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ABSTRACT: Transition metals (TMs) are being investigated as electrodes
for pseudocapacitors, where an oxide layer is necessary to allow for rapid
redox reactions. In this work, we utilized an in situ, rapid, binder-free, and
green method for the fast fabrication of pseudocapacitor electrodes called
ultrashort laser pulses for in situ nanostructure generation (ULPING) to
form oxide layers on a titanium sheet. By utilizing this fabrication technique
on a titanium sheet, a specific areal capacitance of 0.3579 mF cm−2 was
achieved at a current density of 0.25 mA cm−2. However, the laser fabrication
parameters were selected experimentally and resulted in low performance of
pseudocapacitors. Therefore, one of the main objectives of this study was to
find the optimal laser fabrication parameters to achieve the highest specific
areal capacitance. A large dataset was generated to find the relationship
between the laser fabrication parameters and the electrochemical behavior
performance (impedance and specific areal capacitance) of the fabricated
electrodes by using an artificial neural network (ANN). We used an optimization algorithm (simulated annealing-SA) to overlook
the trained ANN model as a black box and try to maximize the objective function, which in our case is a specific capacitance value, to
find the most optimal laser fabrication parameters. Using SA, optimal laser fabrication parameters were found, which increased the
specific areal capacitance to 0.9999 mF cm−2 at a current density of 0.25 mA cm−2. The results demonstrated that the conducted
study has the potential to introduce effective techniques for utilizing ULPING to produce nanoscale structures on TMs. These
structures have the potential to be employed as electrodes in pseudocapacitors. Additionally, the research underscores the
significance of employing data-driven approaches in electrode design procedures.

■ INTRODUCTION
The implementation of renewable energy systems is contingent
upon the availability of efficient energy storage devices.1 The
high-power density of supercapacitors enables them to store and
release energy quickly, making them a viable option for various
applications, including regenerative brakes, elevators, and
electric trains. Their ability to charge and discharge rapidly
allows for efficient energy management in these systems.2,3

Despite the excellent performance of carbon-based super-
capacitors in real-world applications, their low capacitance and
poor conductivity render them unsuitable for next-generation
technologies.4−6 Pseudocapacitors with transition metal (TM)-
based electrodes have emerged as a more promising solution as
they exhibit superior performance compared to carbon-based
supercapacitors.7−9 These devices feature electrodes comprising
redox materials that enable Faradaic reactions and fast charging/
discharging kinetics, resulting in higher power density and
charging rate than lithium-ion batteries.10,11 Although TM-

based electrodes in pseudocapacitors exhibit superior electro-
chemical performance, the major challenge lies in their synthesis
method. Typical methods like chemical vapor deposition,
solvothermal synthesis, physical vapor deposition, and hydro-
thermal synthesis necessitate prolonged processes at elevated
thermal budgets and yield restricted controllability and
suboptimal results.12−14 Synthesis of active material for charge
storage, for example, currently takes between 24 and 48 h. Thus,
the challenge remains to develop a cost-effective and scalable
synthesis of pseudocapacitors with TM-based electrodes.
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Consequently, to overcome the fabrication challenge, we
previously introduced an advanced approach known as ultra-
short laser pulses for in situ nanostructure generation
(ULPING).15−18 This green synthesis approach is highly
controllable and produces enhanced pseudocapacitor electrodes
in a single step. Unlike traditional methods, which generate
separate byproducts, ULPING results in in situ substrate
modification.19,20 Moreover, computer-aided design can be
employed to precisely control the laser processing approach,
enabling adjustments to various parameters such as power, pulse
repetition rate, frequency, scan speed, and specific pattern
formation. This level of control enhances the accuracy and
reproducibility of the laser processing method.

Transition metals (TMs) are being studied as pseudocapa-
citor electrodes, where an oxide layer is required to allow for fast
redox reactions.21−23 Recently, our research group used direct
ULPING to generate oxide layers (NiO and TiO) on Ni and Ti
metal sheets under ambient settings using varied laser
parameters. The research concentrated on irradiating Ti metal
sheets with ULPING, which resulted in the formation of titania
3D nanonetworks (T3DN).15,18 Comparing the laser-treated
surface to a control surface without treatment, it was observed
that two laser treatments increased the areal capacitance to 6.91
mF cm−2. The formation of self-grown 3D nanostructures
occurs through a series of ultrafast events during ULPING,
which is triggered by electromagnetic radiation pulses on the
target material’s surface. Recently, we conducted a study on the
impact of scan speed and frequency on the formation of NiO
through ULPING.17 Our results showed that while frequency is
a crucial factor, adjusting the scan speed of the laser beam can
also lead to improvements. The optimal scan speed was
determined to be 10 mm s−1, as it allowed for better
nanostructure generation and increased phase transformation
of Ni into NiO. The results also indicated an areal capacitance of
93 mF/cm2 when a discharge current of 1 mA/cm2 was applied
under these specific conditions.

The outcomes of both investigations exhibited the originality,
straightforwardness, and efficacy of the ULPING technique in
producing capable electrode materials for pseudocapacitors.18

The surfaces activated by ULPING were free of binders,

generated in a solitary step, and did not require the use of
chemicals.18 It is evident that the laser input parameters exerted
a considerable influence on the electrochemical effectiveness of
the pseudocapacitor. Despite our confidence in the efficiency,
user-friendliness, and cost-effectiveness of the ULPING
technique, we acknowledge the need for further improvement,
especially in the laser parameter selection strategy. Nevertheless,
in our latest research, we have employed machine learning (ML)
techniques to establish a theoretical validation of the correlation
between laser input parameters and the electrochemical
performance of pseudocapacitors.18 We constructed various
ML algorithms, including artificial neural network (ANN),
Gaussian process regression (GPR), and random forest (RF),
and identified a relationship between the electrochemical
behavior performance, including specific areal capacitance and
impedance, and the laser input parameters.18 In all prior studies,
we determined the laser parameters through experimentation
and basing on the material type. However, a crucial question
arises: What if an operational strategy for parameter selection is
provided, which optimizes the laser parameters and enhances
the electrochemical performance of the pseudocapacitor?
Hence, an investigation into the connection between laser
parameters and the material properties of the generated
nanostructures is warranted. By utilizing ML methods, valuable
insights can be gained on this front. Therefore, developing and
executing an optimization algorithm could aid in identifying the
optimal laser parameters for the most efficient electrode
production. Given the potential applications of ULPING in
the pseudocapacitor industry, further research is imperative to
address these queries.

This paper details the progress made by our research group in
the manufacturing of electrodes using ULPING on Ti sheets and
the utilization of a customized ANN-Enabled optimization
technique for enhancing electrochemical behavior of pseudoca-
pacitors electrode through two phases. In the first phase, 31
electrodes with distinct T3DN structural characteristics were
fabricated by varying 31 different laser parameters, including
frequency, power, pulse duration, and scanning speed. These
electrodes were used to prototype 496-coin cells, with each
electrode paired individually to create a mix-and-match matrix.18

Figure 1. Schematic diagram of the experimental setup for the formation of a TiO layer through laser irradiation. (a) Laser parameters can be modified
using computer-aided software (Marking Mate 2.7), and laser irradiation is performed by fine-tuning and adjusting all the apparatus for effective and
efficient fabrication. (b) The two coin-cell setup was utilized for analysis, and electrochemical tests were performed using a potentiostat.
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To investigate the effect of laser parameter variation on T3DN
properties, the prototyped coin cells were analyzed through
various characterization techniques, such as scanning electron
microscopy (SEM), energy-dispersive spectroscopy (EDS), X-
ray photoelectron spectroscopy (XPS), and X-ray diffraction
(XRD). The electrochemical behavior of the coin cells was
studied using a potentiostat and different analyses, including
cyclic voltammetry (CV), galvanostatic charge−discharge
(GCD), and electrochemical impedance spectroscopy (EIS).
In the second phase of our study, we employed and customized
the ANN model that we developed in our previous work to make
it suitable for fitting in the optimization problem.18 We used the
customized ANN model to analyze a large dataset gathered from
the experiments and study the correlation between fabrication
variables and pseudocapacitor performance indicators. First, we
used the trained customized ANN model to predict the
electrochemical behavior of pseudocapacitors, including specific
capacitance and internal impedance. Then, we applied a
simulated annealing (SA) optimization algorithm to utilize the
trained customized ANN model as a black box and maximize the
objective function, which, in our case, was a specific capacitance
value. This enabled us to identify the most optimal laser
fabrication parameters. The results of this study suggest that
ULPING could be a promising method for generating
nanostructures on TMs for pseudocapacitor electrodes.

■ EXPERIMENTAL PROCEDURES AND PROTOCOLS
Material Synthesis and Electrode Preparation Using

the ULPING Technique. The experiment utilized a
commercial grade 4 titanium sample with a thickness of 0.2
mm that underwent polishing and cleaning procedures using
acetone and DI water. The ULPING technique was employed
by exposing the sample to ambient atmospheric conditions
without elaborate shielding, and a 150 ps laser pulse system was
used to perform pulse ionization at a constant wavelength of
1060 nm (IPG Laser Model: YLPP-1-150 V-30) (see Figure 1a).
The laser beam diameter was reduced to 6 mm and focused on
an XY galvanometer scanner to achieve a theoretical laser spot
diameter of 20 μm using an F-theta lens with specified
parameters.18 Laser patterning parameters such as scanning
speed and pitch were determined using the CAD software
Marking Mate 2.7.18 The experiment involved the fabrication of
31 distinct electrodes using a constant pitch pattern and varying
parameters such as laser power, frequency, pulse duration, and
scan speed.18

Specifically, the laser power ranged from 5 to 20 W, frequency
ranged from 30 to 1200 kHz, pulse duration varied from 150 ps
to 5 ns, and scan speed ranged from 5 to 500 mm s−1.

The pitch refers to the distance between two consecutive lines
created by the laser beam. The samples, which were punched
into 6 mm diameter discs containing TiO as the active material
with a surface area of 27.2 mm2, were then subjected to laser
irradiation.18 A summary of the distinct laser parameters used
for each sample can be found in Table 1. The accuracy of the
IPG Laser in terms of power, frequency, and scan speed can be
influenced by environmental conditions. IPG Photonics
provides specifications for the laser that describe its performance
and accuracy under specific conditions. The specifications detail
the expected accuracy of the laser’s power, frequency, and scan
speed when environmental conditions are ideal. In our
experiments, however, the laser procedure for fabricating each
electrode took between 5 and 10 min, indicating that no errors
occurred.

Characterizing Materials and Structures. The samples
were examined using SEM at both high and low magnifications
to investigate their morphology. EDX was used to analyze the
elemental composition of the samples, with particular emphasis
on identifying Ti and O. XPS was employed to study the
oxidation states and phases of TiO on the surface of the laser-
irradiated structure. XRD was also conducted to analyze the
diffraction pattern and crystalline structure of the electrodes.
Furthermore, the porosity of the fabricated electrode area was
determined using ImageJ 1.53 software.24

Measurement of Electrochemical Properties. A two-
electrode configuration (coin cell) setup was used for the
electrochemical study, with two symmetrical coin-shaped
electrodes separated by a separator saturated with sodium
sulfate (Na2SO4) electrolyte (see Figure 1b). The study involved
various experiments, including CV, GCD, and EIS, conducted
using a SP-150 Potentiostat.18 CV measurements were executed
with scan rates of 500 mV/s (with a consistent potential range of
−1 to 1 V) and 50 mV/s (with a constant potential range of −0.8
to 0.8 V), while the EIS measurements were taken with a
perturbation voltage of 50 mV/s across frequencies ranging from
100 mHz to 100 kHz18. GCD experiments were performed at
potentials ranging from −0.8 to 0.8 V and current densities from
0.25 mA/cm2. These tests were performed to assess the
effectiveness of the fabrication method that utilized laser
irradiation and ablation to create the oxide layer.18

Statistical Analysis. Three electrodes were made for each
group of samples to ensure accurate data processing, and all
experiments were done in triplicate. The mean value was
calculated from the resulting data. Geometric metrics such as
fibers and porosity were determined by examining SEM pictures
in ImageJ software with an estimated error rate of 5%
(developed by Wayne Rasband at the National Institutes of
Health in the USA).24

■ MODELING ANDOPTIMIZATIONOF FABRICATION
STRATEGIES FOR PSEUDOCAPACITOR
ELECTRODES

From a theoretical perspective, ML is considered a valuable tool
for predicting properties and designing materials for super-
capacitors.25,26 In the literature, several ML algorithms have
been used for predicting supercapacitor performance metrics,
with ANNs demonstrating superior prediction accuracy
compared to other algorithms.27,28 For example, Jha et al.28

used an ANN to predict the performance of an alkali lignin-
based flexible supercapacitor, demonstrating that ANNs had the
highest predictive accuracy and excellent robustness compared
to other ML algorithms. Similarly, in our previous work, we also
employed ANN to predict the properties of pseudocapacitors
and achieved favorable results.18 Although theoretical modeling
and ML algorithms are useful for predicting the performance of
supercapacitors, the optimal electrode design cannot be
achieved solely through these methods from a manufacturing
perspective. This is the juncture at which the key leverage in ML

Table 1. Laser Parameters for Different Samples

laser parameters variation range/style errors

power varied 5−20 W ±3% over 8 h
frequency varied 30−1200 kHz ±10 kHz over 8 h

pulse duration varied 150 ps−5 ns ±5% over 8 h
scan speed varied 5−500 mm/s ±0.5 mm/s over 8 h

pitch constant arrow sequence NA
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approaches, optimization, enters the game of optimal electrode
design. In our study, we fabricated numerous electrodes using
the ULPING technique, making it difficult to predict the optimal
fabrication parameters without using an optimization algorithm.
Therefore, the main goal of this section is to customize an ANN
model that can be fit into an optimization algorithm to achieve
the optimal electrode design. The aim of this section is to
accomplish four objectives as shown Figure 2. The first objective
is to generate a dataset from the experimental setup. The second
objective is to clean and prepare the generated dataset for use in
an ANN model. The third objective entails using the prepared
dataset to train an ANN model for forecasting the electro-
chemical behavior of laser-treated pseudocapacitors. The final
objective is to incorporate a meta-heuristic optimization
algorithm (simulated annealing-SA), utilizing the trained ANN
model, to determine the most optimal laser fabrication
parameters. The dataset generation and preparation, the

development of the model, and the optimization process are
separated into four stages, as depicted in Figure 2.
Data Generation from the Experimental Setup. In

previous work, we provided a method for generating large
datasets for ML algorithms.18 We will explain this method briefly
because it is one of the fundamental pillars of this study. To
accomplish this, we developed a unique mix-and-match testing
matrix, as depicted in Figure 3. This matrix was designed to be
simple and straightforward, where for the first coin cell setup, we
used 1 M salt as the electrolyte solution and positioned sample 1
(S1-base electrode) in the lower cover of the MTI coin cell
setup, with the same S1 electrode located on top of it. This
process was repeated 31 times, with the S1 electrode serving as
the base and the other top electrode serving as the changing
electrode.18 We also tested the S2 electrode 30 times with itself
and other electrodes, except for S1, which was tested in the
previous round. Finally, we repeated the testing process 31

Figure 2. Modeling and optimization process consist of four stages. Stage 1: this involves the generation of a comprehensive dataset from the
experimental setup, which includes information on laser fabrication parameters and results of electrochemical and microscopy analysis. Stage 2: the
generated dataset is structured and prepared for the next stage. Stage 3: ANN is built and trained on the dataset to forecast electrochemical
performance measures, such as impedance and specific areal capacitance, of pseudocapacitors. Stage 4: the trained ANN is employed in a meta-
heuristic optimization algorithm to identify the optimal laser fabrication parameters.

Figure 3. To generate data from the experimental setup, a unique testing matrix known as the mix-and-match testing matrix is established. This matrix
involves the evaluation of 31 prepared electrodes, where each electrode is subjected to individual testing against itself and the other electrodes.
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times, with each electrode serving as the base and top electrode
at different times. This resulted in a total of 496 electrode sets,
which were assembled and subjected to consistent CV, GCD,
and EIS setup configurations.18 Our aim was to generate a large
and diverse dataset that can be used to train and validate ML
models for better performance and prediction accuracy.
ANN Algorithm Input Data. Various quantitative values

were measured and categorized into two groups: numeric results
obtained from microscopy and electrochemical analysis and
laser fabrication parameters.18 Laser fabrication parameters such
as power (W), frequency (kHz), pulse duration (ps−ns), and
scan speed (mm s−1) were recorded for both the base and
changing electrodes.18 Multiple variables such as discharge time
(seconds), specific areal capacitance (mF/cm2), and capacity
(mA h) are obtained from the electrochemical analysis.
Moreover, the impedance (Ohm), phase angle (|Z|-degree°),
and real impedance (Ohm) are recorded at lower and higher
frequencies.18

It is important to mention that the specific areal capacitance of
each sample can be computed from the GCD curve using the
following equation2,29;

= × =C
J t

V
J i

A
, whereA (1)

where J is the areal current density (0.25 mA cm−2), Δt is the
discharge time from fully charged (0.8 V) to fully discharged
(−0.8 V), and ΔV is the stable potential window.18

Numerical parameters, including oxidation percentage (%),
Ti/oxidation ratio (%), and porosity percentage (%), were
obtained through microscopy analysis of both the base and
changing electrodes. The ImageJ software was utilized to
conduct morphological analysis of the laser-treated pseudoca-
pacitor electrodes. The scanning electron microscope (SEM)
images of the ablated surfaces were analyzed to identify the
topological features. The porosity of each sample was calculated
by adjusting the SEM image threshold until the porous structure
was emphasized. The collected data constitutes the final raw
dataset from the experimental setup and is suitable for additional
processing to be used in the ANN model.
ANN Input Data Preprocessing. The preprocessing of

data is an essential step in the construction of ANN models. This
process involves the manipulation of raw data (experimental
data) into a format that is more easily interpretable and
compatible with the neural network algorithm. The primary
procedures in data preprocessing for ANN modeling are data
cleaning and transformation, removal of outliers, handling of
missing data, and data normalization (see Figure 2). The
objective of these procedures is to ensure that the data is
properly prepared and optimized for use in the neural network,
resulting in a more accurate and efficient model.30,31

Outlier Removal and Missing Value Imputation. As
previously discussed in the statistical analysis section, in order to
ensure accurate data processing, three electrodes were fabricated
for each group of samples, and all experiments were performed
in triplicate. However, some data points in the final dataset were
found to be significantly different from other data points,
potentially due to measurement errors or other factors that can
occur during experimental work. These data points are known as
outliers. The process of removing outliers involves identifying
and eliminating data points that are considered to be outliers.
This can be accomplished manually by visually inspecting the
data or by using statistical techniques such as the interquartile
range (IQR).32 IQR is calculated from the first (Q1) and third

(Q3) quartiles and represents the width of the box in a box-and-
whisker plot. Data points (Xi) that fall outside the IQR are
defined as outliers. In this study, the dataset was first sorted in
ascending order, and Q1 and Q3 were calculated as the values
that are greater than 25% and 75% of the data points,
respectively. The IQR was then calculated as the difference
between Q3 and Q1, IQR = Q3 − Q1. Data points that lie beyond
the typical data range or have a low likelihood of occurrence
were deleted from the raw dataset.

In data analysis, it is common to encounter missing values in
datasets due to various reasons such as errors in data collection
or entry. These missing values can be problematic and need to
be handled appropriately. One popular method to address
missing values is called mean imputation, which involves
replacing the missing values with the mean value of the variable
across all the other observations in the dataset.33 In our analysis,
we observed a few missing values and addressed them using
mean imputation, as shown in Figure 2.
Data Normalization. Data normalization is a critical aspect

of data preprocessing that can enhance the performance of
machine learning models. It aims to transform data into a
standard scale to ensure each feature contributes equally to the
analysis. Normalization can also accelerate the convergence
speed and minimize negative impacts.18 To normalize the input
dataset in this study, we employed min−max scaling technique,
which scales the feature values to a range of [−1, 1] by
subtracting the minimum value and dividing it by the range of
values. The formula used for min−max scaling is34

=x
x x

x x
( )min

max min (2)

where x is the original value of the feature, xmin is the minimum
value of the feature, xmax is the maximum value of the feature, and
x′ is the normalized value of the feature.
Data Partitioning for Model Training and Evaluation.

In machine learning, it is common practice to divide a dataset
into a training set and a testing set. The training set is used to
train the model, while the testing set is used to evaluate the
model’s performance on data it has not seen before. In this study,
the dataset was randomly split into 80% training data and 20%
testing data, with 370 cycles used for training and the remaining
cycles used for testing.18 However, our dataset is small, so this
approach may not provide an accurate evaluation of the model’s
performance. To address this issue, k-fold cross-validation (CV)
was employed. This involves dividing the dataset into k equally
sized folds, where each fold serves as the testing set at some
point. For example, if k is set to 10, the dataset is divided into 10
folds, and the model is trained 10 times, each time using a
different fold as the testing set and the remaining folds as the
training set. The resulting root mean square errors (RMSEs) are
then averaged to obtain the final RMSE, providing a more
reliable evaluation of the model’s performance.
ANN Algorithm Development. To develop a multilayer

perceptron (MLP) regression model for the new dataset, we
implemented a Python-based ANN using the MLP Regressor
from the Sci-kit learn library,35 following the customized model
development steps outlined in our previous work.18 The model
had an input layer with 15 features, 1 hidden layer, and an output
layer with one unit. We trained the model with the newly cleaned
training dataset and used the mean square error (MSE) as the
loss function during training.36
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The experimental values are represented as y(i), the estimated
values are represented as ŷ(i), and K represents the number of
data points.

To optimize the weights, we used the Adam optimization
algorithm with a learning rate of 0.001 and a batch size of 16.
The model was trained for 500 epochs. The activation function
of the hidden layer output is given by37
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l
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1

1

(4)

where l denotes the index of the hidden layer, j represents the
number of neurons in the lth hidden layer j ∈ Z+, j − 1 denotes
the number of neurons in the (l − 1)th hidden layer, and α
represents the number of features for the layers. We used the
rectifier linear unit (ReLU) as the activation function, similar to
our previous work.18 However, we randomly initialized the
weights (wji

l ) between layers, which could result in differences in
the model’s performance. By making these changes, we ensured
that the model was not the same as the one developed in our
previous work while still maintaining the same evaluation metric.

To determine the optimal MLP design and hyperparameters
for this new dataset, we employed a k-fold cross-validation (CV)
approach with k = 100. The training data was split into 100
equally sized segments, and the root mean square error (RMSE)
was calculated for each segment. The average of these RMSEs
was taken as the RMSE for the set of hyperparameters of that
network. The set of hyperparameters that yielded the lowest
RMSE was selected as the optimal design for the network.38

Evaluation Metrics for ANN Algorithm Performance.
Two key metrics are used to evaluate the performance of the
model proposed in this study, namely, the root mean square

error (RMSE) and the coefficient of determination (R2).39,40

RMSE is a widely used index that quantifies the discrepancy
between the actual and predicted values of the response variable.
It is calculated using the following equation:40

=
=K

y i y iRMSE
1

( ( ) ( ))
i

K

1

2

(5)

where y(i) represents the experimental value, ŷ(i) is the
estimated value, and K is the number of data points. The
coefficient of determination (R2) measures the degree of fit of a
regression model to the data, with values ranging from 0 to 1.36 A
higher R2 value indicates a better fit of the model to the data,
with values close to 1 indicating a good fit and values close to 0
indicating a poor fit.41 The formula for R2 is as follows:41,42

= =

=

R
y i i

y i i
1

( ( ) y( )

( ) y( )
i
K

i
K

2 1

1 (6)

where y(i) present the experimental value, ŷ(i) is the estimated
value, y̅(i) is the mean values of all the data points, and K is the
number of data points. This formula for R2 involves calculating
the ratio of the explained variance to the total variance and
subtracting the result from 1. The explained variance is the sum
of the squared differences between the predicted values and the
mean of the actual values, while the total variance is the sum of
the squared differences between the actual values and their
mean, across all data points.42

■ ELECTROCHEMICAL BEHAVIOR PREDICTION OF
PSEUDOCAPACITOR ELECTRODES VIA THE ANN

Specific Capacitance and Impedance Prediction
Based on the Test Dataset. The trained ANN model is
tested for its ability to predict electrochemical behavior metrics
by loading it with the test dataset. This dataset is divided into

Figure 4. (a) Comparison is conducted between the specific areal capacitance values obtained experimentally and the predictions made using the test
set with the multilayer perceptron (MLP) model. (b) Comparison is carried out between the magnitude of impedance (|Z|) obtained experimentally
and the predictions made using the test set with the MLP model.18 The purpose of showing the red boxes is to provide an example of how well the
predictions made by a model match up with the actual values observed in the data.
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80% training data and 20% test data. The results are presented in
Figure 4, which displays parity plots of the test sets for the ANN
model.18 The MLP model shows an RMSE of 0.0512 in
predicting impedance |Z|, as shown in Figure 4a. The accuracy of
the developed ANN model is also evaluated by predicting the
specific capacitance value using the test dataset. The MLP model
has an RMSE of 0.2900 in this evaluation. The MLP model
provides the best fit for predicting |Z|, as indicated by the R2

value of 0.9959, as shown in Figure 4b.18 Similarly, for the
specific capacitance, the MLP model has the best fit with an R2

value of 0.7691.18

Specific Capacitance and Impedance Prediction
Based on Cross-Validation. Additionally, the regression
accuracy of the MLP model is confirmed using cross-validation,
which assesses the model’s performance on a smaller data
sample.18 The RMSE scores of the ANN algorithm are shown in
Table 2. The MLP approach proves to have the best accuracy,

with an RMSE score of 0.0393 in predicting the |Z| value. The
RMSE score for forecasting specific capacitance is 0.4401, as
determined in the earlier dataset splitting method.18

ANN-Enabled Optimization for Enhancing Electro-
chemical Behavior of Pseudocapacitors Electrode. One
of the main goals of our research was to customize the ANN
model that we had previously constructed, so that it could be
used to predict the electrochemical behavior of pseudocapacitor
electrodes and subsequently be used in an optimization
problem.18 Specifically, our optimized ANN model was
designed to predict two important parameters: the impedance
(|Z|) and specific capacitance of the pseudocapacitor. The
results of our study showed that our customized ANN model
was highly effective in accurately forecasting |Z| and specific
capacitance, as evidenced by the low root mean square error
(RMSE) values obtained. Another key objective of our study
was to determine the optimal laser parameters for enhancing the
electrochemical performance of pseudocapacitors. To achieve
this, we used the trained ANN model as a black box to simulate
the electrochemical behavior of pseudocapacitors based on
different laser parameters. To find the optimal laser fabrication
parameters, we used the SA optimization algorithm to maximize
the objective function of the ANN model. Our goal was to
identify the laser parameter settings that would yield the highest
specific capacitance value. This approach holds significant
promise for the design and optimization of pseudocapacitor
electrodes with improved electrochemical performance. In this
section, we first discuss the rationale behind using the SA
algorithm and then explain how we formulate the optimization
problem using SA.
Simulated Annealing. SA is a heuristic optimization

algorithm that is based on the Monte Carlo search method
and resembles the cooling process used for molten metals during
annealing. SA typically starts with a random initialization, and
the current state is then stochastically perturbed to reach a new
state.43,44 In the case of molten metals, the internal energy (E)
tends to decrease spontaneously, but higher internal energy

levels can also be accepted with a certain probability. For
optimization purposes, the internal energy can be regarded as
the fitness function, and the mechanism for accepting the new
solution is based on the Metropolis algorithm. The Metropolis
algorithm dictates that the probability of accepting a new
solution is related to the annealing temperature, which is given
by eq 7.45 This equation shows that the probability of acceptance
increases at higher temperatures, while at lower temperatures,
the solution tends to remain unchanged.45,46
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The probability of accepting the current solution (Pij) is
determined by the Metropolis algorithm, where ″i″ represents
the previous iteration and ″j″ refers to the current iteration. The
optimizing function is the internal energy (E), and the annealing
temperature (T) determines the probability of accepting the
new solution. The process involves several iterations to search
for the optimal solution, and the temperature is gradually
reduced at an extremely slow rate to ensure the precision of the
solution. At the end of each iteration, annealing takes place, and
the annealing temperature is reduced using eq 845,47

= ×+T T KK K1 (8)

where K represents the annealing rate. This is because slower
annealing tends to provide better precision. The global search
for a feasible solution depends on the number of iterations,
which can be increased by using a higher annealing temperature
and a slower cooling scheme. This approach can lead to better
performance by allowing the algorithm to explore a wider range
of solutions. Additionally, the independent initialization of the
algorithm allows for a more comprehensive search for the
optimal solution.
Simulated Annealing Implementation for Laser

Parameter Fabrication. The SA method is implemented
based on the laser fabrication parameters and the trained MLP
model. In algorithm 1, the first step is to call the trained MLP
function using a vector xn, which includes all eight laser
fabrication parameters for asymmetric optimal design, and four
laser fabrication parameters for symmetric optimal design. The
SA algorithm recommends two sets of four laser parameters for
asymmetric optimal design, which fabricate two different
electrodes, and one set of laser fabrication parameters for
symmetric optimal design, which fabricate both electrodes.

Various parameters need to be initialized, including the initial
temperature, the lower temperature limit, cooling schedule rate,
the number of iterations, the objective function, and the initial
solution (see Table 3). The cooling schedule rate should be
moderate, as a too high rate can cause the algorithm to converge
to a local optimal solution, while a too slow rate can result in a
longer search time.48,49 After initializing the parameters, the
initial solution is evaluated using the objective function, which

Table 2. Performance Comparison of ML Algorithms Based
on Cross-Validation

learning algorithms MLP
performance metrics RMSE
impedance |Z| [ohm] 0.0393

specific capacitance [mF/cm2] 0.4401

Table 3. SA Parameters for Optimal Electrode Design

parameters description value

Tmax initial temperature 1000
Tmin lower temperature limit 0.001
K cooling schedule 0.9
Niteration iterations per temperature 1000
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aims to maximize the specific areal capacitance (max f(xn)). The
algorithm calculates the difference between the current solution
value and the previous accepted solution value.50 If this
difference is less than zero, the solution corresponding to the
current function value is updated to the solution after the loop is
executed. On the other hand, if the difference is greater than or
equal to zero, the solution corresponding to the current function
value is updated to the solution after the loop with a certain
probability.50 This process will be repeated N times where N is
the number of iterations in each temperature. The current
temperature is updated using the cooling schedule rate after each
cycle until the end of the cycle, and the optimal solution is
obtained at the end of the cycle. Lastly, the SA algorithm
recommended eight different laser fabrication parameters for
asymmetric optimal design and four different laser fabrication
parameters for symmetric optimal design, which can be found in
Table 4.

■ RESULTS AND DISCUSSION
Morphology and Structural Properties of Electrodes.

Following the optimization of sample preparation, six samples

Table 4. SA Optimal Laser Fabrication Parameters for Electrode Design

base electrode changing electrode

optimal Solutions
power
(W)

frequency
(kHz)

pulse duration
(ns)

scan speed
(mm/s)

power
(W)

frequency
(kHz)

pulse duration
(ns)

scan speed
(mm/s)

asymmetric (OPT-
ASY)

13 100 2 5 17 600 1 290

symmetric (OPT-
SYM)

20 600 1 10 20 600 1 10

Figure 5. Morphological characterization was conducted using SEM images with EDX element mapping (weight %). The EDX data demonstrates
elemental composition and the presence of oxygen caused during laser irradiation. The samples analyzed were the following: S4 at ×500 magnification
(100 μm) and ×3000 magnification (10 μm) (a, b, respectively); S2 at ×500 magnification (100 μm) and ×3000 magnification (10 μm) (c, d,
respectively); OPT-SYM at ×500 magnification (100 μm) and ×3000 magnification (10 μm) (e, f, respectively); OPT-ASY (2) at ×500 magnification
(100 μm) and ×3000 magnification (10 μm) (g, h, respectively); OPT-ASY(1) at ×500 magnification (100 μm) and ×3000 magnification (10 μm) (i,
j, respectively). The EDX results are presented in images (k−o). Images (b, d, f, h, j) were taken at ×3000 magnification (10 μm) to provide a closer
view of the samples.
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were selected for analysis of structural and morphological
changes. Laser-induced porous structures offer increased surface
area and porosity, which enhances the electrode’s capacitance
behavior by enabling more ions to adsorb during charge and
discharge processes.18 Additionally, increased oxidized surface
area offers more available redox-active sites. We compared the
non-optimized and optimized sample sets to illustrate these
changes more clearly. In the non-optimized sample group, S2
and S4 were selected, where the laser parameters remained
constant with power set to 10 W, frequency set to 900 kHz, and
pulse duration of 0.15 ns, while the scan speed was set at 10 mm
s−1. For S4, all the parameters remained the same as S2, except
the frequency was increased to 1200 kHz. In the optimized
samples we selected OPT-SYM and OPT-ASY (see Table 4).
Results indicate that laser ablation parameters significantly
impact the surface morphology of treated samples. Figure 2
depicts SEM images and EDX results showing that surface
properties of ablated samples vary depending on the laser
parameters used.

All samples were SEM imaged at ×500 (100 μm) and ×3,000
(10 μm) magnifications, as shown in Figure 5. The OPT-SYM
and OPT-ASY electrodes differ significantly. Electrodes S2 and
S4 exhibit very small changes to the pretreatment Ti surface,
whereas sample S2 has a slightly better surface but lacks the
necessary porous structure to enhance surface area (see Figure
5a−d). The discrepancies in the distribution of the porous
structure between S2 and S4 show that there may be an optimal
frequency for generating a more equally distributed porous
structure. The EDX data indicates that at a lower frequency of
900 kHz, there is a higher oxidation percentage of 28.2% and
lower Ti percentage of 71.8%. This can be attributed to the fact
that with each pulse, the maximum surface temperature of the
irradiation zone increases, leading to higher energy. However,
when the frequency is increased to 1200 kHz, the oxidation
percentage drops to 23.3%, and the Ti percentage increases.
This suggests that there might be a threshold frequency beyond
which any further increase in frequency would not have a
significant impact on oxidation and surface morphology.

In contrast, the optimized samples exhibit distinct differences
in surface morphology. OPT-ASY (1) employed a slower scan
speed and lower frequency, which resulted in greater energy
transfer or induction onto the surface of the Ti substrate, leading
to the growth of a self-standing 3D nanostructured oxide layer
and extensive surface oxidation. OPT-ASY (1) displays a
macroporous structure resembling broccoli and a white and
black oxide layer, indicating an increase in surface area and redox
active sites (see Figure 5i,j). On the other hand, OPT-ASY (2)
utilized a higher scan speed (290 mm s−1) and frequency with

lower pulse duration, which produced a uniformly distributed
structure with visible holes and grooves without any 3D
nanostructured oxide layer (see Figure 5g,h). By increasing the
power to 20 W in OPT-SYM with a scan speed of 10 (mm s−1), a
spongy porous microstructure was obtained, resulting in a
successful phase change as more energy or power was
transferred or induced onto the surface of the Ti substrate
(refer to Figure 5e). At ×3,000 magnification, the SEM image of
OPT-SYM depicts millions of microgranules that have grown
and agglomerated on top of the standing structures, resembling
the top view of a broccoli (refer to Figure 5f). The formation of
standing structures is consistent throughout the entire surface,
and the differences observed in surface morphology can be
attributed to the amount of time allotted for the laser beam to
traverse and ablate the surface. These differences are evident in
the EDX results, which show variations in the degree of
oxidation that occurred during the laser irradiation process.18

Slower scan speeds used in OPT-ASY (1) and OPT-SYM allow
for more interaction time between the laser and the titanium
substrate, resulting in higher oxidation levels and a higher
percentage of oxygen detected in the EDX map spectrum.
Conversely, higher scan speeds in OPT-ASY (2) result in lower
oxidation levels and a higher percentage of titanium detected.
Despite the increase in frequency, the morphology still exhibits a
fibrous and porous microstructure, indicating the significance of
power and scan speed. The study of how the power level and
scan speed of the laser impact the surface properties of the Ti
substrate is intriguing, especially with regard to the degree of
oxidation and the resulting microstructure. It appears that a
higher power level and lower scan speed result in increased
energy transfer to the surface, leading to a more significant phase
change and increased oxidation traces, resulting in a more
porous microstructure. This is desirable for increasing surface
area and improving capacitance behavior.

XPS was conducted on all the samples to analyze the surface
chemical bonding and cation oxidation states of the laser-
assisted fabrication. The XPS survey spectrum for one of the
samples (Figure 6a) confirms that the film mainly consists of
titanium and oxygen, with some additional carbon. A similar
composition is observed in the survey spectra for the OPT-ASY
(1) sample. The high-resolution XPS spectrum of the Ti 2p
region shown in Figure 6b is deconvoluted into two peaks, Ti
2p3/2 and Ti 2p1/2, which are located at 458.91 and 464.58 eV,
respectively.51,52 This is a typical signature for stoichiometric
TiO. The O 1s core-level spectra for OPT-ASY (1) are shown in
Figure 6c, and the decomposition is performed using two
contributions denoted as OI (530.38 eV) and OII (531.84
eV).53 The low-energy peak OI is assigned to the Ti−O bond,

Figure 6. (a) Survey scan of the XPS spectrum demonstrates Ti and O species. (b) Ti 2p peak. (c) O 1s core levels with deconvoluted two peaks.
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while the peak at higher binding energies, OII, corresponds to
C−O bonds.53

X-ray diffraction (XRD) analysis was employed to confirm the
presence of micro- and nanoweb-like structures of titanium
oxide in one electrode. The XRD patterns revealed the
formation of a crystalline structure consisting of rutile and
anatase phases, as shown in Figure 7. The dominant phase was

found to be rutile, as evidenced by the major peaks observed at
26.8°, 35.6°, 40.5°, 53.6°, 63.4°, 68.6°, and 69.4°, which

correspond to (1 1 0), (1 0 1), (1 1 1), (2 1 1), (3 1 0), (3 0 1),
and (1 1 2), respectively (according to JCPDS card No. 88−
1175).54,55 The anatase phase was also present, with peaks
observed at 38.4°, 55.9°, and 62.3° corresponding to (0 0 4), (2
0 0), and (2 0 4), respectively (according to JCPDS card No.
21−1272).15,55,56 The anatase phase is known for its higher
surface area and narrow band, which make it more suitable for
energy conversion applications. However, it is also known to
have more surface defects. On the other hand, the rutile phase is
generally known for its tetragonal crystal structure, higher
density, and thermal stability, making it more durable and
suitable for higher power applications. The presence of a mixed
state allows for a combination of both phases on the surface,
which may provide a desirable combination of properties for
various applications.
Electrochemical Properties of Electrodes. The purpose

of the electrochemical analysis was to confirm the results
obtained from the microscopy and characterization analysis with
respect to the effect of laser parameters on surface character-
ization improvement.18 The electrochemical analysis included
CV, GCD, and EIS to determine whether the observed
structural modifications had an impact on the electrochemical
properties of the samples. The results of the electrochemical
analysis were then compared to the findings from the
microscopy and characterization analysis to establish a
correlation between the two. This allowed for a more complete
understanding of the impact of the laser parameters on both the
physical and electrochemical properties of the samples.

Figure 7. XRD analysis of electrode fabricated using the ULPING
technique.

Figure 8. (a) CV profile of all samples at 50 mV s−1 scan speed. (b) CV curve of all samples at 500 mV s−1 scan rates. (c) GCD curves were generated at
a constant current density of 0.25 mA cm−2, OPT-ASY exhibits a larger charge depletion compared to OPT-SYM and S2−S4. (d) Nyquist impedance
analysis of all the samples. (e) OPT-ASY demonstrates the least impedance. (f) Bode plot of samples to achieve a near 80° phase angle for capacitive
characteristics. These results suggest that OPT-ASY is the most promising sample with superior electrochemical behavior, demonstrated by its lower
impedance and larger charge depletion in GCD. The CV and GCD curves also indicate that samples with increased surface area perform better. The
Nyquist and Bode plots further support this observation, with OPT-ASY showing the least impedance and closest phase angle to the ideal capacitance
phase angle. Overall, these findings suggest that optimizing surface area can lead to improved electrochemical performance in the tested samples.
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The electrode’s electrochemical redox and capacitive behavior
was analyzed using a CV curve. As shown in Figure 8a,b, the CV
curve indicates a typical Faradaic dominant reaction. Figure 8a,b
illustrates the CV curves of the chosen electrodes in a 1 M
sodium sulfate (Na2SO4) electrolyte, with a potential range of
−0.8 to 0.8 V and scan rate of 50 mVs−1, as well as a potential
range of −1 to 1 V with a scan rate of 500 mVs−1. The electrolyte
composition, which remained consistent across all setups, may
affect the electrochemical performance of the samples, although
it was not considered in this study.18 The redox peaks exhibited
excellent reversibility and rapid kinetics occurring at the oxide
surface, while the capacitive nature of the samples was evident in
the −0.8 to 0.8 V range. The samples’ rapid, reversible redox
behavior and capacitive characteristics confirm the presence of
pseudocapacitance, thereby confirming the device as a
pseudocapacitor from a scientific perspective.

Among the analyzed samples, OPT-ASY demonstrated the
best capacitive performance. S2−S4, on the other hand, showed
the lowest current density of 0.021 mA at 0.8 V due to their low
oxidation and surface area. OPT-SYM’s current density at 0.8 V
(0.038 mA) improved slightly due to its increased surface area
and oxidation rate. At a scan rate of 500 mV s−1, OPT-SYM
exhibits a symmetric CV shape, further confirming that the
symmetric fabrication parameters recommended by the
optimization algorithm result in excellent performance. The
supercapacitive performance of OPT-ASY, which is a combina-
tion of different laser parameters, was found to be significantly
better than those of other samples in all groups, as indicated by
its CV curve that had a nearly rectangular shape and the highest
rechargeable current density. This superior performance was
attributed to the faster oxidizing rate and the presence of 3D
nanoporous structures, which were responsible for creating the
best electrode behavior among all samples according to the CV
results. Both SEM images and EDX data indicate that the surface
area and oxidation rate were important factors in the
electrochemical behavior of OPT-ASY. Furthermore, the
enhanced pattern generated by adjusting the laser parameters
was noticeable in the CV curves of all other sample groups as
well.

A GCD test was used to evaluate the capacitive charge of the
fabricated samples. The test involved analyzing the discharge
and charge curves for all cell setups using a constant current
density of 0.25 mA cm−2 within the stable potential range of
−0.8 to 0.8 V. As shown in Figure 8c, the GCD plot of all sample
groups confirmed the improvement pattern resulting from
changing the laser parameters, consistent with the CV and
microscopy results. OPT-ASY exhibited the best performance,
not only within the optimized samples but also across other
sample groups, depleting stored charges in 3.1498 s. In
comparison, OPT-SYM and S2−S4 depleted charges in
2.9091 and 1.015 s, respectively. OPT-ASY and OPT-SYM’s
exceptional performance was mainly attributed to the reduction
in the redox event that caused charge depletion as well as the
improved specific surface area. Once again, the microscopy
analysis revealed an improvement pattern from non-optimized
samples to optimized samples, demonstrating the crucial role of
improved surface morphology in enhancing the electrochemical
behavior of the samples.

EIS is commonly used along with CV, and it relies on a
continuous DC bias and a low amplitude alternating current
(AC) signal.18 To study the samples, EIS measurements were
conducted on all groups, covering a frequency range of 100 mHz
to 100 kHz.18 The Nyquist and Bode graphs of the samples are

depicted in Figure 8d−f. The EIS measurements also
demonstrated a noticeable pattern of improvement, reinforcing
the correlation between increased electrode surface area and
improved electrochemical performance. This pattern of
improvement was apparent in Figure 7d, which represents the
impedance data for each sample as a sum of their real and
imaginary components. The summation of real and imaginary
components varied across the samples, ranging from as high as
20,000 Ω cm2 in S2−S4 to as low as 3500 Ω cm2 in OPT-ASY.
EIS measurements can provide information about electrode
conductivity, which is a critical parameter. Figure 8e displays the
electrode impedance plotted against frequency for each sample
group. Out of all the samples tested, OPT-ASY, which had the
most favorable surface area for interfacial charge storage,
exhibited the lowest electrode resistivity (3554 Ω cm2). The
electrodes with the highest performance in microscopy, CV, and
GCD, including the optimized ones, also showed lower
electrode resistivity. The Bode plot, as shown in Figure 8f, was
utilized to investigate the capacitance behavior and diffusion
properties of the electrodes. The Bode figure typically shows the
phase angle vs frequency, with −90° being the ideal capacitance
phase angle.18 Both the Nyquist and Bode analyses indicate a
consistent trend, whereby electrodes displaying superior
performance within each group demonstrate lower impedance
and a phase angle approaching −90° at lower frequencies. For
instance, within the optimized group, the phase angle of OPT-
ASY is in very close proximity to −70°, the OPT-SYM value is
close to −75°, and in the non-optimized electrode group, S2−S4
values also approach −60°. The results of the study suggest that
samples with larger surface areas display improved charge
transfer, superior electrochemical performance (characterized
by lower impedance), and phase angle values that approach the
ideal capacitance phase angle. It should be noted that the
electrolyte utilized in this investigation was a basic salt solution,
which exhibits lower conductivity in comparison to highly acidic
or basic aqueous solutions.

As previously stated, it is possible to compute the particular
areal capacitance of each sample by utilizing eq 1 and analyzing
the GCD curve.18 In order to assess the functional capability of
the constructed electrodes, it is essential to calculate two key
parameters, namely, energy density (ES) and power density (PS),
which can be determined by utilizing eqs 9 and 10, respectively,
and utilizing the specific areal capacitance obtained from the
analysis.29,57,58

=E
C V

1
2S

A
2 (9)

=P E t3600 /S S (10)

where CA is the specific areal capacitance computed from GCD,
ΔVis the potential window, and Δt is the discharge time. It is
worth noting that a remarkable specific areal capacitance of
0.9999 mF/cm2 was attained at a current density of 0.25 mA/
cm2, resulting in a maximum energy density and power density
output of 0.001279872 Wh/cm2 and 1.46283734 W/cm2,
respectively. To conduct further morphological analysis, the
ImageJ software was employed to determine the topological
characteristics of the ablated surface through the examination of
SEM images following our previous work.18 Table 5 presents the
specific areal capacitance, energy density, power density, and
porosity measurements of all samples. Remarkably, a tendency
toward improvement can also be shown; the particular areal
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capacitance and porosity increased together with the sample
surface area.

■ DISCUSSION
As we showed in this study, the morphology, nanofiber
generation, and porosity of pseudocapacitor electrodes are
primarily determined by the parameters of an ultrashort pulse
laser. The theory behind the nanofiber generation is
straightforward and simple: when the laser pulses irradiate the
substrate surface, a considerable amount of energy is transferred,
converting photon energy into heat energy. Several events occur
during this brief period to facilitate successful growth of
nanostructure on the surface. Subsequently, a plasma plume is
formed, causing ionization, which enables the laser-affected zone
to interact with the ambient atmosphere and oxygen to create an
oxidized surface. The morphology and presence of nanostruc-
ture are influenced by the pulse energy and peak pulse power
utilized, which are directly related to the heat affected zone
(HAZ) and temperature gradient. The aim is to use an efficient
and effective pulse energy and peak power to avoid thermal and
mechanical damage, minimize particle agglomeration, and
prevent the evaporation or sublimation of the nanostructure.
Following the ionization process, the laser-irradiated local spot
cools and crystallizes, resulting in a sufficiently oxidized surface
and nanostructure, provided that the appropriate parameters are
used. Our study demonstrates that the use of SA as an
optimization algorithm can provide valuable insights into the
impact of laser parameters on the electrochemical performance
of electrodes. SA enabled a more comprehensive exploration of
laser parameter space, including previously inaccessible
parameter combinations, and identified optimal electrode
fabrication conditions that would have been challenging to
find using non-optimized methods. For instance, we found that
low scan speeds and frequencies, a moderate power range, and a
pulse duration of 2 (ns) in OPT-ASY resulted in superior
electrochemical performance. Our results indicate that opti-
mization algorithms like SA have significant potential in
electrode design tasks not only for supercapacitors but also for
other types of electrochemical energy storage devices.
Optimization can efficiently identify optimal parameter settings
that are difficult or time-consuming to obtain through trial-and-
error experimentation. Thus, optimization algorithms can lead
to the development of novel and improved electrode designs
that enhance the performance and efficiency of energy storage
devices, thereby advancing energy storage technologies.

■ CONCLUSIONS
In this study, our first aim was to establish the relationship
between the laser parameters used in the fabrication of

pseudocapacitor electrodes and their electrochemical perform-
ance through data-driven ML approaches. Subsequently, we
investigated how an optimization algorithm, simulated anneal-
ing, could be used to find the most optimal laser parameters for
achieving the most efficient electrochemical performance of the
fabricated electrodes. To accomplish this, we generated a large
dataset that included laser parameters selected experimentally
and electrochemical behavior performance metrics obtained
from different microscopy and electrochemistry analyses. We
then used a customized ANN model to highlight the relationship
between laser parameters and electrochemical performance
metrics such as specific areal capacitance and impedance.
Finally, we employed an SA optimization algorithm to maximize
the objective function, which, in our case, was the specific
capacitance value and determine the most optimal laser
fabrication parameters. Our results showed that the specific
areal capacitance increased from 0.3579 mF cm−2 in non-
optimized electrodes to 0.9999 mF cm−2 at a current density of
0.25 mA cm−2 in optimized electrodes. The use of SA improved
the pseudocapacitor performance and can be employed in
optimal design procedures.
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Table 5. Summary of the Specific Areal Capacitance,
Porosity, Energy Density, and Power Density of the Selected
Samples

sample

specific areal
capacitance

(mF/cm2) @ current
density

(0.25 mA/cm2)
porosity

(%)
energy density

(Wh/cm2)
power density

(W/cm2)

OPT-
ASY

0.9999 42.35 0.001279872 1.46283734

OPT-
SYM

0.8575 33.35 0.0010976 1.3217019

S2-S4 0.3579 23.8/
22.6

0.000458112 1.623886805
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