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REVIEW ARTICLE

Role of FGF/FGFR signaling in skeletal development and
homeostasis: learning from mouse models

Nan Su™, Min Jin* and Lin Chen

Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone
development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone
diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated
phosphate metabolism. FGE/FGER signaling is also an important pathway involved in the maintenance of adult
bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense
mutations in FGFs and FGFRs, have been established by knock-infout and transgenic technologies. These
genetically modified mice provide good models for studying the role of FGE/FGFR signaling in skeleton
development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton
diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the
regulation of bone development and homeostasis. This review also provides a perspective view on future works to

explore the roles of FGF signaling in skeletal development and homeostasis.
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INTRODUCTION
Skeletons are formed through two distinct developmental
modes, namely inframembranous ossification and endo-
chondral ossification. The former is directly accomplished
by osteoblast differentiation from mesenchymal cells; the
latter involves initial differentiation of mesenchymal cells
info chondrocytes to form a cartilage template and sub-
sequent replacement by bone.! The cranium and medial
clavicles are formed through intramemibranous ossifica-
fion. Long bones, including the appendicular skeleton,
facial bones and vertebrae, are formed through endo-
chondral ossification.?™

Various signaling molecules control the process of skel-
eton development, such as fibroblast growth factor (FGF),
wingless-type MMTV integration site family members (Wnt)
and bone morphogenetic protein (BMP) signaling path-
ways. Among these signaling pathways, FGF/fibroblast
growth factor receptor (FGFR) signaling is very essential.
The 22 members of the FGF family mediate their cellular
responses by binding to FGFRs. There are four distinct FGF
receptors with differential FGF-binding properties.* A typ-
ical FGFR contains an extracellular ligand-binding
domain, a fransmembrane region and an infracellular

divided tyrosine kinase domain. FGFs bind to the extracel-
lular domain of FGFRs and induce the phosphorylation
of tyrosine residues in the infracellular domain of FGFRs.
The activated FGFRs recruits target proteins fo its cytoplas-
mic tail and modifies these proteins by phosphorylation,®
leading to the activation of infracellular downstream sig-
naling pathways, such as mitogen-activated protein
kinase (Ras/MAPK), phosphoinositide 3-kinase/Akt (also
known as protein kinase B), phospholipase C and protfein
kinase C pathways. Furthermore, FGF signaling can also
stimulate the signal transducers and activators of tran-
scription (STAT) 1/p21 pathway?” (Figure 1). Multiple kinds
of mouse models with genetic modifications of FGF/FGFR
have been generated. In our review, we summarize the
use of these mouse models in the research of the role
of FGF/FGFR signaling in skeleton development and
homeostasis.

ROLE OF FGFRS IN BONE GENETIC DISEASES AND
HOMEOSTASIS

FGFR1

FGFR1 is first expressed in the early limb bud.&'° At the epi-
physeal growth plate, FGFR1 is expressed in perichondrium,
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Figure 1. Signaling pathways activated by FGF/FGFR. FGFs induce dimerization, kinase activation and transphosphorylation of tyrosine residues of
FGFRs, leading to activation of downstream signaling pathways. Multiple pathways are stimulated by FGF/FGER signaling such as Ras-MAP kinase,
PI-3 kinase/ AKT and PLC-y pathways. Furthermore, FGF signaling can also stimulate STAT1/p21 pathway. FGF/FGER signaling also phosphor-
ylates the Shc and Src protein. FGF/FGER play crucial roles in the regulation of proliferation, differentiation and apoptosis of chondrocytes via

downstream signaling pathways.

prehypertrophic and hypertrophic chondrocytes.” 12

FGFR1 is also expressed in osteoblasts and osteocytes
(Table 1).131¢

A series of mouse models of Fgfr1 have been generated
to genetically dissect the functions of Fgfr1 during gastru-
lation and later developmental processes. Fgfr1-deficient
(Fgfr1~/~) embryos display severe growth retardation, and
died prior to or during gastrulation because of infrinsic
blocks in mesodermal differentiation.!’~'® Deletion of the
lg domain llic of Fgfrl (Fgfrlliic) leads to gastrulation
defects resembling the Fgfri =/~ alleles. However, mice
with Fgfrlliib ablation are viable and fertile, suggesting
that llic is the dominant isoform for the majority of FGFR1
functions in embryogenesis.'” Chimeras were generated
by injecting Fgfr1 =/~ embryonic stem cells into wild-type
blastocysts to circumvent the gastrulation defect. The
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milder mutant chimeras exhibit deformed limb buds and
varying degrees of reduction in limb skeletal elements.'”=2!

Mice with targeted delefion of FGFR1 in all limb bud
mesenchymal cells (via T (brachyury)-cre),?? or posterior
limb bud mesenchyme (via Shh-cre)?® were used to further
study the role of FGFR1 in limb development. T-cre;
Fgfrl mice die at birth and show reduced limb skeleton,
misshapen forelimb/hindlimb bud and missing digits,
whereas Shh-cre Fgfrl mice display normal limb bud size,
but missed a digit.'° Li et al.?* assessed the roles of FGFR1
signaling in forelimb and hindlimb development by disrupt-
ing this gene, using AP2-Cre and Hoxb6-Cre transgenic
mice that express Cre recombinase in complementary
temporal and spatial patterns during limb bud formation.
The results indicate that disruption of Fgfrl at an earlier
stage, prior to thickening of limb mesenchyme, results in
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Table 1. The expression patterns of FGFs/FGFRs during skeleton development.
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2,7,11,31,46,60,161-162,204,262-263

FGFs/
FGFRs Limb bud Osteoblast lineage Cartilage Cranial bone Receptor specificity
FGF2 Developing condensation  Periosteal cells, Osteoblasts in Perichondrium, Chondrocytes Mesenchymal cells in the suture  FGFR1, FGFR2, FGFR3c,
trabecular bone FGFR4
FGF4 Posterior AER at E10.5- Sutural mesenchyme in early FGFR1c, FGFR2c, FGFR3c
11.0 craniofacial skeletogenesis
FGF7 Loose mesenchyme Perichondrium FGFR2b
FGF8 AER Cortical bone at embryonic stage Perichondrium, Chondrocytes Osteoblasts FGFR2c, FGFR3c, FGFR4
FGF9 AER, Developing Periosteum, Primary spongiosa  Perichondrium, Chondrocyte Mesenchyme of suture inearly ~ FGFR2c, FGFR3, FGFR4
condensation primordia craniofacial development
stages
FGF10 Lateral plate mesoderm FGFR2b
FGF18 Perichondrium and Chondrocytes, Mesenchymal cells in the suture FGFR2c, FGFR3c
presumptive joint separating the two osteogenic
positions fronts
FGF21 Chondrocytes FGFR1-4
FGF23 Osteoblasts, Osteocytes Resting and hypertrophic zone FGFR1, FGFR3c, FGFR4
FGFR1 Mesenchyme (llic) Osteoblasts in trabecular bone, Prehypertrophic and hypertrophic  Dura mater and periosteum,
Osteocytes chondrocytes of growth plate, Calvarial mesenchyme and
Perichondrium, Cartilage of the later in osteoblasts
cranial base
FGFR2 AER (Illb), Early limb Periosteum, Trabecular bone Prechondrogenic condensation, Proliferating osteoprogenitor
bud mesenchyme (Illc), Osteocytes Resting zone of growth plate, cells and differentiating
(Ille) Perichondrium, Cartilage of the osteoblasts
cranial base
FGFR3 Center of the mesenchyme  Osteoblasts, Osteocytes Resting zone and proliferating Low levels in sutural osteogenic
condensation chondrocytes of growth plate, fronts at late stages of
Cartilage of the cranial base development
FGFR4 Strictly in osteoblasts betweenthe Resting and proliferative zones

periosteal and endosteal layers

of growth plate

more severe defects, characterized by malformation of
the apical ectodermal ridge (AER).

FGFreceptor-specific substrates (Frs) act as the principal
mediators for FGFR1 signal transduction. Mice that lack
the Frs-binding site on FGFR1 (Fgfr14f/4F5) die during late
embryogenesis, and exhibit defects in neural tube closure,
and in the development of the tail bud and pharyngeal
arches. However, mutant FGFR1 still has functions during
gastrulation and somitogenesis, indicating that distinct sig-
nal fransduction mechanisms of FGFR1 signaling in differ-
ent developmental contexts.?®

Osteoglophonic dysplasia (OD) patients, resulting from
activating mutations of FGFR1, exhibit rhizomelic dwarf-
ism,?¢ indicating that FGFR1 is a negative regulator of long
bone growth. Embryos with conditional deletion of Fgfrl in
osteochondro-progenitor cell lineages show increased
height of the hypertrophic zone due to delayed degrada-
tion, or maturation of hypertrophic chondrocytes, or
decreased osteoclastogenesis.'>

Studies in humans and mice also reveal that FGFR1 play
crucialrole inbone formation. A gain-of-function mutation
in FGFR1 (P252R) leads to Pfeiffer syndrome (PS), one type
of craniosynostoses, characterized by premature fusion of
one or several calvarial sutures.?” Several activating muta-
fions of FGFR1 in OD patients also lead to craniosynostosis
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in addition to rhizomelic dwarfism.?é Mice carrying a P250R
mutation in FGFR1 were generated to mimic human PS.
Studies using these mutant mice uncovered that FGFs/
FGFR1 signals may regulate intramembranous bone
formation.?®

Jacob et al.'® found that adult mice, with deletion of
Fafr1l, exhibited increased bone mass. Deletion of Fgfrl,
in osteochondro-progenitor cells in mice (via Col2-cre),
leads to increased proliferation and delayed differenti-
ation, and matrix mineralization of osteoblasts, while inac-
fivation of Fgfri in differentiated osteoblasts (via Coll-cre)
causes accelerated osteoblast mineralization differenti-
ation.'® It has been proposed that FGFR1 promotes the
differentiation of mesenchymal progenitors into preosteo-
blasts, but inhibits the proliferation of mesenchymal pro-
genitor cells, as well as the maturation and mineralization
of osteoblasts.'® Impaired osteoclast activity is another
reason for increased bone mass in mice with Fgfri-
deficient in differentiated osteoblasts. To explore the direct
effect of FGFR1 on osteoclasts, Lu et al.?’ generated mice
with targeted deletion of Fgfr1 in bone marrow monocytes
and osteoclasts using LysM-cre. The mutant mice exhibit
increased bone mass, impaired osteoclast formation and
activity indicating the positive regulation of FGFR1 on
osteoclasts. The role of FGFR1 in osteocytes is sfill not

Bone Research (2014) 14003

@



Mouse models for FGF/FGFR signaling in skeleton research
N Su et al

clarified and should be
osteocytes
(Figure 2).

In addition to the effect of FGFR1 on limb development
and bone formation or remodeling, FGFR1 also partici-
patesin phosphorus metabolism. Osteoglophonic dyspla-
sia patients have non-ossifying bone lesions, hypophos-
phatemia and increased serum level of FGF23, a member
of the FGF family, which is a circulating phosphaturic hor-
mone produced mainly by osteoblasts and osteocytes.*'
Pharmacological inhibition of FGFR1 inhibits FGF23 tran-
scription in bone of animal models.3? Integrative nuclear
FGFR1 can activate the franscription factor cyclic AMP res-
ponse element-binding protein (CREB),%® which also binds
the proximal Fgf23 promoter; thus, it is hypothesized that
FGFR1 may regulate FGF23 by binding CREB.

studied by deletion of Fgfrl in
using dentfin maftrix protein-1(Dmp1)-Cre

FGFR2

FGFR2 is expressed in condensing mesenchyme of early
limb bud,”3*3> and later appears as the marker of pre-
chondrogenic condensations. In  developing bone,
FGFR2 is predominantly localized to perichondrial and
periosteal tissue, and weakly to endosteal tissue and tra-
becular bone.¢ FGFR2 is intensely expressed in the cartil-
age of the cranial base and growth plate.' ¥~ |n cranial
sutures, FGFR2 is mainly expressed in osteoprogenitor
cells'® and differentiating osteoblasts.*!=*2 The expression
pattern of FGFR2 indicates its important role in skeleton
development (Table 1).

Mice with deletion of transmembrane domain and part
of kinase | domain of Fgfr2 (Fgfr2~/~) die at E4.5-5.5 due to
stopped inner cell mass growth.*® Targeted deletion of the
Ig domain lll of FGFR2 results in embryonic lethality at E10-
11 because of failures in the formation of functional pla-
centa. Mutant embryos also fail to form limb buds comple-
tely, indicating that FGFR2 Ig domain Il is essential for limb
initiation.2444-45

Activating FGFR2 mutations have variable effects on
cranial cell replication, or differentiation in mice and

FGFR3

FGFR1

Mesenchymal cell Preosteoblast

FGFR2

humans.*%“¢ More than 10 gain-of-function mutations in
FGFR2 cause multiple types of craniosynostoses, such as
Apert syndrome (AS), Crouzon syndrome (CS) and PS, as
well as Beare-Stevenson cutis gyrata syndrome (BSS). 04
Among them, AS is one of the most severe craniosynos-
toses. $252W and P253R mutationsin FGFR2 are responsible
for nearly all known cases of AS.24

Several gain-of-function mutant mouse models, mimick-
ing human craniosynostoses, have been generated to
study the mechanism of FGFR2 for regulating the suture
development. Fgfr2 *5252% mutant mice mimicking human
AS have smaller body size, midline sutural defect and cro-
niosynostosis with abnormal osteoblastic proliferation and
differentiation.”® Fgfr2*/52°2% mice also show ectopic
cartilage at the midline sagittal suture, increased cartilage
in the basicranium, nasal turbinates and frachea. These
mutant mice display long bone abnormalities, as evi-
denced by the disorganized growth plates and more
prominent cartilage mineralization.*® Fgfr2*/F253R  mice
have growth retardation of the synchondroses of cranial
base and growth plates of the long bones with decreased
proliferation of chondrocytes, which may be responsible
for the smaller body size and shortened cranial base in
Fgfr2™/F253R mice.® Furthermore, Fgfr2™/F23R mice also
show ectopic cartilages in the sagittal sutures®#° consist-
ent with the skull phenotypes in Fgfr2t/52%2" mice and the
symptom in AS patients.*®° However, Chen et al.®' found
that the growth plates of Fgfr2*/525°% mice showed slightly
shorter columns of proliferating chondrocytes, but no
abnormal hypertrophic zone; and premature closure of
cranial base synchondrosis have been detected in
Fgfr2+/5250W myjce.
In Fgfr2*/P253R mice or Fgfr2*/"3%4< mice mimicking
human BSS (also characterized by skull abnormalities),
the premature fusion of coronal suture is associated with
enhanced  osteoblast  differentiation  similar  to
Fgfr2™/5252%mice 374752 |n another mouse model with a
C342Y mutation in FGFR2llic (Fgfr2c*/<342Y) (equivalent
to mutation in human causes CS/PS), premature fusion of

"' Mineralization

Apoptotic
\ Aosteoblast

Mature osteoblasts

Figure 2. The regulation of osteogenesis by FGFR1-3. FGFRs play distinct roles during the differentiation of osteoblast. There are some conflicting
results about the effect of FGFR3 on osteogenesis, which is marked by dotted lines.
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cranial sutures is accompanied by enhanced osteogen-
esis and increased proliferation of osteoprogenitor cells in
the coronal sutures.>® Chen et al.*! also found decreased
bone formation and premature closure of the coronal
suture in Fgfr2 525 mice similar to phenotypes in human
AS.>! However, increased apoptosis is responsible for pre-
mature fusion in Fgfr2 /525" coronal suture.®' These results
suggest that different activating mutations in FGFR2 result
in craniosynostosis through distinct mechanisms.

Fgfr2lic™’~ mice also show delayed differentiation and
mineralization of the skull vault, and premature coronal
suture due to decreased cell proliferation.>* The retarded
ossification in Fgfr2liic™’~ mice is correlated with the
decreased osteoblast markers OP and Cbfal, which is
emphasized by increased osteogenesis of Crouzon-like
mutant Fgfr2c™<3#2Y mice with upregulated OP and
Cbfal levels.> These results suggest that FGFR2llIc is a pos-
itive regulator of inframembranous ossification. Condi-
tional deletion of Fgfr2 in mesenchymal condensations of
mice via Dermol-Cre results in skeletal dwarfism and
decreased bone density. The proliferation of osteoprogeni-
tors and the function of mature osteoblasts are impaired in
mutant mice. However, the differentiation of osteoblast
lineage in mutant mice is not disturbed,*¢ which is distinct
from the delayed differentiation in Fgfr2llic™~ mice.>* This
finding may reflect the differences in the timing of Fgfr2
inactivation.?¢ These differences can be further explored
by conditional deletion of FGFR2 in osteoblastic cells.

Fgfr2ilic™~ mice also exhibit dwarfisms, reduced growth
of the skull base and axial, as well as appendicular skele-
tons, which is associated with decreased proliferating
chondrocytes and hypertrophic zone in these endochon-
dralbones. This leads to premature loss of skull base sutures
and smaller-than-normal long bones and vertebrae.>* The
expressions of chondrocyte markers |Ihh and PTH-related
peptide (PTHrP) are also diminished in Fgfr2lic™”~ mice.>*
These results suggest that Fgfr2liic regulates chondrocyte
lineages. Fgfr2; Dermol-Cre mice have decreased bone
length without apparent defectsin chondrocyte prolifera-
fion, but show shortened hypertrophic zone, which is sim-
ilar to that in Fgfr2llic”~ mice.>* Increased osteoclast
activity may account for decreased hypertrophic zone
by increasing the removal of calcified hypertrophic chon-
drocyte matrix.2¢

Genetic mouse models are also used to find therapeutic
strategy. Activated ERK1/2 and p38 signaling pathways
may participate in the regulation of coronal suture by
FGFR2.374752 The premature fusion of cranial sutures can
be partially rescued by blocking ERK1/2 or p38 activation,
respectively in vitro and in vivo.3747525¢ shukla et al.>¢>7
showed that RNA interference targeting the mutant form
of FGFR2 S252W completely rescued Apert-like syndrome
in mice, and local treatment of the Apert mice with U0126,
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an inhibitor of MEK1/2, significantly alleviated craniosynos-
tosis. Using genetically modified mice simultaneously car-
rying C342Y, L424A and R424A mutations in the same
FGFR2c (Fgfr2cCLR), researchers found that the activated
FGFR2 signaling caused by C342Y mutation, cannot
recruit and stimulate tyrosine phosphorylation of FRS2.3
Thus, premature fusion of sutures, mediated by activated
FGFR2llic, is prevented by aftenuation of the signaling
pathways through selective uncoupling between the
docking protein FRS20. and activated FGFR2llic.*® These
studies provide opportunities for developing novel thera-
peutic strategies for craniosynostoses.

FGFR3
FGFR3 is first expressed in chondrocytes, differentiated ini-
tially from the core of the mesenchyme condensation.>®
FGFR3 is expressed in reserve and proliferating chondro-
cytes as the epiphyseal growth plate is formed.'?%8-57
Immunohistochemistry results have indicated that FGFR3
is also expressed in mature osteoblasts and in osteocytes. '
During calvarial bone development FGFR3 is expressed at
low levels in sutural osteogenic fronts at the late stages
(Table 1).3438

Gain-of-function point mutations in FGFR3 cause
several types of the human skeletal dysplasias, including
achondroplasia (ACH), hypochondroplasia (HCH), thana-
tfophoric dysplasia (TD) and severe achondroplasia,
with developmental delay and acanthosis nigricans
(SADDAN).%° Among these diseases, ACH is the most com-
mon type of human dwarfism characterized by short stat-
ure, especially in the proximal upper and lower limbs,
cenftral facial dysplasia, macrocephaly and spine protru-
sion.¢' %3 The phenotype of HCH is similar to ACH, but much
milder than ACH, whereas TD is the most common form of
lethal skeletal dysplasia characterized by macrocephaly,
narrow bell-shaped thorax, severe shortening of the limbs
and lethality in the neonatal period. TD has been classified
into TDI and TDII. TDI patients have curved, short femurs,
with or without cloverleaf skull, and TDII patients have rela-
tively longer femurs with severe cloverleaf skull.** Patients
with SADDAN exhibit acanthosis nigricans and anomalies
in the central nervous system, in addition to severe skeletal
dysplasia.®5%¢

Currently, multiple FGFR3-related mouse models have
been generated using genetic approach to study the role
of FGFR3 in skeleton development and diseases. Mice car-
rying activating mutations of FGFR3 mimicking human
ACH exhibit smaller body size, dome-shaped skull and
shortened long bones with disorganized chondrocyte col-
umns in growth plates.¢%¢”~% Mice carrying FGFR3 K444E
mutation mimicking human TDII die within few hours after
birth, whereas mice carrying FGFR3 S345C mutation,
which corresponds to FGFR3 S371C mutation in human
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L)

DI, exhibit skeletal dysplasia more severe than ACH.”'=72

FGFR3 negatively regulates chondrogenesis of long bones
by affecting the proliferative activity and differentiation of
chondrocytes. A number of reports have demonstrated
that FGFR3 signaling inhibits chondrocyte proliferation
through STAT1 signaling by inducing the expression of cell
cycle suppressor genes such as the CDK inhibitor p21.737¢
Loss of Stat! restored the reduced chondrocyte prolifera-
fion in ACH mice, but did not rescue the reduced hyper-
frophic zone or the delayed formation of secondary
ossification centers in ACH mice. The expression of a con-
stitutively active mutant of MEK1 in chondrocytes of Fgfr3-
deficient mice inhibifs skeletal overgrowth, strongly sug-
gesting that FGFR3 inhibits chondrocyte differentiation
through the ERK/MAPK pathway.”¢ In contrast, evidence
suggests that FGFR3 promote chondrocyte terminal
hypertrophic differentiation.””””® Conversely, mice car-
rying targeted deletion of FGFR3 exhibit overgrowth of
long bone, wider hypertrophic zone, proliferative zone
and enhanced proliferative activity of chondrocytes.>?”?

Moreover, the activity and the signaling outcomes of
the FGFR3 pathway during chondrogenesis are also influ-
enced by many infracellular and extracellular signals.
Activated FGFR3 inhibits BMP4 expression in post-natal
mouse growth plates,®® while BMP treatment rescues the
retarded growth of long bone in ACH mouse model.””
These studies emphasize the antagonistic interaction
between FGFR3 and BMP signaling in the control of
chondrogenesis. Moreover, IHH expression is reduced in
mice carrying activating FGFR3.8° PTHrP partially reverses
the inhibition of long bone growth caused by FGFR3
activation.”? It was suspected that FGFR3 signaling may
act upstream of the IHH/PTHIP system in regulating the
onset of hypertrophic differentiation.”” In addition, it was
reported that IGF1 prevents the apoptosis, induced by
FGFR3 mutation, through the phosphoinositide 3-kinase
pathway and MAPK pathways.®!

FGFR3 signaling is also an important regulator of osteo-
genesis. Chondrocyte-specific activation of FGFR3 in mice
causes premature synchondrosis closure and enhanced
osteoblast differentiation around synchondroses. Prema-
ture synchondrosis closure is also observed in the spine and
cranial base in human cases of homozygous ACH and TD,
as well as in mouse models of ACH, with increased bone
formation.”®7%82 Activated FGFR3 leads to decreased
bone mass by regulating both osteoblast and osteoclast
activities.®3#* Mice lacking FGFR3 also have decreased
bone mineral density and osteopenia.'*®> FGFR3 can
inhibit proliferation of BMSCs in vitro.838% However, both
deletfion and activation of FGFR3 can lead to increased
differentiation, but impaired mineralization of osteoblasts
(Figure 2) 88 The reasons for these seemingly inconsistent
results need to be explored.
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Given its causal role in some skeletal disorders, including
ACH, FGFR3 and/or its downstream pathways, are attract-
ive targets for therapy. C-type natriuretic peptide is a
newly idenfified potential therapeutic antagonist of
FGFR3 signaling that alleviates the dwarfism phenotype
of mice mimicking human ACH through ifs inhibifion on
FGFR3/MAPK pathway.®® It was reported that parathy-
roid hormone (PTH) (1-34) stimulates the longitudinal bone
growth in rats and improves the growth of the cultured
femurs from mice carrying a gain-of-function mutation
(G380R) of FGFR3.88% |n addition, we have found prev-
iously that PTHrP partially reversed the shortening of cul-
tured bone rudiments from ACH mice.”? Recently, we
found that systemic intermittent injection of PTH (1-34)
can rescue the lethal phenotype of TDIl mice and signifi-
cantly alleviate the retarded skeleton development of
ACH mice.”® We also have identified a novel inhibitory
peptide for FGFR3 signaling, which alleviated the bone
growth retardation in bone rudiments from mice mimick-
ing human TDIl and reversed the neonatal lethality of TDII
mice.”

FGFR4

In addition to its expression in the resting and proliferative
zones of growth plates,'' FGFR4 is also highly expressed in
rudimentary membranous bone and strictly localized in
osteoblasts between the periosteal and endosteal layers
(Table 1).72 Interestingly, Fgfr4-deficient mice are devel-
opmentally normal, but the Fgfr3/Fgfr4 double null mice
grow more slowly.”® However, the effect of FGFR4 on bone
development remains unclear and needs further studies.

FGFS PARTICIPATE IN SKELETON DEVELOPMENT AND
BONE METABOLISM
FGF2
FGF2 is one of the earliest members identified in the FGF
polypeptide family, and is expressed in majority of cells
and tissues including limb bud, chondrocytes and osteo-
blasts. FGF2 is stored in the extracellular matrix.!-74-7¢
FGF2 contributes to the growth and patterning of the
limb.?¢ Overexpression of human FGF2 in mice (TgFGF2)
results in dwarfism, with shortening and flattening of long
bones and moderate macrocephaly.”” Deletion of Stat]
leads to a significant correction of the chondrodysplasic
phenotype of TgFGF2 mice.”® These results indicate the
essential role of STAT1 in FGF-mediated regulation of epi-
physeal growth plates. Fgf2-knockout (Fgf2~/~) mice have
normal limbs. The normal skeleton in Fgf2™/~ mice indi-
cates that the function of FGF2 may be replaced by
FGF8 and FGF4,”? which is also expressed in the limb bud.
FGF2 also plays important roles in bone homeostasis.
Deletion of Fgf2 in mice leads to decreased bone mass,
bone formation and mineralization.”> ' Endogenous
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FGF2 promotes the differentiation of bone marrow stromal
cells (BMSCs) into osteoblasts, since FGF2 deficiency results
in adipogenesis and reduced osteogenesis of BMSCs.”> 10!
Similar to Fgf2~/~ mice, TQFGF2 mice also have reduced
bone mass, which may result from impaired endochondrol
ossification, or continuous exposure to high levels of FGF2
in vivo.'*1%2 Targeted overexpression of FGF2 in chondro-
cytes and osteoblasts should provide important informa-
tion about the role of FGF2 in dwarfiim and bone
formation.'%?

Otherimportant factors for bone homeostasis also exert
their effects through FGF2. PTH and BMP2-induced bone
formationin Fgf2 =/~ mice are greatly impaired, and osteo-
clast formation stimulated by PTH and BMP2 are also dis-
rupted in Fgf2 ™/~ bone marrow stromal cultures.'%7'%° The
impaired bone anabolic effect of PTH in Fgf2~/~ mice is
associated with reduced expression of activating tran-
scription factor 4, a critical regulator for osteoblast differ-
entiation and function.'®® Furthermore, prostaglandin F2x
also induces osteoblast proliferation through endogenous
FGF2.'%7

FGF2 has three isoforms: a low molecular weight isoform
(Imw, 18 kDa) and two high molecular weight isoforms
(hmw, 21 and 22 kDa). FGF2Imw is secreted and activates
FGFRs, whereas FGF2hmw remains infranuclear. Their roles
in bone formation are largely unknown. Transgenic mice
with targeted overexpression of FGF2Imw and FGF2hmwin
immature and mature osteoblast lineage (via Col3.6-cre)
are used to elucidate the differential functions of FGF2 iso-
formsin bone formation.'%®1% Col3.6-FGF2Imw mice have
increased bone mineral density (BMD), bone mass and
enhanced mineralization of BMSCs, which is related to
the reduced expression of the Wnt antagonist secreted
frizzled receptor 1.'° In contrast to TgFGF2Imw mice,
Fgf2lmw ™/~ mice show significantly reduced BMD and
impaired mineralization.'%®

Col3.6-FGF2hmw mice display dwarfism, decreased
BMD, increased FGF23 level, hypophosphatemia and rick-
ets/osteomalacia, which is similar to X-linked hypopho-
sphatemia (XLH).'%"1° A potential mechanism is that
FGF2 enhances FGF23/FGFR1/KLOTHO signaling, and then
downregulatesrenal Na*/Pi cotransporter NPT2a, causing
Pi wasting, osteomalacia and decreased BMD.'® The
upregulation of FGF23 level by FGF2hwm depends on
FGFR1/MAPK pathway.''® These studies indicate that
FGF2isoforms have important effects on bone homeosta-
sis and different FGF2 isoforms perform distinct roles.

FGF4

Vertebrate limb development largely depends on signals
from the AER. During limb development, FGF4 is first
expressed in the developing murine forelimb bud at
E10.0. Its expression is strongest in the posterior AER at
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E10.5-11.0 and is undetectable at E12.0."'" FGF4 provides
mitogenic and morphogenic signals to regulate normal
limb development.'"'="12 Fgf4 knockout (Fgf4~/~) mice
die on E4.5 (early embryonic stages),''® preventing the
direct evaluation of FGF4 function in the developing limb.
Mice with targeted deletion of Fgf4 in limbs (via Rarb-Cre)
are viable and have normal skeletal patterns.!'’ The
expression pattern of Sonic hedgehog (Shh), another key
signaling molecule in AER maintenance, is normal in the
limb buds, suggesting that FGF4-Shh feedback loop is not
essential for limb development.

In addifion to its essential roles in the AER of normal
embryo, FGF4 can also promote inframembranous ossi-
fication and participate in the development of calvarial
bone. FGF4 is expressed in sutural mesenchyme during
early craniofacial skeletogenesis.®® Treatment with FGF4
on developing mouse coronal suture leads to synostotic
coronal sutures accompanied by the induction of apop-
tosis and accelerated mineralization.'' FGF4 can also
cause premature suture fusion with increased cell prolifera-
tion, both in cultured calvaria and in mice.''® Furthermore,
systemic administration of FGF4 and its 134 amino-acid
residues leads to increased bone formation in rats and
mice in vivo.''® FGF4 can also promote BMSC proliferation
in vitro,"'77""® and strongly stimulate Runx2 expression in
osteoblast-like MC3T3-E1 and murine premyoblast C2C12
cells.'"” However, studies especially genetic studies on the
role of FGF4 in bone formation, are still lacking.

FGF8
FGF8is expressed throughout the AER, indicating itsimport-
ant role in limb development.'?'22 Mice with deleted
Fgf8 show early embryonic lethality before limb develop-
ment.'?>"1?4 Lewandoski et al. generated mice with tar-
geted deletion of Fgf8'?* (via Msx2-cre) in limb bud.''?
These mice display failed limb development with substan-
tialreductioninlimb-bud size, and hypoplasia or aplasia of
specific skeletal elements.!'? However, the Msx2 promoter
drived cre is not expressed sufficiently early to completely
ablate Fgf8 function during forelimb formation, which
results in a complex forelimb phenotype. Using Rarb-Cre
mice, Fgf8 is conditionally deleted in the developing fore-
limb AER. These mice have severe forelimb deformity,
including the absence of radius and first digit.'2512¢

In addition fo its important role in limb development,
FGF8 also regulates osteoblast and chondrocyte differ-
entiation. FGF8 is expressed in chondrocytes and peri-
chondrium of dorsal costal bone, as well as in the
osteoblast compartment of calvarial bone in cortical
bone and the growth plate of developing bones.®%'?”
FGF8 can effectively predetermine mouse BMSCs and
C2C12cellline to differentiate to osteoblasts and increase
bone formation in vitro.'?7'?? However, Lin et al.’*® found
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that FGF8 stimulated the proliferation of MC3T3E1 or prim-
ary rat osteogenic cells, but inhibited osteogenic differ-
entiation and mineralization. These controversial results
may be atfributed to the different cells used in in vitro
experiments. As to cartilage, FGF8 can promote the
degradation of cartilage and exacerbation of osteoarthri-
tis.’®! However, the influence of FGF8 on bone and cartil-
age remains unclear.

FGF9

FGF9 has the highest affinity fo FGFR3, and can also bind
FGFR2 with a lower affinity (Table 1)."3? FGF9 is broadly
expressed in different tissues including in AER, perichon-
drium/periosteum, chondrocytes of growth plate, as well
as primary spongiosa. 33135

Colvin et al.'®¢ generated Fgf9 knockout (Fgf9™'~) mice
and showed that deletion of Fgf9 alleles led to lethality at
the neonatal stage mainly due to malformations of the
lung, and causing male-to-female sex reversal.'3¢ %7
Fgf9~™/~ mice display disproportionate shortening of the
proximal skeletal elements (rhizomelia), but the limb bud
development and mesenchymal condensations are nor-
mal.'3® These results indicate that loss of Fgf9 in AER does
notlead to limb patterning defects that primarily affected
mesenchymal condensation. The rhizomelia results from
the loss of Fgf9 function after mesenchymal condensation.
Similarly, fransgenic mice, with overexpression of Fgf9 in
chondrocytes (Col2al-Fgf?), also show dwarfism, short
limb and vertebral defect because of the reduced prolif-
erafion and ferminal differentiation of chondrocytes.
These results are similar to bone phenotypes, caused
by activated FGFR3.'*® These seemingly inconsistent
results between Fgf9 null and transgenic mice may
result from distinct effect of FGF? on different stages of
skeletogenesis.

In addition, Fgfo™'~ mice also show impaired osteogen-
esis, which may be secondary to the earlier defective
chondrogenesis and vascularization,'®® or FGF9 may
directly regulate osteogenesis, as demonstrated by in vitro
calvarial bone cell culture studies.'® Furthermore, the loss
of Fgf9resultsin a deficiency of osteoclastsin the perichon-
drium and primary spongiosa of developing bone.'3®
These findings suggest that FGF? can positively regulate
osteogenesis and osteoclastogenesis in endochondral
ossification.

FGF9 is also expressed in the mesenchyme of suture in
the early craniofacial development stages.''® By contrast
to its promoting effects on osteogenesis in endochondral
ossification, targeted overexpression of FGF? in cranial
mesenchymal cells leads to a switch from inframembra-
nous to endochondral ossification in mouse parietal bones,
indicating that FGF? may regulate bone development by
affecting the direction of mesenchyme differentiation.'”
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Recently, missense mutations in FGF? have been iden-
tified fo result in elbow-knee synostosis, premature fusion of
cranial sutures in mice'“° and multiple synostosis syndrome
in humans.'*! These data further suggest the important
effect of FGF? on bone development.

However, the different impacts of FGF? on different
stages of limb development and the direct effect of
FGF? on adult bone homeostasis are still unclear.
Targeted deletion of Fgf? in different stages and cells using
Fgf9 CKO mice'*? are necessary to answer these questions
in the future.

FGF10

FGF10 is expressed in the lateral plate mesoderm and
serves as a mesenchymally expressed limb bud ini-
tiator,*4 143144 qnd the expression persists in the mesench-
yme under AER after initial limb bud formation. FGF10 acts
epistatically at the upstream of FGF8.'#® Positive feedback
exists between FGF8 and FGF10, which is essential for limb
development.** To define the role of FGF10, Fgf10 knock-
out (Fgf10™/~) mouse strain was generated. These mice
show complete absence of fore- and hindlimbs, and
die after birth associated with complete absence of
lungs.'*51#¢ The limb bud formation in Fgf10™/~ embryos
isinitiated but outgrowth of the limb buds isimpaired, while
the clavicle formationis normal.'¢ However, the impact of
FGF10 on postnatal bone development and modeling
remains unclear.

FGF18
FGF18 is expressed in osteogenic mesenchymal cells and
differentiating osteoblasts of developing calvaria, in the
perichondrium and joints, as well as growth plates of
developing long bones.' 1477148

Fgf18 knockout (Fgf18~/~) mice die shortly after birth,
and display expanded zones of proliferating and hyper-
frophic chondrocytes with increased chondrocyte prolif-
eration and differentiation, similar to that observedin mice
lacking Fgfr3.'“~'“8 Bone cultures of fetal mouse tibias
treated with FGF18 show decreased bone length and
hypertrophic differentiation of chondrocytes.®” ' These
studies demonstrate the inhibitory effect of FGF18in chon-
drogenesis. In contrast to the negative role of FGF18 in
chondrogenesis found in Fgf18 '~ mice or FGF18-treated
cultured bone, the proliferation and differentiation of
primary chondrocytes and prechondrocytic ATDCS5 cells
are stimulated by FGF18 treatment in vifro.'*° FGF18 also
enhances BMP function and stimulate chondrogenesis in
earlier stages of cartilage formation by suppressing noggin
expression.'®! These seemingly contradictory data sug-
gest that the in vivo role of FGF18 in chondrogenesis need
to be further studied. In addition, FGF18 regulates bone
development by inducing skeletal vascularization and
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subsequent recruitment and formation of osteoclasts in
developing long bone.'*?

Fgf18 '~ mice also show delayed suture closure with
decreased proliferation of calvarial osteogenic mesen-
chymal cells and delayed osteogenic differentiation.
The calvarial bone mineralization in Fgf18~/~ mice is also
decreased.'*®1%2 The delayed osteogenic differentiation
is also observed in the developing long bones of Fgf18~/~
mice."*?In vitro studies show that FGF18 treatment results in
enhanced proliferation of MC3T3-E1 cells and perichondrial
cells in cultured metatarsals,' supporting the promoting
effect of FGF18 on osteogenesis. These data indicate that
FGF18 may be an important modulator for both endochon-
dral and inframembranous bone formation in adult mice.

Although FGF18 is a key regulator for chondrogenesis,
osteogenesis and vascularization of early skeleton
development, the mechanism and the direct effect of
FGF18 on the three critical stages in skeleton devel-
opmental or bone homeostasis at adult period need to
be further studied.

FGF21

FGF21is amember of the FGF19/21/23 subfamily that func-
tions as an endocrine hormone.'>'%* FGF21 is a powerful
regulator of glucose and lipid metabolism.'*5 '8 Recently,
FGF21 has also been found to participate in bone home-
ostasis. The overexpression of Fgf21 in liver driven by Apoe
promoterin fransgenic mice show decreased bone mass,
impaired bone formation and increased osteoclast func-
fion, which is consistent with the phenotypes of mice
with pharmacological FGF21 freatment. In confraost,
Fgf21~/~ mice have increased bone mass with improved
osteogenesis and decreased osteoclast function. The pos-
sible mechanism is that FGF21 stimulates adipogenesis
from bone marrow mesenchymal stem cells by potentiat-
ing the activity of peroxisome proliferator-activated
receptor y, but inhibits osteoblastogenesis.'®’ These results
indicate that FGF21 is a negative regulator of bone turn-
over and a key integrator of bone and energy metabol-
ism, and underscores the importance of the whole body
energy metabolism in bone physiology.'>’

Furthermore, FGF21 is expressed in the growth
plate,'®% ¢! and is associated with reduced skeletal
growth and growth hormone (GH) insensitivity caused by
undernutrition. After food restriction, FGF21 expression is
increased in the ftibial growth plates of mice. Fgf21 =/~
mice exhibit greater body and tibia growth than their
wild-type conftrols after food restriction because of
reduced GH binding and GH receptor expression in the
liver and in the growth plates of wild-type mice, but not
inthat of Fgf21~/~ mice."®' FGF21 also has direct effect on
chondrocytes. Higher concentrations of FGF21 inhibit
chondrocyte proliferation and differentiation by reducing
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GH binding in cultured chondrocytes.'®® FGFR1T may par-
ficipate as receptors of FGF21 in the regulation of chon-
drocytes by FGF21.160-162

Owen et al.'®® found that physiological levels of FGF21
regulate the HPA axis and glucocorticoid levels, as well as
the kisspeptin pathway in female fertility, which may also
have effect on bone homeostasis.

FGF23

FGF23 is an approximately 32-kDa protein with an
N-terminal FGF homology domain and a novel 72-
amino-acid C-terminus, which permits interaction with
FGF receptor-a—Klotho coreceptor complexes in cell
membranes of target tissues.' ¢4 FGF23 is mainly secreted
by osteoblasts and osteocytes,'*>'%” and as a hormone to
regulate systemic phosphate homeostasis and vitamin D
metabolism.

FGF23 downregulates serum phosphate. Mutationsin an
RXXR site in FGF23 prevents its cleavage resulting in auto-
somal-dominant hypophosphatemic rickets (ADHR), char-
acterized by low serum phosphorus concentratfions,
rickets, osteomalacia, lower extremity deformities, short
stature, bone pain and dental abscesses.'®'7? The over-
production of FGF23 by tumors'”® and osteogenic cells in
fibrous dysplastic lesions'”* may be responsible for the
hypophosphatemia in tumor-induced osteomalacia and
fibrous dysplasia, respectively. In addition to its role in
hypophosphatemic diseases, FGF23 is involved in hyper-
phosphatemic diseases. Hyperphosphatemic familial
fumoral calcinosis is a relatively rare genetic disease char-
acterized by enhanced renal tubular phosphate reab-
sorption and elevated serum phosphorus, as well as
paraarticular calcific tumors.'”® Multiple mutations in
FGF23 gene that lead to decreased FGF23 activity have
been identified in patients with hyperphosphatemic famil-
ial tumoral calcinosis.'”¢'78 These human studies help to
define the crifical role of FGF23 in regulating phosphate
metabolism.

The fransgenic mice, ubiquitously expressing human
FGF23, reproduce the common clinical features of hypo-
phosphatemia, including decreased serum phosphorus
concenfration, increased renal phosphate wasting,
inappropriately low serum 1,25-dihydroxyvitamin D
[1,25(0OH),D] level, and rachitic bone.!”? Overexpression
of human FGF23 in osteoblastic lineage or FGF23R176Q
(a mutant form that fails to be degraded by furin prote-
ases) in liver results in phenotypic changes similar to those
of patients with ADHR or fransgenic mice expressing FGF23
ubiquitously.'818" Serum phosphate level is regulated by
renal NaPi-2a in the brush border membrane of proximal
tubules.'®? The renal phosphate wasting in the transgenic
mice is accompanied by the reduced expression of NaPi-
2a."”? The reduction of serum 1,25(OH),D levels may result
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from a significant decrease in renal mMRNA level for 25-
hydroxyvitamin D-1a-hydroxylase (1a-OHase) and a sim-
ultaneous elevation of 24-hydroxylase mRNA, induced by
increased serum level of FGF23 (Figure 3).'83

Consistently, Fgf23 knockout (Fgf237/~") mice have
opposite features including significantly increased serum
levels of phosphate, calcium and 1,25(0OH),D because of
the upregulated renal phosphate reabsorption and
enhanced expression of renal 1a-OHase, respectively. '8
The Fgf23™/~ mice also exhibit premature aging-like phe-
notypesincluding reduced lifespan, infertility, osteoporosis
and renal dysfunction.'® The elimination or reduction of
vitamin D activity from Fgf23™/~ mice can rescue the pre-
mature aging-like features and ectopic calcifications.
These in vivo experimental data strongly support the very
essential roles of FGF23 in the regulation of phosphate
homeostasis, vitamin D activity and in the pathogenesis
of premature aging.'®

Recent studies have indicated the regulation of iron on
FGF23. Reduced serum iron concentrations are strongly
correlated  with increased serum FGF23 in  ADHR
patients, '8 and C-terminal FGF23 is negatively correlated
with ferritin.'® To investigate the effect of iron on the
development of the ADHR phenotype, R176Q-Fgf23
knock-in mice mimicking human ADHR are generated
and placed on control or low-iron diets.!®187 R176Q-
Fgf23 knock-in mice on low-iron diet have elevated intact
C-terminal Fgf23 with hypophosphatemic osteomalacia
and low serum 1,25(0OH),D. Iron chelation in vitro results in
a significantly increased Fgf23 mRNA level that depends
on MAPK signaling.'®” However, the mechanism for the
regulation of FGF23 by iron is still unclear.

Increased FGF23 levelis also found in patients with hypo-
phosphatemic diseases including XLH and autosomal

Parathyroid
glands

—] PTH —

Bone

|

—_—

1,25(0H),D /

1a-hydroxylase

dominant hypophosphatemic rickets (ARHR). XLH is
caused by inactivating mutations in phosphate regulating
gene with homologies to endopeptidases on the X chro-
mosome (PHEX).'”%'?! Mice with ablation of Phex gene
(Hyp mice) have increased FGF23 expression and hypo-
phosphatemia.'?? Both the serum phosphate levels and
skeletal changes in Hyp mice can be reversed by infro-
ducing Fgf23 null mutation into Hyp mice,'¢% 173194 indi-
cafing that enhanced FGF23 level is responsible for the
hypophosphatemia in XLH patients and Hyp mice. The
increased FGF23 level is due to the improved Fgf23
expression, but not decreased degradation.'6>174-175
ARHR results from missense mutations in DMP-1. Dmp1
knockout mice exhibit hypophosphatemic rickets and
osteomalacia similar to ARHR patients.'”¢™'?” Both Dmp1
null mice and patients with ARHR show elevated serum
FGF23 levels. Considering the role of FGF23 in ADHR and
other hypophosphatemic diseases, ARHR has been
proposed to be associated with excessive actions of
FGF23.

FGF23 also participates in some clinical pathological
processes, in addition to its role in genetic diseases. In
patients with chronic kidney disease (CKD), FGF23 level is
elevated due toincreased serum calcium and phosphate
concentrations and PTH,®"'"® and is associated with
increased FGF23 franscription in bone.'”? Some research-
ers proposed that FGF23 might be an early biomarker for
earlier interventions in CKD.2°° However, the reason for the
high serum levels of FGF23 in CKD is unclear. Furthermore,
elevated level of FGF23 in CKD patients have been linked
to greater risks of left ventricular hypertrophy (LVH).201-202
Using animal models, Faul et al.?°® found that increased
level of FGF23in mice resulted in pathological hypertrophy
of cardiomyocytes and LVH. To avoid redundancy and

FGF23 <—— PHEX

NaPi-2a ——> phosphate resorptionl/

Renal tubules

Figure 3. FGF23 regulates systemic phosphate homeostasis and vitamin D metabolism. FGF23 can reduce expression of NaPi-2a in kidney tubules and
lead to renal phosphate wasting. FGF23 downregulates activity of 25-hydroxyvitamin D 1a-hydroxylase in kidney tubules and reduces 1,25(OH),D

level. Furthermore, FGF23 also have relationship with PTH and PHEX.
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give full attention of the exciting results from FGF23 studies,
we encourage you to read the recently published review
by Quarles and Bhattacharyya.3'-2%4

OTHER FGFS

In addition to the FGFs mentioned above, the roles of
majority of these 22 FGFs are not defined in skeleton
development and homeostasis. Researchers have gener-
ated knockout or CKO mouse models of these FGFs
(Table 2). Fgf3 knockout mice show a short, dorsally curled
tail, caudal vertebrae and smaller body.2°® Some mouse
models show normal skeleton phenotypes, such as mice
lacking FGF1, FGF5, FGF6, FGF7, FGF17 or FGF22.2°¢212The
skeleton phenotypes of knockout mice lacking FGF11-
FGF16, or FGF20, are still not analyzed.?'*2'? The effect of
these FGFs on bone development or homeostasis need be
further studied.

CONCLUSIONS

Studies in human patients and mouse models with FGFs/
FGFRs mutations have shown important roles of FGF signal-
ing in skeletal development, genetic skeletal diseases and
bone homeostasis. So, FGF/FGFR signalings will be attract-
ive targets for treating bone related diseases. FGF/FGFR
signals confrol the balance among skeletal cell growth,
differentiation and apoptosis during development and
adult homeostasis, as well as regulate systemic phosphate
homeostasis. However, many unresolved issues stillneed to
be explored.

Many studies have investigated the role of FGFRs in
endochondral and inframembranous bone formation
during development, but the effects of FGFRs on osteo-
clasts, especially on osteocytes, have not be clarified.
Osteocytes are the most abundant and longest-living cells
in the adult skeleton and have essential roles in bone
homeostasis.?2°-22! Thus, uncovering the impact of FGFRs
on osteocytes using osteocyte-specific Cre mice is critical.

Compensation, or crosstalk, may occur between differ-
ent FGFRs during skeleton development. For example,
conditional knock out of Fgfr] in mature osteoblasts leads
to increased FGFR3 expression,'® whereas both cultured
bone marrow stromal cells from Fgfr3 null mice, or mice
carrying gain-of-function mutation in FGFR3, have
increased expression of FGFR1.283% Crossing between
mouse strains harboring various FGFRs mutations is exire-
mely important to elucidate the interactions between dif-
ferent FGFRs.

So far, only part of the 22 known FGF ligands have been
shown to be essential for skeletal development, such as
FGF8, FGF? and FGF10. However, the mechanisms remain
unclear because most of the knockout mice die before or
after birth. Conditional deletion of these FGFs using bone
cell-specific Cre mice is necessary to study theirroles during

© 2014 Sichuan University
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bone development. The function of other unexplored FGFs
in skeletogenesis remains to be discovered. Furthermore,
which FGFRs are the relafively specific receptors of these
unexplored FGFs during bone development and metabo-
lism are unknown. Crossing mouse strains harboring differ-
ent FGFs mutations with FGFRs mutant mouse models is
necessary to discover the interactions between FGFs and
FGFRs in skeleton development and homeostasis.

Recently, studies have indicated that the bone is closely
related with whole-organism physiology.??2 For example,
bone can regulate energy metabolism, male reproduc-
tion and hematopoiesis.??>224 Some hormone secreted
from other organs or tissues also have effect on bone, such
as Leptin secreted by adipocyte.??? In addition, systemic
disease also influence skeleton such as CDK??® and
inflammatory disease.???? The roles of FGF signaling in
the effect of systemic diseases on bone or bone on
whole-organism physiology remain unclear and need fur-
ther exploration.
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