset to validate
the clinical applicability of the nomogram. The nomogram-based
risk stratification of patients with BC also better distinguished

patients with low survival rates (P < 0.001; Figure 7I). The
AUCs of the nomogram were 0.837 for 1 year, 0.805 for 3 years,
and 0.758 for 5 years (Figure 7J). These results showed that
the nomogram had high predictive ability and accuracy for the
survival status of patients with BC.

Upstream Regulatory Network of
Prognostic-Related RBPs
To explore the role of these prognostic-related RBPs in
tumorigenesis and development, we studied the upstream
regulatory factors and their regulatory network. We first
downloaded 318 transcription factors (TFs) associated with
tumorigenesis and progression from the CISTROME project
(www.cistrome.org), then screened 257 effective TFs based
on the expression data of the TCGA BC patients. Figure 8A
shows the differential expression distribution of these TFs
in BC between tumor tissues and adjacent tissues. Next, we
revealed the regulatory relationship between prognostic-
related RBPs and TFs through coexpression. Sixty-one TFs
were involved in regulating RBPs (Supplementary Table 2).
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FIGURE 6 | Relationship between prognostic related model and clinical variables. (A) Age; (B) Gender; (C) Grade; (D) Stage; (E) T stage; (F) N stage (G) M stage.

Figure 8B shows the regulatory network of the prognostic-
related RBPs and TFs. Next, we analyzed the GO and
KEGG functions and pathway enrichments of these 61 TFs
using the clusterProfiler package. The biological processes
indicated that these TFs were significantly enriched in pri-
miRNA transcription regulation by RNA polymerase II,
hemopoiesis regulation, and the intracellular receptor signaling
pathway. These TFs were enriched in the cellular components

associated with the transcription regulator, protein-DNA,
and transcription repressor complexes. In terms of molecular
functions, these TFs were significantly enriched in DNA-binding
transcription-factor binding, ligand-activated transcription-
factor activity, and activation of transcription-factor binding
(Figure 8C). KEGG analysis indicated that these TFs were
significantly enriched in transcriptional misregulation in cancer,
the hippo signaling pathway, Th17 cell differentiation, the
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TABLE 3 | The relationship between prognostic related RBPs and clinicopathologic parameters.

Gene Grade Stage T stage M stage N stage

Low High I–II III–IV T1–T2 T3–T4 M0 M1–X N0 N1–3

N 21 386 133 275 124 253 200 208 237 130

CTIF t-value 1.167 2.294 1.803 2.273 1.170

P-value 0.244 0.022 0.072 0.024 0.243

CTU1 t-value 0.744 0.928 1.311 1.274 1.304

P-value 0.458 0.354 0.191 0.203 0.193

DARS2 t-value 4.476 3.455 2.837 0.776 2.772

P-value <0.001 <0.001 0.005 0.438 0.006

ENOX1 t-value 3.863 2.901 3.931 1.772 1.010

P-value <0.001 0.004 <0.001 0.077 0.313

IGF2BP2 t-value 5.098 4.080 4.483 3.903 1.004

P-value <0.001 <0.001 <0.001 <0.001 0.316

LIN28A t-value 1.822 1.553 1.602 2.039 0.074

P-value 0.069 0.121 0.110 0.042 0.941

MTG1 t-value 2.463 2.481 1.780 2.454 1.886

P-value 0.014 0.014 0.076 0.015 0.060

NOVA1 t-value 1.399 2.888 3.064 0.103 1.349

P-value 0.163 0.004 0.002 0.918 0.178

PPARGC1B t-value 3.601 4.229 3.210 3.450 2.869

P-value <0.001 <0.001 0.001 <0.001 0.004

RBMS3 t-value 2.577 5.039 4.562 3.162 1.782

P-value 0.01 <0.001 <0.001 0.002 0.076

TDRD1 t-value 1.196 2.326 2.929 1.686 1.296

P-value 0.232 0.021 0.004 0.093 0.196

ZNF106 t-value 2.754 1.002 2.374 0.141 0.763

P-value 0.006 0.317 0.018 0.888 0.446

JAK-STAT signaling pathway, the Wnt signaling pathway,
and the PD-L1 expression and PD-1 checkpoint pathway in
cancer (Figure 8D).

Evaluation of Immune Cell Infiltration and
Immunotherapy Response in BC Patients
Based on the Model
Because the immune microenvironment is critical to tumor
occurrence, development, and treatment, we investigated the
differences in immune cell infiltration between the two patient
subgroups. We estimated the degree of immune cell infiltration
in both subgroups by using CIBERSORT and the LM22
gene set. The CIBERSORT algorithm was conducted with
1,000 simulations. The infiltration degrees of plasma cells,
CD4 memory-activated T cells, gamma-delta T cells, resting
dendritic cells, activated mast cells, and neutrophils differed
significantly between the two groups (Figures 9A,B), indicating
that the immune cell infiltration differed between the two
groups according to model risk stratification. Hence, we explored
the differences in response rates to immunotherapy. Owing
to the lack of a ccRCC cohort receiving immunotherapy, the
tumor immune dysfunction and exclusion (TIDE) algorithm
was used to preliminarily investigate the response rates of
ccRCC patients in the TCGA cohort to immunotherapy. The

response rate was significantly higher in the high-risk group
than in the low-risk group (P < 0.001; Figure 9C), indicating
that the model could be used as an indicator to predict
immune response. Studies have shown that immune checkpoint
inhibitor genes can regulate immune infiltration. Therefore,
we further compared the expressions of common immune
checkpoint inhibitor genes (PD-1, PD-L1, PD-L2, and CTL4) in
different patient groups stratified by model to further investigate
the complex interactions between immune infiltration and
immune checkpoint inhibitor genes. The immune checkpoint
inhibitor gene expression was significantly higher in the high-
risk group than in the low-risk group (Figures 9D–G), which
is consistent with previous results suggesting that the high
expression of immune checkpoint inhibitor genes is associated
with adverse outcomes (Sun et al., 2020). We then performed
survival analysis of the patient groups stratified by model
and immune checkpoint inhibitor genes to further investigate
whether immune infiltration affected the clinical outcomes of
patients with similar immune checkpoint gene expression levels.
The OS was significantly higher in the low-risk and high
immune checkpoint gene group than in the high-risk and high
immune checkpoint gene group, and the patient prognoses
were better in the low-risk and low immune checkpoint gene
group than in the high-risk and low immune checkpoint gene
group (Figures 9H–K).
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FIGURE 7 | Assessment the prognostic significance of different clinical characteristics and construction of a nomogram in BC patients. (A) Univariate Cox regression

analysis of correlations between risk score and clinical variables; (B) Multivariate Cox regression analysis of correlations between risk score and clinical variables; (C)

Nomogram for predicting the 1-year, 2-year, and 5-year OS of BC patients; (D–F) Calibration curves of the nomogram to predict OS at 1, 3, and 5 years; (G)

Kaplan-Meier survival analysis of BC patients in TCGA cohort based on the constructed nomogram; (H) ROC curves of BC patients in TCGA cohort based on the

constructed nomogram; (I) Kaplan-Meier survival analysis of BC patients in GSE13507 cohort based on the constructed nomogram; (J) ROC curves of BC patients in

GSE13507 cohort based on the constructed nomogram.

Prognostic-Related RBP Expression and
Prognostic Significance Verification
To verify the protein expressions of the prognostic-related
RBPs and their prognostic significance in patients with BC,
we used the Kaplan-Meier plotter online tool to observe the
correlation between the 12 RBPs and OS to further explore
the prognostic values of these RBPs. The RBMS3, MTG1,
DARS2, CTU1, ENOX1, IGF2BP2, ZNF106, CTIF, NOVA1,
and PPARGC1B genes were related to OS in patients with
BC (Figure 10). Next, we determined the immunohistochemical
results of these 12 genes via the Human Protein Atlas database to
determine their expression levels in BC patients. MTG1, CTU1,

IGF2BP2, ZNF106, CTIF, NOVA1, and LIN28A expressions
were significantly increased in BC tissues compared with
those in normal bladder tissues (Figures 11B,D–H,J), whereas
RBMS3 and DARS2 expressions were significantly decreased
in BC tissues compared with those in normal bladder tissues
(Figures 11A,C). TDRD1 expression did not significantly differ
between normal bladder and BC tissues (Figure 11I).

RT-qPCR Verification
To further evaluate the reliability of the prognostic model,
we measured the actual expression levels of these 12 RBPs in
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FIGURE 8 | The upstream regulatory network of prognostic related RBPs. (A) The differentially expressed TFs in BC; (B) The sankey plot of TFs and RBPs regulatory

networks; (C) GO analysis of these 61 TFs; (D) KEGG analysis of these 61 TFs.

normal bladder epithelial cells and various BC cells via RT-
qPCR (Figure 12). Compared with the normal bladder epithelial
cell line, SVHUC1, the following results were obtained. CTIF
expression was significantly upregulated in the 5637 and RT4
cell lines but did not differ in the J82 and T24 cell lines.
Similarly, CTU1 expression was significantly upregulated in J82,
T24, and RT4 cells but did not differ in the 5637 cells. DARS2
expression was significantly downregulated in J82, T24, 5637,
and RT4 cells; ENOX1 was significantly downregulated in J82,
T24, and RT4 cells, and IGF2BP2 was significantly upregulated
in J82, T24, 5637, and RT4 cells. LIN28A was significantly
upregulated in J82, 5637, and RT4 cells; MTG1 was significantly
upregulated in J82, T24, 5637, and RT4 cells, and NOVA1
was significantly upregulated in J82, T24, 5637, and RT4 cells.
PPARGC1B expression was significantly downregulated in T24,
5637, and RT4 cells, and RBMS3 was significantly downregulated
in J82, 5637, and RT4 cells. TDRD1 expression was significantly

upregulated in J82 and RT4 cells, and ZNF106 expression was
significantly upregulated in T24 and 5637 cells but significantly
downregulated in J82 cells. The RT-qPCR validation results for
these cells were consistent with the bioinformatics results, thus
revealing the validity and reliability of our constructed model.

Comparison With Other RBPs-Related
Prognostic Models
To determine whether our RBPs-related prognostic model was
superior to other prognostic models, we compared our model
with 6 RBPs (Wu et al., 2020) model and 9 RBPs model
(Guo et al., 2020). Relevant prognostic genes were obtained
from the corresponding literature, and survival curves and ROC
curves were constructed based on the entire TCGA cohort,
respectively. Through the comparative analysis of these models,
we found that our model has a relatively higher prediction
accuracy (Supplementary Figure 2). Moreover, we also used
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FIGURE 9 | Evaluation of the immune cell infiltration and immunotherapy response in BC patients based on the model. (A) Landscape of immune cell infiltration in the

low-risk and high-risk groups determined by the CIBERSORT algorithm; (B) The radar plot of 22 immune cell infiltrates in high-risk and low-risk groups; (C) Response

rate to immunotherapy in TCGA cohort of BC patients based on TIDE algorithm; (D–G) Comparison of immune checkpoint gene expression levels between high- and

low-risk groups; Kaplan-Meier survival curves for the four patient groups stratified by the risk score and PD-1 (H), PD-L1 (I), PD-L2 (J), and CTLA4 (K).

external cohort (GSE13507) to validate our model, which further
proved its stability and applicability.

DISCUSSION

Post-transcriptional gene regulation is crucial for maintaining
cell function, and RBPs are the most important post-
transcriptional regulatory factors. RBPs participate in nearly all
steps of post-transcriptional regulation, determine the fate and
function of each transcript in cells, and ensure cell homeostasis
(Pereira et al., 2017). RBPs have been reported to be abnormally
expressed in various tumors and are associated with patient
prognosis (Patry et al., 2003; King et al., 2011; Wurth et al.,
2016). However, few RBPs have been studied in depth or have
been found to be involved in tumorigenesis, progression, and
metastasis (Abdelmohsen et al., 2008; Preca et al., 2015). Here, we
systematically explored the expression patterns and roles of RBPs

in patients with BC and screened 116 differentially expressed
RBPs in BC and normal bladder tissues based on transcriptomic
data in TCGA.We conducted GO and KEGG analyses to evaluate
biological functions, then performed univariate Cox regression,
LASSO regression, and multivariate Cox regression analyses
to screen prognostic-related RBPs and assess their prognostic
significance. We also established a risk score model to predict the
prognoses of patients with BC based on these prognostic genes.
Moreover, we combined risk score with other clinical variables
to conduct a nomogram to establish a quantitative prognostic
evaluation method for patients with BC.

Enrichment analysis of biological functions and pathways of
the differentially expressed RBPs indicated that these RBPs were
significantly enriched in mRNA processing, posttranscriptional
regulation of gene expression, regulation of cellular amide
metabolic processes, regulation of mRNA metabolic processes,
RNA catabolic processes, gene silencing, RNA splicing,
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FIGURE 10 | Validation the prognostic value of prognostic RBPs in BC by Kaplan-Meier plotter.

FIGURE 11 | Verification of prognostic RBPs expression in BC and normal renal tissue using the HPA database. (A) RBMS3; (B) MTG1; (C) DARS2; (D) CTU1; (E)

IGF2BP2; (F) ZNF106; (G) CTIF; (H) NOVA1; (I) TDRD1; (J) LIN28A.
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FIGURE 12 | The expression heatmap of RBPs in the normal bladder epithelial cell line (SVHUC1) and bladder cancer cell lines (J82, T24, 5637, and RT4).

regulation of gene expression, epigenetics, DNA modification,
nucleic acid phosphodiester bond hydrolysis, ribonucleoprotein
granules, nucleolar parts, the telomerase holoenzyme complex,
mRNA binding, catalytic activity, acting on RNA, translation
regulator activity, AU-rich-element binding, translation factor
activity, RNA binding, single-stranded RNA binding, double-
stranded RNA binding, pre-mRNA binding, nuclease activity,
and ribonucleoprotein-complex binding.

Recent studies have shown that regulating translation and
RNA processing and metabolism affect the occurrence and
progression of many diseases (Jain et al., 2019; Kim et al., 2019;
Siang et al., 2020). Here, we conducted a systematic analysis
and identified a signature of 12 prognosis-associated RBPs:
RBMS3, MTG1, DARS2, CTU1, ENOX1, IGF2BP2, ZNF106,
CTIF, NOVA1, PPARGC1B, TDRD1, and LIN28A. RBMS3 is a
member of the single-stranded binding protein family of the c-
myc gene and mainly encodes a glycine-rich RBP. We found that
mRNA levels of RBMS3 were significantly reduced in BC tissues;
this was similar to the results of Zhu et al. (2019), who found
that RBMS3 expression was downregulated and associated with
a poor prognosis in patients with breast cancer. Additionally,
downregulated RBMS3 expression is associated with poor
prognosis in lung squamous cell carcinoma, gastric cancer and
esophageal squamous cell carcinoma (Li et al., 2011a; Liang et al.,
2015; Zhang T. et al., 2016), and downregulation of RBMS3
in ovarian cancer increased chemotherapeutic resistance (Wu
et al., 2019). MTG1 is a conserved ribosomal assembly guanosine
triphosphatase, which functions as a cofactor of mitoribosome.
As shown in our study, MTG1 mRNA was significantly increased

in BC tissues. Faraj Shaglouf et al. (2020) found that MTG1
expression was increased in hepatocellular carcinoma and
played a regulatory role in its progression. Liu and Pan (2016)
found that MTG1 played an important role in tumor induction
or progression. DARS2 mainly encodes mitochondrial tRNA
synthase, which is crucial for mitochondrial folding protein
reactions. DARS2 gene mutation was reported to be related
to leukoencephalopathy (Köhler et al., 2015). Qin et al. (2017)
found that DARS2 expression was upregulated in hepatocellular
carcinoma and that DARS2 regulated cell cycle progression and
apoptosis of hepatocellular carcinoma cells. CTU1 is mainly
involved in modifying the swinging position of U34 in some
tRNAs. CTU1 expression was also upregulated in melanoma cells
(Rapino et al., 2018). Delaunay et al. (2016) found that CTU1
expression was upregulated in breast cancer cells, and deleting
the CTU1 gene significantly reduced migration and tumorsphere
formation in breast cancer cells. ENOX1 is a copper-binding
protein expressed in endothelial and other cells and has NADH
oxidase activity and promotes angiogenesis. Studies have shown
that inhibiting ENOX1 activity reduced the ability of endothelial
cells to migrate and form tubular structures (Geng et al., 2019).
Therefore, targeted inhibition of ENOX1 activity to inhibit
tumor angiogenesis may be a feasible strategy for tumor control.
Smith et al. (2016) found that targeted inhibition of ENOX1
in tumor stroma improved radiotherapeutic efficacy in tumor
patients. IGF2BP2 is a member of the insulin-like growth factor
2 mRNA-binding protein family, which are newly reported m6A
“readers.” IGF2BP2 is primarily responsible for the stability
of targeted mRNA and is associated with thousands of targets,
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including MYC, KRAS, and MDR1 (Xiao et al., 2016). Previous
studies revealed that IGF2BP2 was upregulated in multiple
tumors and was associated with tumor growth, migration, and
energy metabolism (Li et al., 2015). IGF2BP2 overexpression
was associated with decreased cell adhesion and migration in
breast cancer cells (Li et al., 2015). Another study found that
IGF2BP2 expression was associated with tumor progression
in glioblastomas and hepatomas (Cao et al., 2018). ZNF106
has a variety of cellular functions, including insulin receptor
signaling, rRNA transcriptional regulation, and maintenance of
testicular development, and is essential for maintaining motor
and sensory neurons (Joyce et al., 2016). In this study, ZNF106
mRNA levels were significantly downregulated in BC tissues.
However, the role of ZNF106 in tumors is unreported. CTIF is
a specific factor involved in the first round of translation driven
by a nuclear cap-binding protein complex, which contributes to
protein and mRNA quality control. We found that CTIF mRNA
levels were significantly downregulated in BC tissues. CTIF also
shares a domain with inclusion bodies containing the SOD1
mutant G93A, which is a histologic feature of amyotrophic
lateral sclerosis; thus, CTIF may be related to occurrence and
development of this disease (Park et al., 2018). NOVA1 is a
pre-mRNA-binding splicing factor expressed in the central
nervous system and is necessary for motor system development.
Studies have reported that NOVA1 plays a key role in various
tumors such as gastric cancer, astrocytoma, liver cancer and
lymphoma (Kim et al., 2016, 2017). Zhang Y. et al. (2016)
found that NOVA1 overexpression promoted the growth of
hepatocellular carcinoma. Shen et al. (2015) found that miR-339
inhibited gastric cancer cell growth, invasion, migration, and
tumorigenicity by regulating NOVA1 expression. PPARGC1B is a
co-activator of the oxisome proliferator-activated receptor and an
important regulator of energy metabolism. Li et al. (2011b) found
a positive correlation between PPARGC1B polymorphism and
the risk of ER-positive breast cancer. Eichner et al. (2010) found
that miR378 was embedded in PPARGC1B, and its expression
was associated with human breast cancer progression. TDRD1
belongs to a large family of proteins containing the Tudor
domain, which is specific to germ cells. In our study, TDRD1
mRNA expression was elevated in BC tissues; this was similar to
the results of Boormans et al. (2013), who found that TDRD1 was
upregulated in prostate cancer with ERG overexpression. Brase
et al. (2011) found that TDRD1 expression was upregulated in
both ERG-negative and ERG-positive prostate cancer. LIN28A
is a pluripotent factor and highly conserved RNA-binding
protein associated with neurodevelopment and the pathogenesis
of various advanced cancers (Viswanathan et al., 2009). In
our study, LIN28A mRNA expression was increased in BC
tissues, which was similar to the findings of Huang et al.,
who found that LIN28A expression was increased in thyroid
papillary carcinoma tissues and cells. This was associated with
higher tumor stages and lymph node metastasis, whereas
LIN28A knockdown suppressed tumor cell proliferation,
invasion, and migration (Huang et al., 2018). A recent study
suggested that LIN28A played a role in the mechanism
of resistance to paclitaxel in patients with breast cancer
(Lv et al., 2012).

We usedmultiple stepwise Cox regression analysis to establish
a risk score model for predicting BC patient prognoses based on
these 12 genes. Survival and ROC curve analyses showed that
these 12 genes had good diagnostic ability and could be used to
screen out BC patients who had poor prognoses. However, the
specific molecular mechanisms of these 12 RBPs in BC remain
unclear, and the underlying molecular mechanisms should be
explored. Subsequently, we assessed the relationship between
risk score model and clinical variables and between prognostic-
related RBPs and clinical variables and found that the risk score
model was significantly associated with clinical progression. We
then established a nomogram to more intuitively predict 1-year,
3-year, and 5-year survival estimates in patients with BC. TCGA
and GEO data were used to evaluate and verify the nomogram
performance. We also analyzed the regulatory relationship
between these prognostic-related RBPs and their upstream
regulators and identified 61 TFs that may help regulate BC. TFs
are the largest family of proteins involved in transferring genetic
information from DNA to mRNA (Levine and Tjian, 2003). TFs
are involved in regulating complex molecular mechanisms in
many diseases, including tumors, and play important roles in
tumor growth, invasion and metastasis. Many studies have found
that BC plays a key role in tumor growth, invasion andmetastasis
(Lambert et al., 2018). Schulte et al. (2012) found a positive
correlation between cytoplasmic and nuclear expressions of TFs
and activated mesenchymal fibroblasts, which may be involved
in the invasive phenotype of BC. Huaqi et al. (2019) showed that
SOX18 played a procancer role in BC and may be a potential
prognostic biomarker and therapeutic target for BC. Therefore,
the specific roles and mechanisms of these TFs in BC deserve
further study.

Next, we further analyzed the differences in immune cell
infiltration and response rates to immunotherapy among
different groups of patients with BC based on the model. Our
results revealed differences in immune cell infiltration, immune
response, and immune checkpoint inhibitor gene expression
levels between the groups. BC is an immunosensitive tumor
infiltrated by various immune cells (Schwamborn et al., 2019).
Many studies have reported the influence of the immune
microenvironment on BC occurrence and immunotherapy,
including the long-term application of Bacillus subtilis Calmette-
Guerin and PD-1/PD-L1 blockers in treating BC (Eich et al.,
2019). Tumor-infiltrating immune cells are themain components
of the tumor microenvironment and are closely related to the
efficacy and clinical results of targeted drugs (Liu et al., 2018).
Thus, our model can be used as an indicator to predict immune
cell infiltration and immune response in patients with BC.

We used the Kaplan-Meier plotter online tool to study the
prognostic significance of the 12 RBP-encoding genes and found
that MTG1, CTU1, and PPARGC1B gene expressions were
related to good prognoses in patients with BC, while high
RBMS3, DARS2, ENOX1, IGF2BP2, ZNF106, CTIF, and NOVA1
gene expressions were related to poor prognoses. We further
confirmed the expressions of these genes at the cellular level.
The results suggested that the signatures of these 12 genes may
help modulate treatment, assess treatment outcomes and predict
patient survival.
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Overall, this study was conducted to understand the BC
pathogenesis, progression, invasion and metastasis from a new
perspective. Our predictive model well-predicted the survival
times of patients with BC, suggesting that the signatures of these
12 genes have an important biological background, which may be
helpful for clinical adjuvant therapy.

Our study had some limitations. First, we used bioinformatics
techniques to evaluate the diagnostic and prognostic prediction
values of several key RBPs in BC. However, the specific functions
andmechanisms of these key RBPs in BC growth and progression
remain unclear, and further in vitro and in vivo experiments are
needed. Second, our risk score model should be verified with a
multicenter, large prospective cohort of patients with BC. Finally,
our study was based only on bio-omics data, and analyzing
different patient characteristics on different platforms can lead to
patient heterogeneity.

In conclusion, we systematically analyzed the biological
functions and prognostic values of differentially expressed RBPs
in BC using bioinformatics techniques. These RBPs may play
important roles in BC tumor occurrence, progression, invasion
and metastasis. Additionally, we first constructed a prognostic
model of BC based on features of 12 RBPs, suggesting that the
model can be used as an independent prognostic factor of BC.
These findings provide new insights into the mechanisms by
which BC occurs and progresses and may aid in developing new
clinical therapeutic targets or prognostic markers.
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