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The characterization of the cardiac hormone atrial natriuretic peptide (ANP99−126),
synthesized and secreted predominantly by atrial myocytes under stimulation by
mechanical stretch, has established the heart as an endocrine organ with potent
natriuretic, diuretic, and vasodilating actions. Three additional distinct polypeptides
resulting from proteolytic cleavage of proANP have been identified in the circulation
in humans. The mid-sequence proANP fragment 31–67 (also known as proANP31−67)
has unique potent and prolonged diuretic and natriuretic properties. In this review, we
report the main effects of this circulating hormone in different tissues and organs, and
its mechanisms of actions. We further highlight recent evidence on the cardiorenal
protective actions of chronic supplementation of synthetic proANP31−67 in preclinical
models of cardiorenal disease. Finally, we evaluate the use of proANP31−67 as a new
therapeutic strategy to repair end-organ damage secondary to hypertension, diabetes
mellitus, renal diseases, obesity, heart failure, and other morbidities that can lead to
impaired cardiac function and structure.
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INTRODUCTION

Natriuretic Peptides
The human natriuretic peptides (NPs) consist of a family of three known peptides encoded in the
human genome, with each being a distinct gene product with similar structure (Figure 1). The atrial
natriuretic peptide (ANP99−126), a hormone synthesized and secreted predominantly by cardiac
cells, was the first member of the NP family to be discovered in de Bold et al. (1981), and established
the heart as an endocrine organ. Wall stretch, due to increased intravascular volume and/or cardiac
transmural pressure, is the major stimulus for cardiac ANP release (Goetze et al., 2020). ANP is
encoded by the NPPA gene located on chromosome 1 in the human genome, and is primarily
expressed by atrial myocytes. The NPPA gene translates a 151-amino acid polypeptide known as
preproANP. A post-translational modification process cleaves the 25 amino acid signal sequence to
produce proANP, a 126 amino acid peptide that is stored in intracellular granules of atrial myocytes
(Yan et al., 2000). Under stimulation, atrial cells release proANP that is rapidly converted to the
28-amino-acid C-terminal mature ANP by the transmembrane serine protease corin (Yan et al.,
2000), a transmembrane cardiac serine protease, to form the biologically active carboxyl-terminal
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FIGURE 1 | Schematic representation of natriuretic peptide gene product processing and generated peptide fragments. In humans, atrial natriuretic peptide (ANP) is
encoded by NPPA gene (Chr1:11,845,709-11,848,345:-) that translates a 151 a.a. polypeptide (preproANP). Post-translational modification process cleavages the
25 a.a. signal sequence to produce proANP, a 126 a.a. peptide that is stored in intracellular granules of atrial myocytes. Under stimulation, atrial cells release proANP
that is rapidly converted to the 28-a.a. C-terminal mature ANP by the transmembrane serine protease Corin, and a 98 a.a. N-terminal mature ANP (NT-proANP or
ANP1−98). Further cleavage by proteases of NT-proANP generates different fragments, i.e., amino acids 1–28 (proANPl−28), amino acids 31–67 (proANP31−67),
and amino acids 79–98 (proANP78−98). NH2, free amine group located at the N-terminal end of a polypeptide; COOH, free carboxyl group located at the C-terminal
end of a polypeptide; poly(A), multiple adenosine monophosphates mRNA tail; a.a., amino acid; Chr 1, Chromosome 1; NPPA, human atrial natriuretic peptide gene;
ANP, Atrial natriuretic peptide; NT-proANP, N-terminal proatrial natriuretic peptide; preproANP, precursors to prohormone of atrial natriuretic peptide; proANP,
prohormone of atrial natriuretic peptide.

28-amino-acid peptide called ANP99−126 (Forssmann et al.,
1998). The 28-amino acid peptide contains a 17-amino acid
ring in the center of the molecule (Figure 1), formed by a
disulfide bond between two cysteine residues at positions 7
and 23. The highly biologically active ANP99−126 is formed at
equimolar amounts as the biologically inactive amino-terminal
portion (98 amino acid) of proANP (termed NT-proANP, or
proANP1−98) (Yan et al., 2000). However, as ANP99−126 has
a very short half-life (less than 5 min) compared with NT-
proANP (60–120 min), NT-proANP is considered a more reliable
biomarker than ANP99−126 (Buckley et al., 1999). Originally, the
ring structure was thought to be essential for the ANP99−126
biological actions (Currie et al., 1984), but linear forms of
the N-terminal ANP prohormone containing internal sequences
believed to account for activity without the ring structure were
shown also to have biological activity, albeit significantly reduced
(Brenner et al., 1990; Vesely, 2007). The B-type natriuretic
peptide (BNP), also known as brain natriuretic peptide, is a
hormone secreted primarily by cardiomyocytes in the heart atria
and ventricles (Sudoh et al., 1988) in response to stretching
caused by increased ventricular blood volume and increased
filling pressure (de Lemos et al., 2003). While the main source of
BNP in normal conditions is the atrium, the production of BNP
from the ventricles increases under pathological conditions such
as cardiac remodeling (Luchner et al., 1998). Under stimulation,

a 32-amino acid polypeptide is secreted attached to a 76-amino
acid N-terminal fragment in the prohormone called NT-proBNP.
A specific convertase (furin or corin) subsequently cleaves
proBNP between arginine-102 and serine-103 into NT-proBNP
and the biologically active 32-amino acid polypeptide BNP 1–
32. Last, the C-type natriuretic peptide (CNP), encoded by the
gene NPPC located on human chromosome 2, is synthesized
and secreted from the central nervous system (e.g., cerebellum,
hypothalamus, and anterior pituitary), kidney, and vascular
endothelial cells (Mukoyama et al., 1991; Heublein et al., 1992;
Stingo et al., 1992; Suga et al., 1992), and by the heart (Vollmar
et al., 1993; Del Ry et al., 2011; Sangaralingham et al., 2020), in
response to shear stress and certain proinflammatory cytokines.
CNP is structurally related to ANP and BNP molecules, but
has less intensive natriuretic and diuretic effects (Goetze et al.,
2020). A recent study revealed that CNP regulates distal arteriolar
and capillary blood flow via NPR-B-induced cGMP signaling
in microvascular smooth muscle cells and pericytes (Spiranec
et al., 2018), controlling microvascular resistance and blood
pressure through vasodilating actions (Sangaralingham and
Burnett, 2018). Other NPs have been identified in nature. The
Dendroaspis natriuretic peptide (DNP), is structurally similar
to ANP, BNP, and CNP, and possesses comparable biologic
properties to other NPs. Additionally, the NP urodilatin (URO
or CDD/ANP 95–126), known as renal ANP among the NPs,
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is secreted by cells of the distal tubule and collecting duct
in the kidney in response to increased blood pressure and
blood volume. Urodilatin is transcribed by the NPPA gene,
but differentially processed in the kidney, and only detected
in urine (Meyer et al., 1998). Both DNP and Urodilatin bind
to NPR-A resulting in a cGMP-dependent signal transduction
(Pandey, 2014).

Biological actions of NPs are mediated by membrane-
bound guanylyl cyclase receptors, which are expressed in a
variety of cells. Three NP receptors are known: NPR-A (or
NPR1), NPR-B (or NPR2), and NPR-C (or NPR3). ANP and
BNP bind primarily to NPR-A and CNP binds to NPR-B
(Charles et al., 1996; Kuhn, 2004). When activated, NPR-A
and NPR-B receptors generate the second messenger cyclic
guanosine monophosphate (cGMP), while the activation
of NPR-C does not generate cGMP. In cardiac myocytes,
cGMP-mediated signaling is regulated in a spatial and
temporal manner by specific phosphodiesterases, which
act to localize and temper levels of this signaling second
messenger (Dunkerly-Eyring and Kass, 2020). All three
NPs are ligands with similar affinity (Anand-Srivastava
and Trachte, 1993) to the receptor NPR-C, which is not a
guanylyl cyclase-linked receptor (Kuhn, 2004). It is known
that NPR-C couples to inhibitory G proteins (Gi) and causes
inhibition of adenylyl cyclase and activation of phospholipase-C
(Anand-Srivastava, 2005).

Physiological Actions of the Linear
Fragment ANP31−67
A comprehensive biological understanding of NPs emerged
following studies in cultured cells, rodent models of altered
NPs production or receptor function, and integrative physiologic
studies in disease models and in humans. The biological
properties of the NPs, which include natriuresis, vasodilatation,
inhibition of the renin-angiotensin-aldosterone system (RAAS),
positive lusitropy, and inhibition of fibrosis, have led to the
unique concept of cardiorenal protection by activation of cGMP
(de Bold et al., 1981; Burnett et al., 1984; Wada et al., 1994;
Kishimoto et al., 1996; Stevens et al., 1996; Wright et al., 1996;
Lainchbury et al., 2000). An accumulating body of evidence
demonstrated the tissue-specific distribution of NPs (Saito et al.,
1989; Kojima et al., 1990; Ogawa et al., 1990; Mukoyama et al.,
1991) and their receptors (Fuller et al., 1988; Martin et al.,
1989; Schulz et al., 1989). Additionally, proANP1−98 can break
down into multiple peptides (Figure 1), i.e., amino acids 1–28
(proANPl−28), amino acids 31–67 (proANP31−67), and amino
acids 79–98 (proANP78−98), which also have potent vasodilatory
properties (Vesely et al., 1987). Interestingly, these proANP
forms have been identified in the circulation in humans (Vesely,
1995). For instance, by using high performance-gel permeation
chromatography (HPGPC) and radioimmunoassay (RAI), Vesely
(1995) was able to demonstrate that proANP1−98 is further
cleaved by proteases to generate these proANP fragments in the
circulation. Among these forms, proANP31−67 has unique potent
and prolonged diuretic and natriuretic properties (Gunning et al.,
1992) and will be the main form described in the current review.

Here, we review in detail, the actions of the linear fragment
proANP31−67, in particular on the heart, kidneys, and
metabolism, which are independent of cGMP production.
Originally, Gower et al. (1994) demonstrated the presence of
different circulating molecular forms of the N-terminal and
the C-terminal ANP prohormone peptides in plasma and
their metabolites excreted in urine. These authors subjected
plasma and urine samples from humans to high performance
gel permeation chromatography (HP-GPC), followed by
radioimmunoassay assessment of all ANP fragments, to reveal
that proANP31−67 and ANP circulate as distinct peptides
(Gower et al., 1994). Interestingly, the proANP31−67 levels in the
circulation were found to be 10–20-fold higher than ANP99−126
in normal humans (Winters et al., 1989; Hartter et al., 2000) and
dogs (Habibullah et al., 1995). This is explained by differences
in the clearance rates of both peptides, i.e., it takes 45 min for
proANP31−67 to be removed from the body compared to a half-
life of 3–5 min for ANP (Greenwald et al., 1992). Additionally,
proANP31−67 appears to be resistant to degradation by
endopeptidases, such as neutral endopeptidase (NEP), being
excreted in the urine largely intact (less terminal 2–3 a.a.) (Gower
et al., 1994; Hartter et al., 2000). This unique characteristic of this
polypeptide, contributes to the prolonged renal actions, and the
potential therapeutic effects of proANP31−67.

It has been shown that the upstream and C-terminus
fragments of the ANP prohormone are released by central
hypervolemia induced by head-out water immersion (Vesely
et al., 1989) or cardiac pacing or tachycardia (Ngo et al., 1989).
These ANP fragments have physiologic actions similar to the ring
structured ANP form, producing vasodilation (Vesely, 1995),
natriuresis (Martin et al., 1990; Villarreal et al., 1999b), diuresis
(Martin et al., 1990), and affecting metabolic phenotypes (Moro,
2013). In rodents, intravenous infusion of proANP31−67 (at doses
of 0, 10, 30, and 100 ng/kg/min) in anesthetized normotensive
and spontaneously hypertensive rats elicited natriuresis and
diuresis (Villarreal et al., 1999b). Moreover, an increase in sodium
excretion was also observed in intravenously infused anesthetized
Munich-Wistar (Martin et al., 1990) and Sprague-Dawley (Dietz
et al., 1994) rats. Both ANP and proANP3l−67 also inhibit
sodium transport in suspensions of inner medullary collecting
duct cells (Zeidel et al., 1986; Gunning et al., 1992). Because
both peptides inhibit sodium transport in the collecting duct, it
is possible that they act in an additive fashion on these cells in
the intact animal. In conscious non-human primates (Macaca
fascicularis), Benjamin and Peterson showed that infusion of
proANP31−67 (15 pmol. kg−l. min−l i.v.) increases renal
sodium excretion, due to tubular and hemodynamic components
(Benjamin and Peterson, 1995). Similarly, Vesely et al. (1994)
demonstrated that intravenous infusion of proANP31−67 (100
ng/kg body weight/min, for 60 min) produced blood pressure-
lowering, and diuretic and natriuretic properties in healthy
individuals. Interestingly, these authors additionally showed that
proANP31−67 has natriuretic properties that are significantly
prolonged compared with ANP (Vesely et al., 1994).

NPs play also a key role in human metabolism (Cannone
et al., 2019), thus connecting the heart with insulin−sensitive
organs like adipose tissue, skeletal muscle, and liver. In fact,
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accumulation of NPs is associated with protein energy wasting
and activation of browning in white adipose tissue (Luce et al.,
2020). Importantly, ANP increases mitochondrial uncoupling
and thermogenic gene expression in human adipocytes,
induces thermogenic programs in brown (BAT) and white
(WAT) adipose tissue and so increases energy expenditure
(Bordicchia et al., 2012). These actions are considered favorable
effects. However, in pathological conditions, these favorable
actions are blunted or abolished. Accumulating evidence
suggests that impaired cardiac endocrine function contributes
to the development of obesity, type 2 diabetes, and other
cardiometabolic complications (Verboven et al., 2017). The
ring-structured form of ANP was reported to induce lipid
mobilization and oxidation and to enhance insulin sensitivity
(Coue and Moro, 2016). ANP infusion in humans increases
energy expenditure and leads to lipolysis, with an increase
in plasma levels of glycerol and non-esterified fatty acids
regardless of body mass index (Birkenfeld et al., 2005, 2008).
Also, intravenous administration of ANP increases plasma levels
of adiponectin (Tsukamoto et al., 2009), an adipocyte-derived
cytokine, which protects against atherosclerosis and insulin
resistance or diabetes. However, the potential clinical utility of
ANP might be limited by its inherent, sustained blood pressure
lowering effects that can cause hypotension. Regarding the mid-
sequence of the ANP, it has been shown that proANP31−67 might
play an important role in the acute and chronic physiological
responses to physical exercise. For instance, Cappellin et al.
(2004) showed that measured proANP31−67 levels before and
at the end of dynamic exercise in 28 trained cyclists and found
that a single bout of exercise induce an increase in the urinary
proANP31−67 levels. This could be, at least in part, explained
by the increase in the venous return to the heart, and perhaps
the higher heart rate levels, during a single exercise session.
Interestingly, Freund et al. (1988) have demonstrated that the
increase in the ANP levels occurs in a dose- and time-dependent
manner. Additionally, proANP31−67 plasma concentration
was also found higher in endurance trained athletes than in
sedentary subjects (De Palo et al., 2000). Although protection
of the vasculature, heart, and kidneys are favorable effects in
the setting of metabolic diseases, the role of proANP31−67 in
metabolism is unknown.

Novel Therapeutic Strategies to Target
ANP31−67
One of the hallmarks of heart failure (HF) is the marked increase
in plasma levels of NPs (Burnett et al., 1986; Sugawara et al., 1988;
Yamamoto et al., 1996; Cataliotti et al., 2001; Maisel et al., 2003;
Richards and Troughton, 2004). It is established that elevated
cardiac filling pressure is accompanied by increased circulating
levels of ANP, and that congestive HF is not characterized by a
deficiency in ANP, but with its elevation (Burnett et al., 1986). The
increased circulating NP levels during HF are a compensatory
response to volume overload and to hyperactivation of the
adrenergic system and renin-angiotensin-aldosterone system
(RAAS). However, not all HF patients seem to increase the
circulating levels of NPs. In a recent clinical study, approximately

26% of acutely decompensated heart failure patients presented
a lack of increase of circulating levels of ANP (Reginauld et al.,
2019), which might suggest the existence of a relative state of
ANP deficiency in a subgroup of patients, possibly due to reduced
production, altered release, or enhanced enzymatic degradation
by neprilysin. It should also be underscored, however, that the
role of potential confounders responsible for this apparent ANP
deficiency status remains yet to be fully elucidated (Richards and
Januzzi, 2019). Nevertheless, as discussed herein, the increased
cardiac production and circulation of NPs can be differently
processed in the periphery in chronic HF patients, resulting
in inactive forms with no efficient benefit, thus supporting the
rational for using NPs or their analogs as anti-HF therapy
(Belluardo et al., 2006; Macheret et al., 2012). Others and we
have previously demonstrated the existence of a deficiency state
of the endogenous biologically active NPs system in HF patients
starting with the early stage of HF (Hawkridge et al., 2005;
Belluardo et al., 2006; Niederkofler et al., 2008; Macheret et al.,
2012). Additionally, a blunted natriuretic response has been
observed after treatment with different pharmacological agents
(e.g., angiotensin-converting enzyme inhibitors, angiotensin-
II blockers, β-blockers, and spironolactone) in experimental
models and in patients with chronic heart failure, suggesting
a resistance to the biological effects of NPs (Cody et al.,
1986; Saito et al., 1987; Komeichi et al., 1995; Charloux
et al., 2003). This resistance to biological effects of ANP is
probably mainly due to up-regulation of clearance receptors
in patients with chronic heart failure (Andreassi et al., 2001;
Clerico et al., 2006).

Winters et al. (1989) have evaluated the N-terminus and
C-terminus ANP fragments in the circulation of thirty patients
with varying severity degrees of congestive HF using high-
pressure liquid chromatography. Compared to the other ANP
peptides, proANP31−67 was the only one that accurately
discriminated the severity of congestive HF (Winters et al., 1989).
In light of these findings, the impaired production and release
of mature forms of the NPs and of their linear precursors seems
to play a fundamental role in the evolution and progression of
HF, and thus the exogenous supplementation of such cardiac
hormones may prove to be of therapeutic importance in HF.
In fact, the biologic properties of the NPs have supported the
development of as therapeutic agents for cardiovascular diseases
(Marcus et al., 1996; Yamamoto et al., 1997; Colucci et al.,
2000; Hobbs et al., 2001; Boerrigter and Burnett, 2004; Rubattu
et al., 2019; Rubattu and Volpe, 2019). Here we will further
discuss the development of novel therapeutic strategies based on
exogenous supplementation of a linear fragment of the ANP, the
proANP31−67, in HF.

The effort to develop novel therapeutic strategies to prevent
the progression of cardiovascular disease is also focused on
restoring the impaired NP system, for instance, by augmenting
the circulating levels of NPs through exogenous supplementation.
For instance, the NP drugs carperitide and nesiritide have
been approved for use in patients in Japan and United States,
respectively, as intravenous agents for the treatment of acute
decompensated HF. These forms stimulate the production of
cGMP, and frequently result in inadequate cardioprotective
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effects due to significant reductions in blood pressure levels,
leading to reduced renal perfusion and further deterioration of
kidney function.

ProANP31−67 was shown to enhance renal function acutely
in persons with congestive heart failure (Vesely et al., 2001) and
to protect against ischemia-induced acute tubular necrosis and
renal failure in a rat model of ischemic non-oliguric acute renal
failure (Clark et al., 2000). Overall, proANP31−67 induced renal
vasodilation and diuresis with enhanced sodium excretion, but
with no associated increase in oxygen consumption. Of note, as
mentioned above, the biological actions of proANP31−67 were
independent of cGMP activation and therefore, are characterized
by a less intense vasodilatory effect (Vesely et al., 1987).

Potential clinical indications for proANP31−67 include
reducing symptoms in patients with worsening HF or those
diagnosed with stable congestive HF and compromised renal
function, or cardiorenal syndrome. Clinical trials showing safety
and efficacy of synthetic proANP31−67 peptide were conducted
on stable congestive HF and renal impairment patients
(ACTRN12612000576820 and ACTRN12611000806965),
and on acute decompensated congestive HF patients
(ACTRN12609000998246). Intravenous and subcutaneous
delivery of proANP31−67 was shown to preserve renal function
in both chronic and acute heart failure with reduced ejection
fraction (HFrEF) (Delacroix et al., 2016). Additionally, the
infusion of proANP31−67 (100 ng/kg/min, i.v. for 1 h) has
been shown to possess several cardiac enhancing effects in
congestive HF patients (NYHA III), including augmenting
cardiac output, cardiac index, and stroke volume index, while
reducing pulmonary capillary wedge pressure (Vesely et al.,
1998). Of note, proANP31−67 has similar effects to those
observed with the ring forms of the NPs, which are currently in
use for the treatment of acute decompensated overt HF, but has
shown a less intense blood pressure lowering effect.

Based on these observations and on the known unique
renal protective effects of proANP31−67, we investigated the
therapeutic value of proANP31−67 for maladaptive cardiac and
renal remodeling in a rat experimental model of salt-induced
hypertension (Altara et al., 2020). This is a preclinical model
for heart failure with preserved ejection fraction (HFpEF), as
evidenced by concentric remodeling/hypertrophy and diastolic
dysfunction, i.e., increased cardiac stiffness. We also sought to
extend current knowledge on the protective actions of chronic
exogenous supplementation of proANP31−67 on the kidney,
knowing that it stimulates natriuresis and diuresis, but has
moderate effect on blood pressure. With hypertension in this
preclinical model, we observed that proANP31−67 increased
urine output, natriuresis, and glomerular filtration rate (GFR),
while preventing detrimental perivascular collagen deposition in
the renal cortex. Remarkably, proANP31−67 was shown to be
beneficial to the heart. Characteristic signs of adverse cardiac
remodeling and function that manifested as diastolic dysfunction
were attenuated with chronic administration of proANP31−67.
These beneficial actions on the heart, included attenuated cardiac
hypertrophy, as indicated by decreased heart weight to body
weight ratio and left atrial diameter, as well as reduced fibrosis
(both interstitial and perivascular left ventricular fibrosis) and

normalized ratio of the diastolic mitral inflow E wave to A wave,
a measure of cardiac stiffness (Altara et al., 2020). Of note, the
beneficial effects on the heart were retained absent of a marked
lowering of blood pressure and when animals were treated with a
renal sub-therapeutic dose of proANP31−67, suggesting a unique
mode of action directly on the heart, beyond its renal actions,
which warrants further investigation.

MECHANISMS OF ACTION OF ANP31−67

The mechanisms of action of proANP31−67 associated with the
cardiorenal protective and diuretic effects were not attributed to
any effects on blood pressure. Competitive binding experiments
revealed that proANP31−67 does not activate the canonical NP
receptors (e.g., NPR-A and NPR-B), resulting in the activation of
the cGMP pathway but rather has its own separate and distinct
receptor (Vesely et al., 1990, 1992). However, the nature of the
proANP31−67 receptor is still unknown.

Renal Mechanisms
With regard to its mechanism of action in the kidney, several
studies have shown that proANP31−67 endogenously (i.e.,
paracrine like) induces prostaglandin E2 (PGE2) formation
(Gunning et al., 1992; Vesely et al., 2000). PGE2, a product of the
cyclooxygenase 2 (COX-2) pathway (Figure 2), is an important
homeostatic regulator of nephropathy, as well as hypertension,
adipogenesis, dyslipidemia, diabetes, neuropathy, atherogenesis
and retinopathy, contributing to global cardiovascular risk
(Nasrallah et al., 2016). PGE2 was also reported to modulate
growth, fibrosis, and apoptosis phenotypes by influencing
inflammatory, immune, and oxidative stress responses (Makino
et al., 2002; Zahner et al., 2009; Nasrallah et al., 2015). Felder
et al. (2017) reported that proANP31−67 directly stimulated
PGE2 release in the renal medullary tissue, more precisely by
cells located in the collecting tubules/ducts at the cortical-
medullary interface. Through PGE2, proANP31−67 is also a
potent inhibitor of the Na+-K+-ATPase (or sodium-potassium
pump) of inner medullary collecting duct cells, resulting in
Na+ transport inhibition and natriuretic actions. Furthermore,
proANP31−67 was shown to increase GFR, both in preclinical
models as well as in humans with congestive HF, and to attenuate
tubular necrosis in a rat model of acute renal failure (Afsar
et al., 2017). Intrarenal administration of proANP31−67 also
increases creatinine clearance and inhibits renin secretion in a
Na+ depleted canine model of renin system activation induced
by unilateral nephrectomy (Villarreal et al., 1999a). These data
suggest that inhibition of renin secretion is, at least in part, in
response to a proANP31−67-induced increase in the sodium load
delivered to the macula densa.

In mammals, PGE2 exerts its signals through four G
protein-coupled receptors, designated EP1, EP2, EP3, and
EP4 (Figure 2; Sugimoto and Narumiya, 2007). Although
highly conserved among mammals, the PGE2 receptors
have distinct signal transduction pathways, and tissue
and cellular distribution, reflecting their diverse properties
(Nasrallah et al., 2016). In the kidney, EP1 and EP4 receptors
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FIGURE 2 | PGE2-mediated proANP31−67 cardiac, renal and metabolic mechanisms of action. PGE2, Prostaglandin E2; EP1–4, PGE2 receptors (coupled to Gq);
AA, Arachidonic acid; COX-1/2, Cyclooxygenase-1 and –2; PGH2, Prostaglandin H2; PGES, Prostaglandin E synthase; PLC, Phospholipase C; Pi3K,
Phosphoinositide 3-kinases; AC, Adenylate cyclase; Ca2+, Calcium ion; AKT, protein kinase B; cAMP, Adenosine 3′,5′-cyclic monophosphate; PKA, protein kinase
A; SMAD2–4, SMAD (Mothers against decapentaplegic) family member 2, 3, and 4; PPARγ, Peroxisome proliferator-activated receptor gamma.

seem to mediate PGE2 microcirculation actions (Figure 2).
Purdy and Arendshorst (2000) identified by RT-PCR the
expression of EP1 (Ptger1) and EP4 (Ptger4) receptors in freshly
isolated preglomerular arterioles of Sprague-Dawley rats. These
authors also demonstrate that the EP4 receptor is the major
receptor located in preglomerular vascular smooth muscle
cells, mediating PGE2-induced vasodilation through cAMP
formation and reduction of cytosolic Ca2+ levels (Purdy and
Arendshorst, 2000). Curiously, the renal vascular tone response
induced by PGE2 stimulation seems to vary depending on the
type of the receptor (Schweda et al., 2004). For instance, EP2−/−

and EP4−/− mice presented an augmented vasoconstriction in
response to higher PGE2 concentrations, contrasting with the
markedly blunted response observed in EP1 and EP3 knockout
mice (Schweda et al., 2004). Furthermore, EP1 and EP4 were
detected in transformed murine proximal tubular cells (MCTs),
mediating PGE2-induce fluid reabsorption (Nasrallah et al.,
2015). Loss-of-function in vivo experiments in mice have shown
that PGE2 stimulates the renin-angiotensin-aldosterone system
by activation of EP4 receptor (Poschke et al., 2012). Similarly,
Schweda et al. (2004) demonstrated that PGE2 stimulates renin
release in juxtaglomerular cells via activation of both EP2
and EP4 receptors. Interestingly, the EP1 receptor attenuates
vasopressin-dependent water reabsorption and inhibits sodium
transport in the collecting duct (Nasrallah et al., 2018). Activation
of PGE2-EP4 signaling with proANP31−67 also can exert multiple
biochemical effects on the kidney and other organs, suggesting

the potential wide-ranging use of EP4 in both cardiovascular and
metabolic disorders. For instance, by inhibiting Na+ transport in
the inner medullary collecting duct cells, proANP31−67 is known
to reduce renal oxygen consumption (Gunning et al., 1992).

Under different pathological conditions, the PGE2 receptors
seem to be involved in the development of renal disease. For
instance, the oral administration of PGE2 receptor EP1-selective
antagonist prevented the progression of nephropathy, evidenced
by improved glomerular hypertrophy, decreased mesangial
expansion, and suppression of proteinuria in streptozotocin-
induced diabetic rats (Makino et al., 2002). Mechanistically,
the authors demonstrated that mesangial cells cultured under
high-glucose conditions and treated with this selective agonist
for EP1 receptor exhibit inhibited transforming growth factor-
beta (TGF-β) and fibronectin upregulation, key regulators
of the extracellular matrix. Similarly, an EP4-specific agonist
significantly attenuated the development of tubulointerstitial
fibrosis induced by unilateral ureteral obstruction in mice by
suppressing inflammatory responses (Nakagawa et al., 2012). On
the other hand, knockout mice for EP4 showed exacerbated
tubulointerstitial fibrosis response after ureteral obstruction.
Additionally, cultured renal fibroblasts treated with EP4 agonist
significantly inhibited the platelet-derived growth factor (PDGF)-
induced proliferation and profibrotic connective tissue growth
factor production (Nakagawa et al., 2012). Hence, these data
indicate that both PGE2 receptors EP1 and EP4 play critical
roles in the development of renal injury (Figure 2), and
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might explain the renal protective benefits of proANP31−67
observed by our group in hypertensive rats. For instance,
chronic administration of proANP31−67 prevented perivascular
collagen deposition in the rat experimental model of salt-induced
hypertension, accompanied by improvements in renal function
(Altara et al., 2020).

Myocardial Mechanisms
Cardiac phenotypes are equally affected by the different PGE2
receptors (Figure 2). Although all four PGE2 receptors are
detected in the cardiac tissue, EP4 is highly expressed in the
heart (Muraoka et al., 2019), and seems to have protective effects
against adverse remodeling. In fact, EP4 agonist administration
to mice subjected to pressure overload (Wang et al., 2017) and
cardiac injury (Hishikari et al., 2009; Pang et al., 2016) exhibited
antifibrotic effects and prevented the progression to systolic
dysfunction. In a mouse model of cardiac hypertrophy generated
by transverse aortic constriction (TAC) surgical procedure,
EP4 agonist ONO-0260164 treatment significantly prevented
myocardial fibrosis and progression of systolic dysfunction
5 weeks after pressure overload (Wang et al., 2017). Hishikari
et al. (2009) used another EP4 selective agonist (EP4RAG) to
treat rats submitted to myocardial ischemia-reperfusion injury
and demonstrated that EP4RAG significantly reduced ischemic
myocardium, attenuated interstitial fibrosis, and ameliorated
cardiac contractility and dilatation compared with vehicle.

The generation of genetically engineered animals has
contributed with the understanding of the role of PGE2 receptors
in the cardiac tissue. Qian et al. (2008) generated cardiac specific
EP4 deficiency, using site-specific recombination by the Cre
recombinase method (Cre-loxP) to inactivate EP4 only in
cardiomyocytes (CM- EP4 knockout [KO]), and showed that
CM-EP4 KO mice are defective in their ability to activate Stat-3,
presenting a worsening of systolic function after myocardial
infarction injury. These studies are interpreted as indicating that
EP4 plays both protective and damaging roles in the heart with
the protective effects of EP4 due at least in part to its ability to
suppress inflammation.

We cannot exclude, however, the role of PGE2 stimulation
of its receptors in cells other than cardiomyocytes, for instance
cardiac fibroblasts, endothelial cells, and smooth muscle cells.
In fact, it has been demonstrated recently that EP4 signal
also regulates fibrotic phenotypes in cardiac fibroblasts. In this
regards, Umemura et al. (2019) showed that cardiac fibroblasts
isolated from adult rats treated with EP4 agonist (ONO-AE1-
437) decreased the expression of transforming growth factor-β
(TGF-β), connective tissue growth factor (CTGF) and ACTA2 (a-
smooth muscle actin) mRNA, suggesting that that EP4 signaling
suppresses fibroblasts to myofibroblast transdifferentiation.
Consistently, Wang et al. (2017) demonstrated in cultured
neonatal rat cardiac fibroblasts that treatment with EP4 agonist
ONO-0260164 inhibited the TGF-β1 induced upregulation of
collagen type 1 (Col1a1) and type 3 (Col3a1) gene expression.

Mechanistically, EP4 is a G protein-coupled receptor with
seven transmembrane domains that when bound to PGE2
or another agonists, mobilizes G proteins containing the
Gs alpha subunit (i.e., Gαs) and G beta-gamma (i.e., Gβγ)

(Tuteja, 2009). In particular, Gsα stimulates adenylyl cyclase to
raise the production of cyclic adenosine monophosphate (cAMP)
(Yokoyama et al., 2013), that subsequently activates protein
kinase A (PKA), which in turn phosphorylates downstream
proteins, such as the transcription factor cAMP response
element binding protein (CREB). Of note, CREB regulates the
expression of genes that control cellular proliferation, cellular
differentiation, cellular survival, and angiogenesis. The activated
CREB(p) binds to specific sites and regulates the expression of
genes, such as B-cell lymphoma 2 and tumor necrosis factor α

(TNFα), which are involved in development of ischemic heart
disease (Ichiki, 2006). EP4 activation of G proteins also triggers
PI3K/AKT/mTOR, ERK, and p38 MAPK pathways (Xu et al.,
2018). Regarding the other PGE2 receptors expressed in the
cardiac tissue, it is known that PGE2 stimulates cardiac fibroblast
proliferation via both EP1 and EP3, p42/44 MAPK and Akt-
regulation of cyclin D3, possibly modulating cardiac fibrosis
(Harding and LaPointe, 2011).

As mentioned, in addition to its renoprotective effects,
proANP31−67 inhibited cardiac hypertrophy and early onset of
diastolic dysfunction in our salt-induced hypertension model
of HFpEF, as indicated by reduced cardiac fibrosis (Altara
et al., 2020). The cardioprotective actions of proANP31−67 may
have resulted from a local increase in PGE2 and activation
of the EP4, which recently has been demonstrated to have
antifibrotic and antihypertrophic actions in the heart (Yamagami
et al., 2015; Harada et al., 2017; Wang et al., 2017; Bryson
et al., 2018; Lai et al., 2018; Zhu et al., 2019; Jin et al.,
2020). ProANP31−67 seems to activate the PGE2-EP4-SMAD
signaling pathway, reducing the phosphorylation of SMAD2
(Altara et al., 2020), possibly inhibiting the activation in TGF-
β1 mediated collagen deposition. Evidence indicates that EP4
attenuates cardiac fibrosis by inhibiting SMAD signaling through
activation of protein kinase A (PKA) (Harada et al., 2017;
Wang et al., 2017). In our study, urine levels of PGE2 were
elevated by proANP31−67, although we did not observe a
significant increase in plasma PGE2. However, local PGE2
production in the heart, where levels tended to be increased by
treatment with proANP31−67, may have been responsible for the
inhibition of cardiac remodeling process observed in our study
(Altara et al., 2020), Therefore, the cardioprotective actions of
proANP31−67 observed in our study (e.g., improved diastolic
function, attenuated cardiac fibrosis and hypertrophy, and anti-
remodeling effect on cardiomyocytes) (Altara et al., 2020) may
have resulted from the activation of the EP4.

However, this response might be dependent on the cardiac
cell type involved. In fact, proANP31−67 may have direct effects
on the ultrastructure of cardiomyocytes. We have demonstrated
that chronic administration of proANP31−67 reduced t-tubule
density in our rat model of hypertensive heart disease and
renal damage (Altara et al., 2020). Normal ultrastructure of
cardiac t-tubules is important in electrical-mechanical coupling
and Ca2+ handling in cardiomyocytes as any abnormalities may
predispose toward heart failure (Manfra et al., 2017). In HF
patients, we have demonstrated etiology-dependent differences
in mechanisms for diastolic dysfunction (Frisk et al., 2021). For
instance, myocardial biopsies from HFrEF hearts under high
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ventricular wall stress were linked to disruption of t-tubules,
local collagen deposition and of systolic calcium homeostasis
impairment. In contrast, maintained wall stress in HFpEF
patients was associated with compensatory t-tubule proliferation
and largely maintained calcium release (Frisk et al., 2021). In
keeping with this, we observed that proANP31−67 treatment
protects t-tubular structure and density, and also preserves
intracellular distances between t-tubules and the sarcolemmal
membrane. In our study, we did not examine the effect of
proANP31−67 on Ca2+ dynamics in cardiomyocytes, which
remains an area for future investigation.

Taken together, our study previously discussed supports the
hypothesis that proANP31−67 cardioprotective benefits might
directly affect both cardiac fibroblasts and cardiomyocytes,
via the activation of PGE2/EP4 signaling. We cannot exclude
the possibility that proANP31−67 mediates the secretion of
growth factors by myofibroblasts indirectly induces hypertrophy
of cardiomyocytes via a paracrine like-manner, which is a
landmark of heart failure. Therefore, the detailed investigation
of the proANP31−67 molecular mechanisms involving anti-
fibrotic signaling pathways and cellular processes, including
inflammation, signaling kinases, apoptosis, fibroblast-to-
myofibroblast differentiation, cardiomyocytes ultrastructure
is absolutely crucial to understand the cardiorenal protective
actions of this compound in a heart failure scenario.

Mechanisms Associated With Metabolic
Phenotypes
With regard to the role of PGE2 mediating metabolic phenotypes,
these effects seem to be mainly mediated by EP3 and EP4
receptors in the adipose tissue. Of those, the EP3 is the most
widely abundant receptor in adipose tissue (Tang et al., 2015;
Xu et al., 2016), and is involved in various pathophysiological
processes (Cai et al., 2015). Accordingly, PGE2 receptor EP3
seems to regulate both lipolysis and adipogenesis in white
adipose tissue (Strong et al., 1992; Fain et al., 2000; Xu
et al., 2016), as well as adipocyte transformation of white
to beige fat, protecting against obesity and metabolic disease
(Garcia-Alonso et al., 2013). In fact, it has been shown
that loss-of-function of EP3 in mice resulted in obese and
insulin resistant phenotypes (Sanchez-Alavez et al., 2007; Ceddia
et al., 2016). Mechanistically, using both pharmacological
blockade and genetic disruption, Xu et al. (2016) elegantly
showed that PGE2 EP3 receptor inhibits adipogenesis via
the cAMP/PKA/PPARγ pathway, and blocks lipolysis mainly
through the cAMP/PKA/HSL pathway in white adipose tissue.
These data demonstrates that PGE2/EP3 axis is critical for lipid
and glucose metabolism.

Activation of PGE2-EP4 signaling seems also to exert
important role in adipose tissue and metabolic disorders.
Loss-of-function mice model for EP4 submitted to high fat
diet exhibited reduced body weight gain and adiposity, and
shorter life span when compared with wild type (Cai et al.,
2015). Additionally, EP4 deficiency induced disruption in lipid
metabolism due to impaired triglyceride clearance (Cai et al.,
2015). Nevertheless, it is still unknown any direct or indirect

metabolic properties of proANP31−67 and future investigation is
fundamental. However, there are some evidence of the possible
connection of proANP31−67 and metabolic phenotypes. For
instance, in inner medullary collecting duct (IMCD) cells it has
been previous shown that proANP31−67 reduces O2 not by direct
inhibition of mitochondrial O2 consumption, but by reducing the
demand for metabolic energy of the Na+-K+-ATPase (Gunning
et al., 1992). Accumulation of NPs is, in fact, associated with
protein energy wasting and activation of browning in white
adipose tissue (Luce et al., 2020). The incubation of primary
adipose cells exposed to ANP led to a significant increase of
uncoupling protein 1 content. Therefore, it is reasonable to
believe that proANP31−67 might also has potential in metabolic
disorders associated or not with cardiovascular diseases.

POTENTIAL USEFUL COMBINATION OF
proANP31−67 WITH CURRENT
MEDICATIONS

Notwithstanding the substantial advance achieved in treatment,
the incidence of heart failure has not been reduced and remains
the major cause of morbidity and mortality in developing and
developed countries (Roger, 2013). Nevertheless, current medical
procedures aim to increase survival of cardiac tissue and limit
cardiac damage, whereas an effective treatment to improve
and/or protect renal function, which often deteriorates after
cardiac injury, is still lacking and urgently needed. More recently,
the combination of NEP inhibitor (Sacubitril) and angiotensin
II receptor blocker (Valsartan) (sold as Entresto) became a
first-choice treatment for HFrEF patients (Volpe et al., 2015;
Seferovic et al., 2019; Volpe et al., 2019), based on its superior
benefits to reduce cardiovascular death, and HF symptoms and
hospitalizations compared to angiotensin-converting enzyme
inhibitor (ACEi) (McMurray et al., 2014). Inhibition of NEP, by
decreasing NPs degradation (Zile et al., 2016), elicits hypotensive
actions. Of note, Entresto presented higher proportions of
hypotension and non-serious angioedema cases, but lower
proportions of patients with renal impairment, hyperkalemia,
and cough than ACEi (Enalapril). In this regards, proANP31−67
may provide an ideal complementary therapeutic strategy by
directly targeting end-organ remodeling in the setting of HFpEF.
Given the fact that proANP31−67 does not appreciably lower
blood pressure, this peptide may be especially efficacious as an
add-on-therapy to target end organ damage, and could be tested
in other heart disease settings, including coronary heart disease,
as well as aortic valve stenosis, cardiac dysfunction in the presence
of metabolic disease, along with both forms of HF (e.g., HFpEF
or HFrEF), and cardiorenal syndrome, for which it has been
first developed. An additional beneficial action of proANP31−67
is increased urinary excretion of potassium, suggesting that this
peptide might be combined with potassium sparing drugs or
medications frequently used in the treatment of HF (Altara
et al., 2020). An interesting area of future investigation would
be the impact of proANP31−67 on the metabolic syndrome, a
collection of conditions that contribute to the development of
heart disease, diabetes and stroke. We anticipate a synergistic
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beneficial action of proANP31−67 in preventing end organ
damage and attenuating metabolic dysfunction when used in
combination with current therapies to ameliorate lipid and
glucose metabolism. Of note, proANP31−67 pharmacokinetics
and high stability also render it an interesting candidate as
therapeutic agent for chronic administration. Equally important,
no adverse effects, gross or microscopic pathology changes were
observed when proANP31−67 was tested in various pre-clinical
models (Benjamin and Peterson, 1995; Villarreal et al., 1999b;
Clark et al., 2000; Vesely, 2007; Altara et al., 2020), ranging from
mice to non-human primates (monkeys or Macaca fascicularis).
With respect to the administration to patients, proANP31−67
proved to be well tolerated at all doses via both intravenous
(IV) and subcutaneous (SQ) infusions, without the profound
vasodilatory and hypotensive complications evident with CT
ring agents (blood pressure was maintained with no adverse
hemodynamic effects noted) (Vesely et al., 1994, 1998, 2000).
Additionally, pharmacokinetic analysis with pharmacodynamic
parameters showed no adverse effects on any parameters
measured, including cardiac and renal performance.

CONCLUSION

Considering that unique mechanism of action, its intrinsic
resistance to enzymatic degradation, and its complementary
actions to other members of the NPs system, make it compelling
to evaluate the effects of proANP31−67, as single therapy as well
as in combination with current medications, in the treatment

of cardiac diseases and metabolic syndrome. The long half-
life, and its safe pharmacological profile, make proANP31−67
a promising therapeutic option for currently difficult to
treat clinical conditions. Therefore, further studies aimed to
demonstrate its protective effects and exploit its clinical potential
are clearly warranted.
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