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Identification of the ZEB2
gene as a potential target
for epilepsy therapy and the
association between
rs10496964 and ZEB2
expression
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Abstract

Objective: An association between the rs10496964 polymorphism and the ZEB2 gene has not

yet been reported, and the role of ZEB2 in epilepsy therapy is also unclear. The aims of this

research were to evaluate the role of ZEB2 in the therapy of epilepsy and to explore the asso-

ciation between rs10496964 and ZEB2 expression.

Methods:We used the expression quantitative trait loci (eQTL) dataset resource from the Brain

eQTL Almanac to evaluate the association between rs10496964 and ZEB2 expression in human

brain tissue. Pathway and process enrichment analysis, protein–protein interaction analysis, and

PhosphoSitePlusV
R
analysis were then performed to further evaluate the role of ZEB2 in the

therapy of epilepsy.

Results: The rs10496964 polymorphism was found to regulate the expression of ZEB2 in human

brain tissue. The ZEB2 protein interacts with the targets of approved antiepileptic drugs, and a

post-translational acetylation modification of ZEB2 was associated with an epilepsy drug therapy.

Conclusion: Our findings suggest that ZEB2 may be involved in the therapy of epilepsy, and

rs10496964 regulates ZEB2 expression in human brain tissue.
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Introduction

The epilepsies are a group of brain disor-
ders that affect up to 4% of all people at
some time in their lives.1 The current treat-
ments for epilepsy are largely unsatisfacto-
ry,2 mainly as a result of the unclear

pathogenesis of these disorders. Clinical
genetic data about the common epilepsies
indicate complex inheritance, and genetic
approaches are thus likely to be important
for understanding at least some mecha-

nisms of epilepsy pathogenesis. In addition,
some evidence suggests a role for gene poly-
morphisms in epilepsy,3–5 but their contri-
butions remain controversial, mainly
because of relatively small sample sizes
and a lack of functional validation of

these polymorphisms.
A genome-wide association study has

revealed a significant association between
epilepsy and the rs10496964 polymor-
phism.6 This polymorphism is located in
an intergenic region that is nearest to the
ZEB2 gene, which encodes the zinc finger

E-box binding homeobox 2 (ZEB2) protein.
Interestingly, polymorphisms in noncoding
regions may confer disease risk by regulat-
ing the expression of a target gene.7

However, the relationship between
rs10496964 and ZEB2 expression has not

yet been evaluated. A previous study
explored the relationship between ZEB2
and epilepsy, but did not find a role for
ZEB2 in epilepsy treatment, and did not
find that the rs13020210 polymorphism reg-

ulates the expression of ZEB2.8 Mutations
in ZEB2 are associated with Hirschsprung
disease/Mowat–Wilson syndrome.9,10

Epilepsy is one of the main features of
Mowat–Wilson syndrome in most

patients,11 suggesting common pathogenic

mechanisms between the two conditions.

However, although genetic analyses have

provided important information about the

pathogenesis of epilepsy, such data remain

difficult to explain.
To further evaluate the role of ZEB2 in

epilepsy treatment and explore the associa-

tion between rs10496964 and ZEB2 expres-

sion, we conducted expression quantitative

trait loci (eQTL) analysis, pathway and

process enrichment analysis, protein–pro-

tein interaction (PPI) analysis, and

PhosphoSitePlusVR analysis.

Materials and methods

Ethics and consent

This study consisted of a bioinformatic

analysis that did not involve humans or ani-

mals. Therefore, local ethics committee

approval and informed consent were not

required.

eQTL analysis

Previous studies have indicated that most

disease-associated polymorphisms confer

disease risk by acting as eQTL to regulate

gene expression.12–15 Considering that

rs10496964 is an intergenic variant, we per-

formed an eQTL analysis to evaluate the

association between this polymorphism

and ZEB2 expression in human brain

tissue because epilepsy is a chronic brain

disease. The association between the

rs10496964 genotype and ZEB2 expression

was assessed using a linear regression anal-

ysis under an additive model in the brain

tissue. We selected the eQTL dataset
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resource from the Brain eQTL Almanac,

which consists of 10 datasets of tissue

from 10 brain regions, from 134 individu-

als.16 This resource contains datasets from

tissue from the following brain regions:

frontal cortex, temporal cortex, occipital

cortex, putamen, substantia nigra, medulla,

hippocampus, thalamus, cerebellum, and

white matter.

Pathway and process enrichment analysis

Gene enrichment analysis is an effective

tool to apply to the analysis and interpreta-

tion of biological data. We used this tool to

discover the shared functions or properties

of the biological items represented within

lists of genes. This method can provide

important biological insights and reveal

participation in the same biological activi-

ties or pathways associated with a disease.

We carried out pathway and process enrich-

ment analysis using the Metascape database

to investigate the genes that are co-

expressed with ZEB2.17 Metascape is a

tool designed to provide comprehensive

gene list annotations. It is an analytical

resource, with the integration of a large

number of current biological databases,

and is a robust analytical pipeline.

PPI analysis

Information from PPI network analysis is

beneficial for understanding disease associ-

ations in detail. To evaluate the role of

ZEB2 in drug treatments, we curated the

targets of approved drugs for epilepsy

using two databases: DrugBank 5.018 and

the Therapeutic Target Database 2020.19

We also investigated the interactions

between ZEB2 and the proteins encoded

by likely epilepsy-related genes. The PPIs

were evaluated using the STRING database

(https://string-db.org/cgi/input.pl), which

presents known and predicted PPI.20

We then used Cytoscape software to con-

struct PPI networks.21

PhosphoSitePlusVR analysis

Protein modifications and their regulation

are associated with protein function.

Proteins are the most common biological

molecules, and perform a vast array of bio-

logical functions within living organisms.

By controlling the modifications of protein

surfaces, these biological molecules can be

re-engineered to provide the desired func-

tions of biomolecule detection, assay, track-

ing, or targeting. We conducted a

PhosphoSitePlusVR analysis of ZEB2 to fur-

ther investigate its potential in epilepsy

therapy.

Results

eQTL analysis

The rs10496964 T allele was associated with

ZEB2 expression in tissue from both the

temporal cortex and the putamen

(P¼ 0.0093 and 0.027, respectively)

(Figure 1).

Pathway and process enrichment analysis

We identified 625 genes that are co-

expressed with ZEB2 by scanning the

COEXPEDIA database.22 The sum of

their edges’ log-likelihood scores was great-

er than one point. Next, we performed

pathway and process enrichment analysis

of these co-expressed genes and ZEB2

using the Metascape database, to identify

the possible biological pathways of ZEB2

in epilepsy. This analysis revealed that a

large number of the biological pathways

were associated with infection and inflam-

mation (Figure 2).
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PPI analysis

To evaluate the role of ZEB2 in drug repo-

sitioning, we obtained 115 genes that are

targeted by epilepsy drugs from two drug

target databases (DrugBank 5.0 and the

Therapeutic Target Database 2020). The

results of PPI analysis demonstrated that

ZEB2 interacts with epilepsy drug targets

(Figure 3a). Information about these genes

is shown in Table 1. We also identified 84

genes that are considered to be epilepsy-

related genes, 73 genes associated with

both brain development malformations

and epilepsy, and 536 genes associated

with both physical or other systemic

Figure 2. Pathway and process enrichment analysis. Bar graph of the enriched terms across input gene lists,
colored by P-values. P-values were calculated based on the accumulative hypergeometric distribution.

Figure 1. Rs10496964 is an expression quantitative trait locus (eQTL) that affects ZEB2 expression in
human brain tissue. Association between the rs10496964 genotype and ZEB2 expression using linear
regression analysis under an additive model in each of the 10 human brain tissue regions. Data were
retrieved from the Brain eQTL Almanac database.
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Figure 3. Protein–protein interaction (PPI) networks. (a) PPI networks of the proteins encoded by ZEB2
and the genes targeted by approved epilepsy drugs. The red node represents ZEB2 and the blue nodes
indicate genes targeted by approved epilepsy drugs. (b) PPI networks of the proteins encoded by ZEB2 and
likely epilepsy genes. The red node represents ZEB2 and the blue nodes indicate likely epilepsy genes.

Table 1. Information about the genes encoding antiepileptic drug targets.

Gene

Genomic

location Encoded protein

Post-translational

modifications Epilepsy drug

GSK3A Chr19 Glycogen synthase

kinase-3 alpha

Phosphorylation, acet-

ylation, ubiquityla-

tion, and other

Valproate

PPARG Chr3 Peroxisome prolifera-

tor-activated recep-

tor gamma

Phosphorylation, acet-

ylation, ubiquityla-

tion, and other

Valproate

HDAC2 Chr6 Histone deacetylase 2 Phosphorylation, acet-

ylation, ubiquityla-

tion, and other

Valproate

PPARD Chr6 Peroxisome prolifera-

tor-activated recep-

tor delta

Phosphorylation, ubiq-

uitylation, and other

Valproate

HDAC9 Chr7 Histone deacetylase 9 Phosphorylation and

ubiquitylation

Valproate

Wang et al. 5



abnormalities and epilepsy or seizures.23

The results of PPI analysis showed that
ZEB2 interacts with the proteins encoded
by nine epilepsy genes (Figure 3b).
Information about these genes is shown in
Table 2.

PhosphoSitePlusVR analysis

PhosphoSitePlusVR analysis of ZEB2
revealed four types of modifications: phos-
phorylation, acetylation, ubiquitylation,
and other. Phosphorylation, ubiquitylation,
and other were present, but were not asso-
ciated with any specific condition. For the
K1150 acetylation site modification, the
condition was also unclear. However, our
analysis revealed that histone deacetylase

(HDAC) is linked to the K377 acetylation

site (Figure 4).

Discussion

Although drug treatment has evolved rap-

idly in recent years, approximately 30% of

patients still suffer from recurrent seizures,

resulting in a medically severe and socially

disabling condition.24,25 However, the per-

sonalization of treatments targeted toward

the precise molecular pathogenesis of an ill-

ness26,27 may be able to avoid such condi-

tions in the future. A previous study did not

find ZEB2 to be a potential target for epi-

lepsy treatment, and did not identify any

variants regulating ZEB2 expression.

Table 2. Information about epilepsy genes whose encoded proteins interact with the ZEB2 protein.

Gene

Genomic

location Encoded protein

Post-translational

modifications Related diseases

EGF Chr4 Pro-epidermal growth

factor

Phosphorylation, ubiquity-

lation, and other

Epilepsy or seizures

KRAS Chr12 GTPase KRas Phosphorylation, acetyla-

tion, ubiquitylation, and

other

Epilepsy or seizures

MAF Chr16 Transcription factor Maf Phosphorylation, ubiquity-

lation, and other

Epilepsy or seizures

MEF2C Chr5 Myocyte-specific enhancer

factor 2C

Phosphorylation, acetyla-

tion, and other

Epilepsy or seizures

NOTCH1 Chr9 Neurogenic locus notch

homolog protein 1

Phosphorylation, acetyla-

tion, ubiquitylation, and

other

Epilepsy or seizures

PTEN Chr10 Phosphatidylinositol

3,4,5-trisphosphate

3-phosphatase and

dual-specificity protein

phosphatase PTEN

Phosphorylation, acetyla-

tion, ubiquitylation, and

other

Epilepsy or seizures

SOX2 Chr3 Transcription factor

SOX-2

Phosphorylation, acetyla-

tion, ubiquitylation, and

other

Epilepsy or seizures

TCF4 Chr18 Transcription factor 4 Phosphorylation, acetyla-

tion, ubiquitylation, and

other

Epilepsy or seizures

OCLN Chr5 Occludin Phosphorylation and

ubiquitylation

Brain development

malformations

and epilepsy
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This may be because the authors of this pre-

vious study did not fully integrate the data

from a large number of databases.8 In the

present study, we integrated data from a

brain tissue eQTL analysis, pathway and

process enrichment analysis, PPI analysis,

and PhosphoSitePlusVR analysis, and first

identified that ZEB2 may be involved in

epilepsy drug therapy. We also revealed

that the rs10496964 polymorphism regu-

lates the expression of ZEB2 in human

brain tissue. To the best of our knowledge,

this is the most comprehensive study to

have explored the role of ZEB2 in epilepsy.
The rs10496964 polymorphism is located

in an intergenic region, and is nearest to

ZEB2. Currently, the underlying associa-

tion between rs10496964 and ZEB2 is

unknown. Although regulatory elements

are present in the intergenic regions of

genes, they can also regulate gene expres-

sion at a great distance from the target

gene.28 To investigate the functional link

between ZEB2 and rs10496964 at a

molecular level, we performed eQTL anal-

ysis to assess whether the rs10496964 geno-

type was significantly associated with ZEB2

transcript expression in human brain tissue.

Using an eQTL dataset in human brain

tissue, the rs10496964 T allele was associat-

ed with lower ZEB2 expression in both the

temporal cortex and putamen. However, we

did not find any evidence that rs10496964

modulated ZEB2 expression in the frontal

cortex, occipital cortex, substantia nigra,

medulla, hippocampus, thalamus, cerebel-

lum, or white matter. The main reason for

this finding may be that rs10496964 regu-

lates ZEB2 expression in a region-specific

manner in the human brain. Notably,

changes in the temporal cortex and puta-

men have been reported to be often associ-

ated with seizures.29,30

Pathway and process enrichment analy-

sis revealed that the significantly enriched

pathways can be mainly divided into three

classes: pathways associated with cancer

(transcriptional misregulation in cancer,

Figure 4. Phosphoproteomic bioinformatic analysis of ZEB2 protein. PhosphoSitePlusV
R
analysis revealed

that histone deacetylase (HDAC) is linked to the K377 acetylation site.

Wang et al. 7



proteoglycans in cancer, and pathways in
cancer), pathways associated with funda-
mental cellular processes (osteoclast differ-
entiation, focal adhesion, cell adhesion
molecules, and phospholipase D signaling
pathway), and pathways associated
with infection and inflammation
(Staphylococcus aureus infection, leukocyte
transendothelial migration, chemokine sig-
naling pathway, phagosome, malaria, viral
myocarditis, nuclear factor kappa-light-
chain-enhancer of activated B cells
[NF-jB] signaling pathway, prion diseases,
amoebiasis, toxoplasmosis, cytokine–
cytokine receptor interaction, and human
T-cell leukemia virus type 1 [HTLV-1]
infection). Among these enrichment path-
ways, the largest number of pathways
were associated with infection and inflam-
mation. The inflammatory pathway is
thought to play a vital role in the develop-
ment of epilepsy.31 Furthermore, increasing
evidence suggests that inflammatory path-
ways might be related to several other neu-
ropsychiatric comorbidities, including
cognitive dysfunction,32,33 depression,34,35

autism spectrum disease,36 anxiety,37 and
schizophrenia.38

The investigation of protein–protein net-
works can be used for drug target discov-
ery, drug discovery, and drug design. This
method is currently very important because
it helps to elucidate the route that trans-
forms a biological network into an illness
pathway. This new method is therefore
likely to be very effective for dealing with
complex diseases.39–41 To obtain a basic
understanding of an illness, PPI networks
show the associations between nodes from
a global viewpoint. PPI networks are also
beneficial for understanding disease pro-
gression.42,43 In the current study, PPI net-
work analysis revealed that ZEB2 interacts
with a number of targets of epilepsy drugs.
We also found that ZEB2 interacts with the
proteins encoded by nine epilepsy-related
genes. A PPI network indicates an

association between proteins in a biological

pathway.44 Therefore, we can reasonably

speculate that ZEB2 may be involved in

epilepsy, and might thus be a potential ther-

apeutic target for this disorder.
Our PhosphoSitePlusVR analysis revealed

that HDAC is linked to ZEB2 acetylation.

HDAC is a family of enzymes that are asso-

ciated with the epigenetic modulation of

genomic activity.45,46 Dysregulation of

their activity can result in many neurological

diseases.47,48 HDAC inhibitors may be an

effective treatment for brain disorders,

including epilepsy, because they can increase

the acetylation of histones, maintain the bal-

ance of histone acetylation, and correct

transcriptional dysfunction.49–52 Valproic

acid is a broad anti-seizure drug that is a

first-line treatment for epilepsy. However,

valproic acid has also been reported to

inhibit HDACs.53 Recently, a phenotypic

screening platform found that HDAC inhi-

bition is likely an effective treatment for epi-

lepsy.54 Early treatment with HDAC

inhibitors might thus be an effective strategy

for preventing epileptogenesis, as well as for

reducing behavioral comorbidities.55 Given

that HDAC plays a key role in epilepsy

treatment, ZEB2 may be a potential thera-

peutic target for treating epilepsy.
In conclusion, we identified that ZEB2

may be involved in the treatment of epilep-

sy and that rs10496964 regulates the expres-

sion of ZEB2 in human tissue, via an

integrative analysis involving eQTL analy-

sis, pathway and process enrichment analy-

sis, PPI analysis, and PhosphoSitePlusVR

analysis.
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