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Role of FGF/FGFR signaling in skeletal development and

homeostasis: learning from mouse models

Nan Su*, Min Jin* and Lin Chen

Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone
development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone
diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated
phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult
bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense
mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These
genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton
development and homeostasis. In this review, we summarize themousemodels of FGF signaling-related skeleton
diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the
regulation of bone development and homeostasis. This review also provides a perspective view on futureworks to
explore the roles of FGF signaling in skeletal development and homeostasis.
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INTRODUCTION
Skeletons are formed through two distinct developmental

modes, namely intramembranous ossification and endo-

chondral ossification. The former is directly accomplished

by osteoblast differentiation from mesenchymal cells; the

latter involves initial differentiation of mesenchymal cells

into chondrocytes to form a cartilage template and sub-

sequent replacement by bone.1 The cranium and medial

clavicles are formed through intramembranous ossifica-

tion. Long bones, including the appendicular skeleton,

facial bones and vertebrae, are formed through endo-

chondral ossification.2–3

Various signaling molecules control the process of skel-

eton development, such as fibroblast growth factor (FGF),

wingless-type MMTV integration site family members (Wnt)

and bone morphogenetic protein (BMP) signaling path-

ways. Among these signaling pathways, FGF/fibroblast

growth factor receptor (FGFR) signaling is very essential.

The 22 members of the FGF family mediate their cellular

responses by binding to FGFRs. There are four distinct FGF

receptors with differential FGF-binding properties.4–5 A typ-

ical FGFR contains an extracellular ligand-binding

domain, a transmembrane region and an intracellular

divided tyrosine kinase domain. FGFs bind to the extracel-

lular domain of FGFRs and induce the phosphorylation

of tyrosine residues in the intracellular domain of FGFRs.

The activated FGFRs recruits target proteins to its cytoplas-

mic tail and modifies these proteins by phosphorylation,6

leading to the activation of intracellular downstream sig-

naling pathways, such as mitogen-activated protein

kinase (Ras/MAPK), phosphoinositide 3-kinase/Akt (also

known as protein kinase B), phospholipase C and protein

kinase C pathways. Furthermore, FGF signaling can also

stimulate the signal transducers and activators of tran-

scription (STAT) 1/p21 pathway2,7 (Figure 1). Multiple kinds

of mouse models with genetic modifications of FGF/FGFR

have been generated. In our review, we summarize the

use of these mouse models in the research of the role

of FGF/FGFR signaling in skeleton development and

homeostasis.

ROLE OF FGFRS IN BONE GENETIC DISEASES AND
HOMEOSTASIS
FGFR1

FGFR1 is first expressed in the early limb bud.8–10 At the epi-

physeal growth plate, FGFR1 is expressed in perichondrium,
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prehypertrophic and hypertrophic chondrocytes.9,11–12

FGFR1 is also expressed in osteoblasts and osteocytes

(Table 1).13–16

A series of mouse models of Fgfr1 have been generated

to genetically dissect the functions of Fgfr1 during gastru-

lation and later developmental processes. Fgfr1-deficient

(Fgfr12/2) embryos display severe growth retardation, and

died prior to or during gastrulation because of intrinsic

blocks in mesodermal differentiation.17–18 Deletion of the

Ig domain IIIc of Fgfr1 (Fgfr1IIIc) leads to gastrulation

defects resembling the Fgfr12/2 alleles. However, mice

with Fgfr1IIIb ablation are viable and fertile, suggesting

that IIIc is the dominant isoform for the majority of FGFR1

functions in embryogenesis.19 Chimeras were generated

by injecting Fgfr12/2 embryonic stem cells into wild-type

blastocysts to circumvent the gastrulation defect. The

milder mutant chimeras exhibit deformed limb buds and

varying degrees of reduction in limb skeletal elements.19–21

Mice with targeted deletion of FGFR1 in all limb bud

mesenchymal cells (via T (brachyury)-cre),22 or posterior

limb bud mesenchyme (via Shh-cre)23 were used to further

study the role of FGFR1 in limb development. T-cre;

Fgfr1 mice die at birth and show reduced limb skeleton,

misshapen forelimb/hindlimb bud and missing digits,

whereas Shh-cre Fgfr1 mice display normal limb bud size,

but missed a digit.10 Li et al.24 assessed the roles of FGFR1

signaling in forelimb and hindlimb development by disrupt-

ing this gene, using AP2-Cre and Hoxb6-Cre transgenic

mice that express Cre recombinase in complementary

temporal and spatial patterns during limb bud formation.

The results indicate that disruption of Fgfr1 at an earlier

stage, prior to thickening of limb mesenchyme, results in
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Figure 1. Signaling pathways activated by FGF/FGFR. FGFs induce dimerization, kinase activation and transphosphorylation of tyrosine residues of
FGFRs, leading to activation of downstream signaling pathways.Multiple pathways are stimulated by FGF/FGFR signaling such as Ras-MAP kinase,
PI-3 kinase/AKT and PLC-c pathways. Furthermore, FGF signaling can also stimulate STAT1/p21 pathway. FGF/FGFR signaling also phosphor-
ylates the Shc and Src protein. FGF/FGFR play crucial roles in the regulation of proliferation, differentiation and apoptosis of chondrocytes via
downstream signaling pathways.
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more severe defects, characterized by malformation of

the apical ectodermal ridge (AER).

FGF receptor-specific substrates (Frs) act as the principal

mediators for FGFR1 signal transduction. Mice that lack

the Frs-binding site on FGFR1 (Fgfr1DFrs/DFrs) die during late

embryogenesis, and exhibit defects in neural tube closure,

and in the development of the tail bud and pharyngeal

arches. However, mutant FGFR1 still has functions during

gastrulation and somitogenesis, indicating that distinct sig-

nal transduction mechanisms of FGFR1 signaling in differ-

ent developmental contexts.25

Osteoglophonic dysplasia (OD) patients, resulting from

activating mutations of FGFR1, exhibit rhizomelic dwarf-

ism,26 indicating that FGFR1 is a negative regulator of long

bone growth. Embryos with conditional deletion of Fgfr1 in

osteochondro-progenitor cell lineages show increased

height of the hypertrophic zone due to delayed degrada-

tion, or maturation of hypertrophic chondrocytes, or

decreased osteoclastogenesis.15

Studies in humans and mice also reveal that FGFR1 play

crucial role in bone formation. A gain-of-function mutation

in FGFR1 (P252R) leads to Pfeiffer syndrome (PS), one type

of craniosynostoses, characterized by premature fusion of

one or several calvarial sutures.27 Several activating muta-

tions of FGFR1 in OD patients also lead to craniosynostosis

in addition to rhizomelic dwarfism.26 Mice carrying a P250R

mutation in FGFR1 were generated to mimic human PS.

Studies using these mutant mice uncovered that FGFs/

FGFR1 signals may regulate intramembranous bone

formation.28

Jacob et al.15 found that adult mice, with deletion of

Fgfr1, exhibited increased bone mass. Deletion of Fgfr1,

in osteochondro-progenitor cells in mice (via Col2-cre),

leads to increased proliferation and delayed differenti-

ation, and matrix mineralization of osteoblasts, while inac-

tivation of Fgfr1 in differentiated osteoblasts (via Col1-cre)

causes accelerated osteoblast mineralization differenti-

ation.15 It has been proposed that FGFR1 promotes the

differentiation of mesenchymal progenitors into preosteo-

blasts, but inhibits the proliferation of mesenchymal pro-

genitor cells, as well as the maturation and mineralization

of osteoblasts.15 Impaired osteoclast activity is another

reason for increased bone mass in mice with Fgfr1-

deficient in differentiated osteoblasts. To explore the direct

effect of FGFR1 on osteoclasts, Lu et al.29 generated mice

with targeted deletion of Fgfr1 in bone marrow monocytes

and osteoclasts using LysM-cre. The mutant mice exhibit

increased bone mass, impaired osteoclast formation and

activity indicating the positive regulation of FGFR1 on

osteoclasts. The role of FGFR1 in osteocytes is still not

Table 1. The expression patterns of FGFs/FGFRs during skeleton development.2,7,11,31,46,60,161–162,204,262–263

FGFs/

FGFRs Limb bud Osteoblast lineage Cartilage Cranial bone Receptor specificity

FGF2 Developing condensation Periosteal cells, Osteoblasts in

trabecular bone

Perichondrium, Chondrocytes Mesenchymal cells in the suture FGFR1, FGFR2, FGFR3c,

FGFR4

FGF4 Posterior AER at E10.5-

11.0

Sutural mesenchyme in early

craniofacial skeletogenesis

FGFR1c, FGFR2c, FGFR3c

FGF7 Loose mesenchyme Perichondrium FGFR2b

FGF8 AER Cortical bone at embryonic stage Perichondrium, Chondrocytes Osteoblasts FGFR2c, FGFR3c, FGFR4

FGF9 AER, Developing

condensation

Periosteum, Primary spongiosa Perichondrium, Chondrocyte

primordia

Mesenchyme of suture in early

craniofacial development

stages

FGFR2c, FGFR3, FGFR4

FGF10 Lateral plate mesoderm FGFR2b

FGF18 Perichondrium and

presumptive joint

positions

Chondrocytes, Mesenchymal cells in the suture

separating the two osteogenic

fronts

FGFR2c, FGFR3c

FGF21 Chondrocytes FGFR1-4

FGF23 Osteoblasts, Osteocytes Resting and hypertrophic zone FGFR1, FGFR3c, FGFR4

FGFR1 Mesenchyme (IIIc) Osteoblasts in trabecular bone,

Osteocytes

Prehypertrophic and hypertrophic

chondrocytes of growth plate,

Perichondrium, Cartilage of the

cranial base

Dura mater and periosteum,

Calvarial mesenchyme and

later in osteoblasts

FGFR2 AER (IIIb), Early limb

bud mesenchyme

(IIIc)

Periosteum, Trabecular bone

(IIIc), Osteocytes

Prechondrogenic condensation,

Resting zone of growth plate,

Perichondrium, Cartilage of the

cranial base

Proliferating osteoprogenitor

cells and differentiating

osteoblasts

FGFR3 Center of the mesenchyme

condensation

Osteoblasts, Osteocytes Resting zone and proliferating

chondrocytes of growth plate,

Cartilage of the cranial base

Low levels in sutural osteogenic

fronts at late stages of

development

FGFR4 Strictly in osteoblasts between the

periosteal and endosteal layers

Resting and proliferative zones

of growth plate
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clarified and should be studied by deletion of Fgfr1 in

osteocytes using dentin matrix protein-1(Dmp1)-Cre

(Figure 2).

In addition to the effect of FGFR1 on limb development

and bone formation or remodeling, FGFR1 also partici-

pates in phosphorus metabolism. Osteoglophonic dyspla-

sia patients have non-ossifying bone lesions, hypophos-

phatemia and increased serum level of FGF23, a member

of the FGF family, which is a circulating phosphaturic hor-

mone produced mainly by osteoblasts and osteocytes.30–31

Pharmacological inhibition of FGFR1 inhibits FGF23 tran-

scription in bone of animal models.32 Integrative nuclear

FGFR1 can activate the transcription factor cyclic AMP res-

ponse element-binding protein (CREB),33 which also binds

the proximal Fgf23 promoter; thus, it is hypothesized that

FGFR1 may regulate FGF23 by binding CREB.

FGFR2

FGFR2 is expressed in condensing mesenchyme of early

limb bud,9,34–35 and later appears as the marker of pre-

chondrogenic condensations. In developing bone,

FGFR2 is predominantly localized to perichondrial and

periosteal tissue, and weakly to endosteal tissue and tra-

becular bone.36 FGFR2 is intensely expressed in the cartil-

age of the cranial base and growth plate.11,37–40 In cranial

sutures, FGFR2 is mainly expressed in osteoprogenitor

cells13 and differentiating osteoblasts.41–42 The expression

pattern of FGFR2 indicates its important role in skeleton

development (Table 1).

Mice with deletion of transmembrane domain and part

of kinase I domain of Fgfr2 (Fgfr22/2) die at E4.5–5.5 due to

stopped inner cell mass growth.43 Targeted deletion of the

Ig domain III of FGFR2 results in embryonic lethality at E10–

11 because of failures in the formation of functional pla-

centa. Mutant embryos also fail to form limb buds comple-

tely, indicating that FGFR2 Ig domain III is essential for limb

initiation.24,44–45

Activating FGFR2 mutations have variable effects on

cranial cell replication, or differentiation in mice and

humans.40,46 More than 10 gain-of-function mutations in

FGFR2 cause multiple types of craniosynostoses, such as

Apert syndrome (AS), Crouzon syndrome (CS) and PS, as

well as Beare–Stevenson cutis gyrata syndrome (BSS).40,47

Among them, AS is one of the most severe craniosynos-

toses. S252W and P253R mutations in FGFR2 are responsible

for nearly all known cases of AS.2,47

Several gain-of-function mutant mouse models, mimick-

ing human craniosynostoses, have been generated to

study the mechanism of FGFR2 for regulating the suture

development. Fgfr21/S252W mutant mice mimicking human

AS have smaller body size, midline sutural defect and cra-

niosynostosis with abnormal osteoblastic proliferation and

differentiation.48 Fgfr21/S252W mice also show ectopic

cartilage at the midline sagittal suture, increased cartilage

in the basicranium, nasal turbinates and trachea. These

mutant mice display long bone abnormalities, as evi-

denced by the disorganized growth plates and more

prominent cartilage mineralization.48 Fgfr21/P253R mice

have growth retardation of the synchondroses of cranial

base and growth plates of the long bones with decreased

proliferation of chondrocytes, which may be responsible

for the smaller body size and shortened cranial base in

Fgfr21/P253R mice.39 Furthermore, Fgfr21/P253R mice also

show ectopic cartilages in the sagittal sutures39,49 consist-

ent with the skull phenotypes in Fgfr21/S252W mice and the

symptom in AS patients.48,50 However, Chen et al.51 found

that the growth plates of Fgfr21/S250W mice showed slightly

shorter columns of proliferating chondrocytes, but no

abnormal hypertrophic zone; and premature closure of

cranial base synchondrosis have been detected in

Fgfr21/S250W mice.

In Fgfr21/P253R mice or Fgfr21/Y394C mice mimicking

human BSS (also characterized by skull abnormalities),

the premature fusion of coronal suture is associated with

enhanced osteoblast differentiation similar to

Fgfr21/S252Wmice.39,49,52 In another mouse model with a

C342Y mutation in FGFR2IIIc (Fgfr2c1/C342Y) (equivalent

to mutation in human causes CS/PS), premature fusion of

FGFR3 FGFR1 FGFR2

Mesenchymal cell Preosteoblast Mature osteoblasts

Mineralization

Apoptotic
osteoblast

Figure 2. The regulation of osteogenesis by FGFR1-3. FGFRs play distinct roles during the differentiation of osteoblast. There are some conflicting
results about the effect of FGFR3 on osteogenesis, which is marked by dotted lines.
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cranial sutures is accompanied by enhanced osteogen-

esis and increased proliferation of osteoprogenitor cells in

the coronal sutures.53 Chen et al.51 also found decreased

bone formation and premature closure of the coronal

suture in Fgfr21/S250W mice similar to phenotypes in human

AS.51 However, increased apoptosis is responsible for pre-

mature fusion in Fgfr21/S250W coronal suture.51 These results

suggest that different activating mutations in FGFR2 result

in craniosynostosis through distinct mechanisms.

Fgfr2IIIc2/2 mice also show delayed differentiation and

mineralization of the skull vault, and premature coronal

suture due to decreased cell proliferation.54 The retarded

ossification in Fgfr2IIIc2/2 mice is correlated with the

decreased osteoblast markers OP and Cbfa1, which is

emphasized by increased osteogenesis of Crouzon-like

mutant Fgfr2c1/C342Y mice with upregulated OP and

Cbfa1 levels.55 These results suggest that FGFR2IIIc is a pos-

itive regulator of intramembranous ossification. Condi-

tional deletion of Fgfr2 in mesenchymal condensations of

mice via Dermol-Cre results in skeletal dwarfism and

decreased bone density. The proliferation of osteoprogeni-

tors and the function of mature osteoblasts are impaired in

mutant mice. However, the differentiation of osteoblast

lineage in mutant mice is not disturbed,36 which is distinct

from the delayed differentiation in Fgfr2IIIc–/– mice.54 This

finding may reflect the differences in the timing of Fgfr2

inactivation.36 These differences can be further explored

by conditional deletion of FGFR2 in osteoblastic cells.

Fgfr2IIIc–/– mice also exhibit dwarfisms, reduced growth

of the skull base and axial, as well as appendicular skele-

tons, which is associated with decreased proliferating

chondrocytes and hypertrophic zone in these endochon-

dral bones. This leads to premature loss of skull base sutures

and smaller-than-normal long bones and vertebrae.54 The

expressions of chondrocyte markers Ihh and PTH-related

peptide (PTHrP) are also diminished in Fgfr2IIIc–/– mice.54

These results suggest that Fgfr2IIIc regulates chondrocyte

lineages. Fgfr2; Dermol-Cre mice have decreased bone

length without apparent defects in chondrocyte prolifera-

tion, but show shortened hypertrophic zone, which is sim-

ilar to that in Fgfr2IIIc–/– mice.54 Increased osteoclast

activity may account for decreased hypertrophic zone

by increasing the removal of calcified hypertrophic chon-

drocyte matrix.36

Genetic mouse models are also used to find therapeutic

strategy. Activated ERK1/2 and p38 signaling pathways

may participate in the regulation of coronal suture by

FGFR2.39,49,52 The premature fusion of cranial sutures can

be partially rescued by blocking ERK1/2 or p38 activation,

respectively in vitro and in vivo.39,49,52,56 Shukla et al.56–57

showed that RNA interference targeting the mutant form

of FGFR2 S252W completely rescued Apert-like syndrome

in mice, and local treatment of the Apert mice with U0126,

an inhibitor of MEK1/2, significantly alleviated craniosynos-

tosis. Using genetically modified mice simultaneously car-

rying C342Y, L424A and R424A mutations in the same

FGFR2c (Fgfr2cCLR), researchers found that the activated

FGFR2 signaling caused by C342Y mutation, cannot

recruit and stimulate tyrosine phosphorylation of FRS2.53

Thus, premature fusion of sutures, mediated by activated

FGFR2IIIc, is prevented by attenuation of the signaling

pathways through selective uncoupling between the

docking protein FRS2a and activated FGFR2IIIc.53 These

studies provide opportunities for developing novel thera-

peutic strategies for craniosynostoses.

FGFR3

FGFR3 is first expressed in chondrocytes, differentiated ini-

tially from the core of the mesenchyme condensation.58

FGFR3 is expressed in reserve and proliferating chondro-

cytes as the epiphyseal growth plate is formed.12,58–59

Immunohistochemistry results have indicated that FGFR3

is also expressed in mature osteoblasts and in osteocytes.14

During calvarial bone development FGFR3 is expressed at

low levels in sutural osteogenic fronts at the late stages

(Table 1).34,38

Gain-of-function point mutations in FGFR3 cause

several types of the human skeletal dysplasias, including

achondroplasia (ACH), hypochondroplasia (HCH), thana-

tophoric dysplasia (TD) and severe achondroplasia,

with developmental delay and acanthosis nigricans

(SADDAN).60 Among these diseases, ACH is the most com-

mon type of human dwarfism characterized by short stat-

ure, especially in the proximal upper and lower limbs,

central facial dysplasia, macrocephaly and spine protru-

sion.61–63 The phenotype of HCH is similar to ACH, but much

milder than ACH, whereas TD is the most common form of

lethal skeletal dysplasia characterized by macrocephaly,

narrow bell-shaped thorax, severe shortening of the limbs

and lethality in the neonatal period. TD has been classified

into TDI and TDII. TDI patients have curved, short femurs,

with or without cloverleaf skull, and TDII patients have rela-

tively longer femurs with severe cloverleaf skull.64 Patients

with SADDAN exhibit acanthosis nigricans and anomalies

in the central nervous system, in addition to severe skeletal

dysplasia.65–66

Currently, multiple FGFR3-related mouse models have

been generated using genetic approach to study the role

of FGFR3 in skeleton development and diseases. Mice car-

rying activating mutations of FGFR3 mimicking human

ACH exhibit smaller body size, dome-shaped skull and

shortened long bones with disorganized chondrocyte col-

umns in growth plates.60,67–70 Mice carrying FGFR3 K644E

mutation mimicking human TDII die within few hours after

birth, whereas mice carrying FGFR3 S365C mutation,

which corresponds to FGFR3 S371C mutation in human
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TDI, exhibit skeletal dysplasia more severe than ACH.71–72

FGFR3 negatively regulates chondrogenesis of long bones

by affecting the proliferative activity and differentiation of

chondrocytes. A number of reports have demonstrated

that FGFR3 signaling inhibits chondrocyte proliferation

through STAT1 signaling by inducing the expression of cell

cycle suppressor genes such as the CDK inhibitor p21.73–76

Loss of Stat1 restored the reduced chondrocyte prolifera-

tion in ACH mice, but did not rescue the reduced hyper-

trophic zone or the delayed formation of secondary

ossification centers in ACH mice. The expression of a con-

stitutively active mutant of MEK1 in chondrocytes of Fgfr3-

deficient mice inhibits skeletal overgrowth, strongly sug-

gesting that FGFR3 inhibits chondrocyte differentiation

through the ERK/MAPK pathway.76 In contrast, evidence

suggests that FGFR3 promote chondrocyte terminal

hypertrophic differentiation.77–78 Conversely, mice car-

rying targeted deletion of FGFR3 exhibit overgrowth of

long bone, wider hypertrophic zone, proliferative zone

and enhanced proliferative activity of chondrocytes.59,79

Moreover, the activity and the signaling outcomes of

the FGFR3 pathway during chondrogenesis are also influ-

enced by many intracellular and extracellular signals.

Activated FGFR3 inhibits BMP4 expression in post-natal

mouse growth plates,80 while BMP treatment rescues the

retarded growth of long bone in ACH mouse model.77

These studies emphasize the antagonistic interaction

between FGFR3 and BMP signaling in the control of

chondrogenesis. Moreover, IHH expression is reduced in

mice carrying activating FGFR3.80 PTHrP partially reverses

the inhibition of long bone growth caused by FGFR3

activation.72 It was suspected that FGFR3 signaling may

act upstream of the IHH/PTHrP system in regulating the

onset of hypertrophic differentiation.77 In addition, it was

reported that IGF1 prevents the apoptosis, induced by

FGFR3 mutation, through the phosphoinositide 3-kinase

pathway and MAPK pathways.81

FGFR3 signaling is also an important regulator of osteo-

genesis. Chondrocyte-specific activation of FGFR3 in mice

causes premature synchondrosis closure and enhanced

osteoblast differentiation around synchondroses. Prema-

ture synchondrosis closure is also observed in the spine and

cranial base in human cases of homozygous ACH and TD,

as well as in mouse models of ACH, with increased bone

formation.70,72,82 Activated FGFR3 leads to decreased

bone mass by regulating both osteoblast and osteoclast

activities.83–84 Mice lacking FGFR3 also have decreased

bone mineral density and osteopenia.14,85 FGFR3 can

inhibit proliferation of BMSCs in vitro.83,85 However, both

deletion and activation of FGFR3 can lead to increased

differentiation, but impaired mineralization of osteoblasts

(Figure 2).83,85 The reasons for these seemingly inconsistent

results need to be explored.

Given its causal role in some skeletal disorders, including

ACH, FGFR3 and/or its downstream pathways, are attract-

ive targets for therapy. C-type natriuretic peptide is a

newly identified potential therapeutic antagonist of

FGFR3 signaling that alleviates the dwarfism phenotype

of mice mimicking human ACH through its inhibition on

FGFR3/MAPK pathway.86–87 It was reported that parathy-

roid hormone (PTH) (1–34) stimulates the longitudinal bone

growth in rats and improves the growth of the cultured

femurs from mice carrying a gain-of-function mutation

(G380R) of FGFR3.88–89 In addition, we have found prev-

iously that PTHrP partially reversed the shortening of cul-

tured bone rudiments from ACH mice.72 Recently, we

found that systemic intermittent injection of PTH (1–34)

can rescue the lethal phenotype of TDII mice and signifi-

cantly alleviate the retarded skeleton development of

ACH mice.90 We also have identified a novel inhibitory

peptide for FGFR3 signaling, which alleviated the bone

growth retardation in bone rudiments from mice mimick-

ing human TDII and reversed the neonatal lethality of TDII

mice.91

FGFR4

In addition to its expression in the resting and proliferative

zones of growth plates,11 FGFR4 is also highly expressed in

rudimentary membranous bone and strictly localized in

osteoblasts between the periosteal and endosteal layers

(Table 1).92 Interestingly, Fgfr4-deficient mice are devel-

opmentally normal, but the Fgfr3/Fgfr4 double null mice

grow more slowly.93 However, the effect of FGFR4 on bone

development remains unclear and needs further studies.

FGFS PARTICIPATE IN SKELETON DEVELOPMENT AND
BONE METABOLISM
FGF2

FGF2 is one of the earliest members identified in the FGF

polypeptide family, and is expressed in majority of cells

and tissues including limb bud, chondrocytes and osteo-

blasts. FGF2 is stored in the extracellular matrix.11,94–96

FGF2 contributes to the growth and patterning of the

limb.96 Overexpression of human FGF2 in mice (TgFGF2)

results in dwarfism, with shortening and flattening of long

bones and moderate macrocephaly.97 Deletion of Stat1

leads to a significant correction of the chondrodysplasic

phenotype of TgFGF2 mice.98 These results indicate the

essential role of STAT1 in FGF-mediated regulation of epi-

physeal growth plates. Fgf2-knockout (Fgf22/2) mice have

normal limbs. The normal skeleton in Fgf22/2 mice indi-

cates that the function of FGF2 may be replaced by

FGF8 and FGF4,99 which is also expressed in the limb bud.

FGF2 also plays important roles in bone homeostasis.

Deletion of Fgf2 in mice leads to decreased bone mass,

bone formation and mineralization.95,100 Endogenous
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FGF2 promotes the differentiation of bone marrow stromal

cells (BMSCs) into osteoblasts, since FGF2 deficiency results

in adipogenesis and reduced osteogenesis of BMSCs.95,101

Similar to Fgf22/2 mice, TgFGF2 mice also have reduced

bone mass, which may result from impaired endochondrol

ossification, or continuous exposure to high levels of FGF2

in vivo.14,102 Targeted overexpression of FGF2 in chondro-

cytes and osteoblasts should provide important informa-

tion about the role of FGF2 in dwarfism and bone

formation.102

Other important factors for bone homeostasis also exert

their effects through FGF2. PTH and BMP2-induced bone

formation in Fgf22/2 mice are greatly impaired, and osteo-

clast formation stimulated by PTH and BMP2 are also dis-

rupted in Fgf22/2 bone marrow stromal cultures.103–105 The

impaired bone anabolic effect of PTH in Fgf22/2 mice is

associated with reduced expression of activating tran-

scription factor 4, a critical regulator for osteoblast differ-

entiation and function.106 Furthermore, prostaglandin F2a

also induces osteoblast proliferation through endogenous

FGF2.107

FGF2 has three isoforms: a low molecular weight isoform

(lmw, 18 kDa) and two high molecular weight isoforms

(hmw, 21 and 22 kDa). FGF2lmw is secreted and activates

FGFRs, whereas FGF2hmw remains intranuclear. Their roles

in bone formation are largely unknown. Transgenic mice

with targeted overexpression of FGF2lmw and FGF2hmw in

immature and mature osteoblast lineage (via Col3.6-cre)

are used to elucidate the differential functions of FGF2 iso-

forms in bone formation.108–109 Col3.6-FGF2lmw mice have

increased bone mineral density (BMD), bone mass and

enhanced mineralization of BMSCs, which is related to

the reduced expression of the Wnt antagonist secreted

frizzled receptor 1.110 In contrast to TgFGF2lmw mice,

Fgf2lmw2/2 mice show significantly reduced BMD and

impaired mineralization.108

Col3.6-FGF2hmw mice display dwarfism, decreased

BMD, increased FGF23 level, hypophosphatemia and rick-

ets/osteomalacia, which is similar to X-linked hypopho-

sphatemia (XLH).109–110 A potential mechanism is that

FGF2 enhances FGF23/FGFR1/KLOTHO signaling, and then

downregulates renal Na1/Pi cotransporter NPT2a, causing

Pi wasting, osteomalacia and decreased BMD.109 The

upregulation of FGF23 level by FGF2hwm depends on

FGFR1/MAPK pathway.110 These studies indicate that

FGF2 isoforms have important effects on bone homeosta-

sis and different FGF2 isoforms perform distinct roles.

FGF4

Vertebrate limb development largely depends on signals

from the AER. During limb development, FGF4 is first

expressed in the developing murine forelimb bud at

E10.0. Its expression is strongest in the posterior AER at

E10.5–11.0 and is undetectable at E12.0.111 FGF4 provides

mitogenic and morphogenic signals to regulate normal

limb development.111–112 Fgf4 knockout (Fgf42/2) mice

die on E4.5 (early embryonic stages),113 preventing the

direct evaluation of FGF4 function in the developing limb.

Mice with targeted deletion of Fgf4 in limbs (via Rarb-Cre)

are viable and have normal skeletal patterns.111 The

expression pattern of Sonic hedgehog (Shh), another key

signaling molecule in AER maintenance, is normal in the

limb buds, suggesting that FGF4–Shh feedback loop is not

essential for limb development.

In addition to its essential roles in the AER of normal

embryo, FGF4 can also promote intramembranous ossi-

fication and participate in the development of calvarial

bone. FGF4 is expressed in sutural mesenchyme during

early craniofacial skeletogenesis.60 Treatment with FGF4

on developing mouse coronal suture leads to synostotic

coronal sutures accompanied by the induction of apop-

tosis and accelerated mineralization.114 FGF4 can also

cause premature suture fusion with increased cell prolifera-

tion, both in cultured calvaria and in mice.115 Furthermore,

systemic administration of FGF4 and its 134 amino-acid

residues leads to increased bone formation in rats and

mice in vivo.116 FGF4 can also promote BMSC proliferation

in vitro,117–118 and strongly stimulate Runx2 expression in

osteoblast-like MC3T3-E1 and murine premyoblast C2C12

cells.119 However, studies especially genetic studies on the

role of FGF4 in bone formation, are still lacking.

FGF8

FGF8 is expressed throughout the AER, indicating its import-

ant role in limb development.120–122 Mice with deleted

Fgf8 show early embryonic lethality before limb develop-

ment.123–124 Lewandoski et al. generated mice with tar-

geted deletion of Fgf8124 (via Msx2-cre) in limb bud.112

These mice display failed limb development with substan-

tial reduction in limb-bud size, and hypoplasia or aplasia of

specific skeletal elements.112 However, the Msx2 promoter

drived cre is not expressed sufficiently early to completely

ablate Fgf8 function during forelimb formation, which

results in a complex forelimb phenotype. Using Rarb-Cre

mice, Fgf8 is conditionally deleted in the developing fore-

limb AER. These mice have severe forelimb deformity,

including the absence of radius and first digit.125–126

In addition to its important role in limb development,

FGF8 also regulates osteoblast and chondrocyte differ-

entiation. FGF8 is expressed in chondrocytes and peri-

chondrium of dorsal costal bone, as well as in the

osteoblast compartment of calvarial bone in cortical

bone and the growth plate of developing bones.60,127

FGF8 can effectively predetermine mouse BMSCs and

C2C12 cell line to differentiate to osteoblasts and increase

bone formation in vitro.128–129 However, Lin et al.130 found
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that FGF8 stimulated the proliferation of MC3T3E1 or prim-

ary rat osteogenic cells, but inhibited osteogenic differ-

entiation and mineralization. These controversial results

may be attributed to the different cells used in in vitro

experiments. As to cartilage, FGF8 can promote the

degradation of cartilage and exacerbation of osteoarthri-

tis.131 However, the influence of FGF8 on bone and cartil-

age remains unclear.

FGF9

FGF9 has the highest affinity to FGFR3, and can also bind

FGFR2 with a lower affinity (Table 1).132 FGF9 is broadly

expressed in different tissues including in AER, perichon-

drium/periosteum, chondrocytes of growth plate, as well

as primary spongiosa.133–135

Colvin et al.136 generated Fgf9 knockout (Fgf92/2) mice

and showed that deletion of Fgf9 alleles led to lethality at

the neonatal stage mainly due to malformations of the

lung, and causing male-to-female sex reversal.136–137

Fgf92/2 mice display disproportionate shortening of the

proximal skeletal elements (rhizomelia), but the limb bud

development and mesenchymal condensations are nor-

mal.135 These results indicate that loss of Fgf9 in AER does

not lead to limb patterning defects that primarily affected

mesenchymal condensation. The rhizomelia results from

the loss of Fgf9 function after mesenchymal condensation.

Similarly, transgenic mice, with overexpression of Fgf9 in

chondrocytes (Col2a1–Fgf9), also show dwarfism, short

limb and vertebral defect because of the reduced prolif-

eration and terminal differentiation of chondrocytes.

These results are similar to bone phenotypes, caused

by activated FGFR3.133 These seemingly inconsistent

results between Fgf9 null and transgenic mice may

result from distinct effect of FGF9 on different stages of

skeletogenesis.

In addition, Fgf92/2 mice also show impaired osteogen-

esis, which may be secondary to the earlier defective

chondrogenesis and vascularization,135 or FGF9 may

directly regulate osteogenesis, as demonstrated by in vitro

calvarial bone cell culture studies.138 Furthermore, the loss

of Fgf9 results in a deficiency of osteoclasts in the perichon-

drium and primary spongiosa of developing bone.135

These findings suggest that FGF9 can positively regulate

osteogenesis and osteoclastogenesis in endochondral

ossification.

FGF9 is also expressed in the mesenchyme of suture in

the early craniofacial development stages.115 By contrast

to its promoting effects on osteogenesis in endochondral

ossification, targeted overexpression of FGF9 in cranial

mesenchymal cells leads to a switch from intramembra-

nous to endochondral ossification in mouse parietal bones,

indicating that FGF9 may regulate bone development by

affecting the direction of mesenchyme differentiation.139

Recently, missense mutations in FGF9 have been iden-

tified to result in elbow-knee synostosis, premature fusion of

cranial sutures in mice140 and multiple synostosis syndrome

in humans.141 These data further suggest the important

effect of FGF9 on bone development.

However, the different impacts of FGF9 on different

stages of limb development and the direct effect of

FGF9 on adult bone homeostasis are still unclear.

Targeted deletion of Fgf9 in different stages and cells using

Fgf9 CKO mice142 are necessary to answer these questions

in the future.

FGF10

FGF10 is expressed in the lateral plate mesoderm and

serves as a mesenchymally expressed limb bud ini-

tiator,44,143–144 and the expression persists in the mesench-

yme under AER after initial limb bud formation. FGF10 acts

epistatically at the upstream of FGF8.145 Positive feedback

exists between FGF8 and FGF10, which is essential for limb

development.44 To define the role of FGF10, Fgf10 knock-

out (Fgf102/2) mouse strain was generated. These mice

show complete absence of fore- and hindlimbs, and

die after birth associated with complete absence of

lungs.145–146 The limb bud formation in Fgf102/2 embryos

is initiated but outgrowth of the limb buds is impaired, while

the clavicle formation is normal.146 However, the impact of

FGF10 on postnatal bone development and modeling

remains unclear.

FGF18

FGF18 is expressed in osteogenic mesenchymal cells and

differentiating osteoblasts of developing calvaria, in the

perichondrium and joints, as well as growth plates of

developing long bones.11,147–148

Fgf18 knockout (Fgf182/2) mice die shortly after birth,

and display expanded zones of proliferating and hyper-

trophic chondrocytes with increased chondrocyte prolif-

eration and differentiation, similar to that observed in mice

lacking Fgfr3.147–148 Bone cultures of fetal mouse tibias

treated with FGF18 show decreased bone length and

hypertrophic differentiation of chondrocytes.87,149 These

studies demonstrate the inhibitory effect of FGF18 in chon-

drogenesis. In contrast to the negative role of FGF18 in

chondrogenesis found in Fgf182/2 mice or FGF18-treated

cultured bone, the proliferation and differentiation of

primary chondrocytes and prechondrocytic ATDC5 cells

are stimulated by FGF18 treatment in vitro.150 FGF18 also

enhances BMP function and stimulate chondrogenesis in

earlier stages of cartilage formation by suppressing noggin

expression.151 These seemingly contradictory data sug-

gest that the in vivo role of FGF18 in chondrogenesis need

to be further studied. In addition, FGF18 regulates bone

development by inducing skeletal vascularization and
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subsequent recruitment and formation of osteoclasts in

developing long bone.152

Fgf182/2 mice also show delayed suture closure with

decreased proliferation of calvarial osteogenic mesen-

chymal cells and delayed osteogenic differentiation.

The calvarial bone mineralization in Fgf182/2 mice is also

decreased.148,152 The delayed osteogenic differentiation

is also observed in the developing long bones of Fgf182/2

mice.152 In vitro studies show that FGF18 treatment results in

enhanced proliferation of MC3T3-E1 cells and perichondrial

cells in cultured metatarsals,150 supporting the promoting

effect of FGF18 on osteogenesis. These data indicate that

FGF18 may be an important modulator for both endochon-

dral and intramembranous bone formation in adult mice.

Although FGF18 is a key regulator for chondrogenesis,

osteogenesis and vascularization of early skeleton

development, the mechanism and the direct effect of

FGF18 on the three critical stages in skeleton devel-

opmental or bone homeostasis at adult period need to

be further studied.

FGF21

FGF21 is a member of the FGF19/21/23 subfamily that func-

tions as an endocrine hormone.153–154 FGF21 is a powerful

regulator of glucose and lipid metabolism.155–158 Recently,

FGF21 has also been found to participate in bone home-

ostasis. The overexpression of Fgf21 in liver driven by Apoe

promoter in transgenic mice show decreased bone mass,

impaired bone formation and increased osteoclast func-

tion, which is consistent with the phenotypes of mice

with pharmacological FGF21 treatment. In contrast,

Fgf212/2 mice have increased bone mass with improved

osteogenesis and decreased osteoclast function. The pos-

sible mechanism is that FGF21 stimulates adipogenesis

from bone marrow mesenchymal stem cells by potentiat-

ing the activity of peroxisome proliferator-activated

receptor c, but inhibits osteoblastogenesis.159 These results

indicate that FGF21 is a negative regulator of bone turn-

over and a key integrator of bone and energy metabol-

ism, and underscores the importance of the whole body

energy metabolism in bone physiology.159

Furthermore, FGF21 is expressed in the growth

plate,160–161 and is associated with reduced skeletal

growth and growth hormone (GH) insensitivity caused by

undernutrition. After food restriction, FGF21 expression is

increased in the tibial growth plates of mice. Fgf212/2

mice exhibit greater body and tibia growth than their

wild-type controls after food restriction because of

reduced GH binding and GH receptor expression in the

liver and in the growth plates of wild-type mice, but not

in that of Fgf212/2 mice.161 FGF21 also has direct effect on

chondrocytes. Higher concentrations of FGF21 inhibit

chondrocyte proliferation and differentiation by reducing

GH binding in cultured chondrocytes.160 FGFR1 may par-

ticipate as receptors of FGF21 in the regulation of chon-

drocytes by FGF21.160,162

Owen et al.163 found that physiological levels of FGF21

regulate the HPA axis and glucocorticoid levels, as well as

the kisspeptin pathway in female fertility, which may also

have effect on bone homeostasis.

FGF23

FGF23 is an approximately 32-kDa protein with an

N-terminal FGF homology domain and a novel 72-

amino-acid C-terminus, which permits interaction with

FGF receptor-a–Klotho coreceptor complexes in cell

membranes of target tissues.31,164 FGF23 is mainly secreted

by osteoblasts and osteocytes,165–167 and as a hormone to

regulate systemic phosphate homeostasis and vitamin D

metabolism.

FGF23 downregulates serum phosphate. Mutations in an

RXXR site in FGF23 prevents its cleavage resulting in auto-

somal-dominant hypophosphatemic rickets (ADHR), char-

acterized by low serum phosphorus concentrations,

rickets, osteomalacia, lower extremity deformities, short

stature, bone pain and dental abscesses.168–172 The over-

production of FGF23 by tumors173 and osteogenic cells in

fibrous dysplastic lesions174 may be responsible for the

hypophosphatemia in tumor-induced osteomalacia and

fibrous dysplasia, respectively. In addition to its role in

hypophosphatemic diseases, FGF23 is involved in hyper-

phosphatemic diseases. Hyperphosphatemic familial

tumoral calcinosis is a relatively rare genetic disease char-

acterized by enhanced renal tubular phosphate reab-

sorption and elevated serum phosphorus, as well as

paraarticular calcific tumors.175 Multiple mutations in

FGF23 gene that lead to decreased FGF23 activity have

been identified in patients with hyperphosphatemic famil-

ial tumoral calcinosis.176–178 These human studies help to

define the critical role of FGF23 in regulating phosphate

metabolism.

The transgenic mice, ubiquitously expressing human

FGF23, reproduce the common clinical features of hypo-

phosphatemia, including decreased serum phosphorus

concentration, increased renal phosphate wasting,

inappropriately low serum 1,25-dihydroxyvitamin D

[1,25(OH)2D] level, and rachitic bone.179 Overexpression

of human FGF23 in osteoblastic lineage or FGF23R176Q

(a mutant form that fails to be degraded by furin prote-

ases) in liver results in phenotypic changes similar to those

of patients with ADHR or transgenic mice expressing FGF23

ubiquitously.180–181 Serum phosphate level is regulated by

renal NaPi-2a in the brush border membrane of proximal

tubules.182 The renal phosphate wasting in the transgenic

mice is accompanied by the reduced expression of NaPi-

2a.179 The reduction of serum 1,25(OH)2D levels may result
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from a significant decrease in renal mRNA level for 25-

hydroxyvitamin D-1a-hydroxylase (1a-OHase) and a sim-

ultaneous elevation of 24-hydroxylase mRNA, induced by

increased serum level of FGF23 (Figure 3).183

Consistently, Fgf23 knockout (Fgf232/2) mice have

opposite features including significantly increased serum

levels of phosphate, calcium and 1,25(OH)2D because of

the upregulated renal phosphate reabsorption and

enhanced expression of renal 1a-OHase, respectively.184

The Fgf232/2 mice also exhibit premature aging-like phe-

notypes including reduced lifespan, infertility, osteoporosis

and renal dysfunction.184 The elimination or reduction of

vitamin D activity from Fgf232/2 mice can rescue the pre-

mature aging-like features and ectopic calcifications.

These in vivo experimental data strongly support the very

essential roles of FGF23 in the regulation of phosphate

homeostasis, vitamin D activity and in the pathogenesis

of premature aging.185

Recent studies have indicated the regulation of iron on

FGF23. Reduced serum iron concentrations are strongly

correlated with increased serum FGF23 in ADHR

patients,186 and C-terminal FGF23 is negatively correlated

with ferritin.187 To investigate the effect of iron on the

development of the ADHR phenotype, R176Q-Fgf23

knock-in mice mimicking human ADHR are generated

and placed on control or low-iron diets.188–189 R176Q-

Fgf23 knock-in mice on low-iron diet have elevated intact

C-terminal Fgf23 with hypophosphatemic osteomalacia

and low serum 1,25(OH)2D. Iron chelation in vitro results in

a significantly increased Fgf23 mRNA level that depends

on MAPK signaling.189 However, the mechanism for the

regulation of FGF23 by iron is still unclear.

Increased FGF23 level is also found in patients with hypo-

phosphatemic diseases including XLH and autosomal

dominant hypophosphatemic rickets (ARHR). XLH is

caused by inactivating mutations in phosphate regulating

gene with homologies to endopeptidases on the X chro-

mosome (PHEX).190–191 Mice with ablation of Phex gene

(Hyp mice) have increased FGF23 expression and hypo-

phosphatemia.192 Both the serum phosphate levels and

skeletal changes in Hyp mice can be reversed by intro-

ducing Fgf23 null mutation into Hyp mice,166,193–194 indi-

cating that enhanced FGF23 level is responsible for the

hypophosphatemia in XLH patients and Hyp mice. The

increased FGF23 level is due to the improved Fgf23

expression, but not decreased degradation.165,194–195

ARHR results from missense mutations in DMP-1. Dmp1

knockout mice exhibit hypophosphatemic rickets and

osteomalacia similar to ARHR patients.196–197 Both Dmp1

null mice and patients with ARHR show elevated serum

FGF23 levels. Considering the role of FGF23 in ADHR and

other hypophosphatemic diseases, ARHR has been

proposed to be associated with excessive actions of

FGF23.

FGF23 also participates in some clinical pathological

processes, in addition to its role in genetic diseases. In

patients with chronic kidney disease (CKD), FGF23 level is

elevated due to increased serum calcium and phosphate

concentrations and PTH,31,198 and is associated with

increased FGF23 transcription in bone.199 Some research-

ers proposed that FGF23 might be an early biomarker for

earlier interventions in CKD.200 However, the reason for the

high serum levels of FGF23 in CKD is unclear. Furthermore,

elevated level of FGF23 in CKD patients have been linked

to greater risks of left ventricular hypertrophy (LVH).201–202

Using animal models, Faul et al.203 found that increased

level of FGF23 in mice resulted in pathological hypertrophy

of cardiomyocytes and LVH. To avoid redundancy and

PTH

FGF23

1,25(OH)2D

1a-hydroxylase NaPi-2a

Renal tubules

Bone

Parathyroid
glands

phosphate resorption

PHEX

Figure 3. FGF23 regulates systemic phosphate homeostasis and vitaminDmetabolism. FGF23 can reduce expression of NaPi-2a in kidney tubules and
lead to renal phosphate wasting. FGF23 downregulates activity of 25-hydroxyvitamin D 1a-hydroxylase in kidney tubules and reduces 1,25(OH)2D
level. Furthermore, FGF23 also have relationship with PTH and PHEX.
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give full attention of the exciting results from FGF23 studies,

we encourage you to read the recently published review

by Quarles and Bhattacharyya.31,204

OTHER FGFS
In addition to the FGFs mentioned above, the roles of

majority of these 22 FGFs are not defined in skeleton

development and homeostasis. Researchers have gener-

ated knockout or CKO mouse models of these FGFs

(Table 2). Fgf3 knockout mice show a short, dorsally curled

tail, caudal vertebrae and smaller body.205 Some mouse

models show normal skeleton phenotypes, such as mice

lacking FGF1, FGF5, FGF6, FGF7, FGF17 or FGF22.206–212 The

skeleton phenotypes of knockout mice lacking FGF11–

FGF16, or FGF20, are still not analyzed.213–219 The effect of

these FGFs on bone development or homeostasis need be

further studied.

CONCLUSIONS
Studies in human patients and mouse models with FGFs/

FGFRs mutations have shown important roles of FGF signal-

ing in skeletal development, genetic skeletal diseases and

bone homeostasis. So, FGF/FGFR signalings will be attract-

ive targets for treating bone related diseases. FGF/FGFR

signals control the balance among skeletal cell growth,

differentiation and apoptosis during development and

adult homeostasis, as well as regulate systemic phosphate

homeostasis. However, many unresolved issues still need to

be explored.

Many studies have investigated the role of FGFRs in

endochondral and intramembranous bone formation

during development, but the effects of FGFRs on osteo-

clasts, especially on osteocytes, have not be clarified.

Osteocytes are the most abundant and longest-living cells

in the adult skeleton and have essential roles in bone

homeostasis.220–221 Thus, uncovering the impact of FGFRs

on osteocytes using osteocyte-specific Cre mice is critical.

Compensation, or crosstalk, may occur between differ-

ent FGFRs during skeleton development. For example,

conditional knock out of Fgfr1 in mature osteoblasts leads

to increased FGFR3 expression,15 whereas both cultured

bone marrow stromal cells from Fgfr3 null mice, or mice

carrying gain-of-function mutation in FGFR3, have

increased expression of FGFR1.83,85 Crossing between

mouse strains harboring various FGFRs mutations is extre-

mely important to elucidate the interactions between dif-

ferent FGFRs.

So far, only part of the 22 known FGF ligands have been

shown to be essential for skeletal development, such as

FGF8, FGF9 and FGF10. However, the mechanisms remain

unclear because most of the knockout mice die before or

after birth. Conditional deletion of these FGFs using bone

cell-specific Cre mice is necessary to study their roles during

bone development. The function of other unexplored FGFs

in skeletogenesis remains to be discovered. Furthermore,

which FGFRs are the relatively specific receptors of these

unexplored FGFs during bone development and metabo-

lism are unknown. Crossing mouse strains harboring differ-

ent FGFs mutations with FGFRs mutant mouse models is

necessary to discover the interactions between FGFs and

FGFRs in skeleton development and homeostasis.

Recently, studies have indicated that the bone is closely

related with whole-organism physiology.222 For example,

bone can regulate energy metabolism, male reproduc-

tion and hematopoiesis.223–224 Some hormone secreted

from other organs or tissues also have effect on bone, such

as Leptin secreted by adipocyte.222 In addition, systemic

disease also influence skeleton such as CDK225 and

inflammatory disease.226–227 The roles of FGF signaling in

the effect of systemic diseases on bone or bone on

whole-organism physiology remain unclear and need fur-

ther exploration.
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