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Abstract: Mathematical modeling has significant potential for understanding of biological mod-
els of cancer and to accelerate the progress in cross-disciplinary approaches of cancer treatment.
In mathematical biology, solid tumor spheroids are often studied as preliminary in vitro models of
avascular tumors. The size of spheroids and their cell number are easy to track, making them a
simple in vitro model to investigate tumor behavior, quantitatively. The growth of solid tumors is
comprised of three main stages: transient formation, monotonic growth and a plateau phase. The last
two stages are extensively studied. However, the initial transient formation phase is typically missing
from the literature. This stage is important in the early dynamics of growth, formation of clonal
sub-populations, etc. In the current work, this transient formation is modeled by a reaction–diffusion
partial differential equation (PDE) for cell concentration, coupled with an ordinary differential equa-
tion (ODE) for the spheroid radius. Analytical and numerical solutions of the coupled equations
were obtained for the change in the radius of tumor spheroids over time. Human glioblastoma (hGB)
cancer cells (U251 and U87) were spheroid cultured to validate the model prediction. Results of
this study provide insight into the mechanism of development of solid tumors at their early stage
of formation.

Keywords: tumor formation; reaction–diffusion equation; human glioblastoma cancer cells

1. Introduction

Understanding tumors has been recognized as one the most challenging problems
in biology and medicine. Their behavior involves complicated molecular biology and
correspondingly complicated dynamics. Although tremendous effort has been devoted
to developing therapeutic approaches for tumor suppression, there is still a significant
need for new insights into complex aspects of tumors such as genetic instabilities, ther-
apeutic resistance, inter- and intra-tumor heterogeneity, etc. Mathematical modeling is
one of the most powerful approaches in predicting different aspects of tumor progres-
sion. It can provide quantitative prediction of biological processes and help interpret
complicated physiological interactions in the tumor microenvironment. Provided collabo-
ration with experimentalists, mathematical modeling can generate practical mechanistic
solutions. Mathematical oncology, for example, promises to allow quantitative determi-
nation of effective individual therapies [1]. Therefore, the cross-disciplinary approach of
combining mathematical and biological models of cancer has great potential to enhance
cancer treatment.

Primary malignant tumors originate from small numbers of cells which become
highly proliferative through mutations occurring in oncogenes, tumor suppressors or

Micromachines 2021, 12, 749. https://doi.org/10.3390/mi12070749 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-5035-9244
https://orcid.org/0000-0002-8239-5987
https://orcid.org/0000-0003-2902-6557
https://doi.org/10.3390/mi12070749
https://doi.org/10.3390/mi12070749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12070749
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12070749?type=check_update&version=2


Micromachines 2021, 12, 749 2 of 18

DNA repair genes [2]. Although the genetic mutations eventually lead to formation of
large and complex vascular tumors, they all go through an avascular (devoid of blood
vessels) mode at their early stage of growth [3]. Having insight into this stage of growth is
valuable in understanding the behavior of tumors at subsequent phases. Tumor spheroids
are predominantly used in in vitro models of avascular tumor growth [4–8]. They are
spherical aggregations of cancer cells which are supplemented with a controlled amount of
nutrient concentration. Spheroid size, cell numbers, and fractions of hypoxic, quiescent and
proliferative cells are easy to track, which enables researchers to quantitatively investigate
the effect of various parameters on the tumors’ behavior [9–11].

Over recent decades, avascular tumor spheroids have been extensively studied in
the field of mathematical biology [12–16]. In particular, the growth of tumor spheroids is
mathematically modeled from different perspectives, e.g., continuum, discrete and hybrid
(continuum-discrete) [17].

In the continuum approach, the variables are assumed to be continuous, and described
by means of PDEs that incorporate growth and kinetic interaction between components,
and diffusion for transport phenomena [18–20]. For instance, Burton developed one of
the early mathematical models to determine the radius of tumor spheroids by analysis
of oxygen distribution inside the tumor [21]. The model could generate a growth curve,
which was fitted well by a Gompertzian function. As another example of studies that
examined the oxygen dynamics of spheroids, Grimes et al. demonstrated that the growth
of spheroids can be obtained using two key parameters: rates of oxygen consumption
and proliferation [22]. Greenspan established a model focusing on the growth-inhibiting
effect of chemicals produced by disintegrated dead cells at the core of the tumor [23].
He concluded that the growth pattern strongly depends on a balance between the in-
hibitory effect of chemical components and the proliferation of living cells. Byrne and
Chaplain introduced a model that provides the growth of tumor spheroids in response
to local nutrient concentration [24]. They assumed that the tumor is an incompressible
fluid in which the inside motion is induced by local proliferation of cells. They also incor-
porated cell-cell adhesion by the Gibbs-Thomson relation, which maintains the tumor’s
compactness. They further studied asymmetric perturbations to predict the modes of
instability of radially symmetric growth. Further studies considered the effects of pH
and the level of oxygen and nutrient as key parameters for the tumor growth rate [25,26].
Anisotropic growth of avascular tumor spheroids was also modeled in the context of contin-
uum mechanics in references [27–31]. These studies modeled the tumor as a hyperelastic
material and used multiplicative decomposition of the deformation gradient to investigate
spatial distribution of stresses. They highlight the role of mechanical stress on the growth
of tumors. Additional continuum-based studies of solid tumor growth are reviewed in
references [32–34].

On the other hand, discrete approaches can capture the effects of cellular response,
signaling pathways, inter- and intra-cellular interactions and tumor microenvironment on
the growth of solid tumors [17]. For example, the dynamics of avascular tumor growth
is presented using a lattice Monte Carlo model in [35]. The model predicts the growth of
spheroids under various nutrient supply conditions. Hybrid models are another approach
to modeling the growth of tumors that combine both continuum and discrete approaches to
allow descriptions of macroscopic environmental variables (such as nutrient concentration)
as well as discrete biological interactions. In the case of solid tumor growth, the clinical-size
morphology of tumors can be studied in hybrid models while the cellular pathways and
subcellular interactions are also involved [36]. For more details about discrete and hybrid
approaches, the reader is encouraged to refer to the following papers [33,37–39].

Development of biological patterns, such as animal coat markings and evolution of the
enteric nervous system (ENS), is another type of process that often involves cellular prolifer-
ation and reaction/diffusion of materials [40–42]. To describe such processes, the evolution
of a domain boundary is incorporated into the mathematical modeling [43–46]. This bound-
ary evolution of patterns is very similar to that of tumors, i.e., growth, from a mathematical
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point of view. In ENS, for instance, the motion of neural precursor cells is studied by solving
a PDE describing migrating cells [47–49]. Another example is the study done by Simpson
to derive an exact solution for a linear reaction–diffusion PDE on a uniformly growing
domain [50]. The method was verified by comparing the solution with a numerical approx-
imation. Although they successfully obtained the exact solution for the density function in
a growing domain, their solution is restricted to one-dimensional linear and exponential
domain growth in Cartesian coordinates, whereas in tumor growth the evolution of a
tumor’s boundary is not prescribed and is obtained as the solution in spherical coordinates.

Despite the rich literature on mathematical modeling of solid tumor growth, the initial
stage of tumor formation is either neglected or not comprehensively modeled. At this
stage, the interplay between adhesive force, due to cell-cell interactions, and repulsive
force, due to local pressure gradient, defines the dynamic formation of tumor spheroids,
which further affects the subsequent growth phases. To better understand the involved
mechanisms, there is still a need to conduct more collaborative research involving biological
and mathematical modeling approaches.

Here, we focus on the early phase of tumor spheroid formation, which is mostly miss-
ing from previous studies. In this initial phase of spheroid formation, the cell-cell adhesion
forces are dominant and drag cells toward each other to make a compact aggregation.
This causes the spheroid to shrink. Once cells start to proliferate, the raised concentration
of cells within the spheroid produces a pressure which compensates for the adhesion forces.
At this point, the balance between forces stops spheroids from shrinking and leads to
monotonic growth. This phase carries on until necrosis occurs where the competition
between mitosis and necrosis defines the growth pattern. This early transient behavior of
cells in tumor spheroid formation is modeled by a reaction–diffusion equation coupled
with an ODE. The effect of adhesion forces between cells are incorporated into the system
by prescribing a constant boundary condition. This fixed concentration, the so-called
relaxed concentration, implicitly models an equilibrium condition at which adhesion forces
and intrinsic pressure are in balance.

Both analytical and numerical solutions were obtained for the change in the radius of a
tumor spheroid at the early stage of formation. The theoretical model was validated against
the formation and growth of tumor spheroids generated from glioblastoma cell lines.

2. Model Formulation

A tumor spheroid is considered to be a system of particles (cells) with continuous
change in their properties such as concentration, velocity, etc. To start modeling this system,
the material time derivative of the tumor spheroid’s mass is written as a balance equation
for the continuum concentration of cells within the system:

∂m
∂t

=
∂

∂t

∫
V

C(x, t)dV =
∫

V
Π dV , (1)

where m is the mass of the tumor, C(x, t) is local concentration of cells, x is the position

vector, Π is a volumetric source of mass, dV is a volume element and ∂
∂t

∫
V

C(x, t)dV is

a material time derivative when particle locations are held fixed. Using the Reynolds
transport theorem, one can write

∂

∂t

∫
V

C(x, t)dV =
∫

V

(
∂C(x, t)

∂t
+∇ · (C(x, t)v(x, t))

)
dV , (2)

where v(x, t) is the velocity of particles. Followed by localization, Equation (1) gives:

∂C(x, t)
∂t

+∇ · (C(x, t)v(x, t)) = Π . (3)

A constitutive statement analogous to Darcy’s law can be proposed for the flux of
cells as q = C(x, t)v(x, t) = −k∇p(x, t), where p(x, t) is the pressure inside the tumor and
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k is the proportionality of cell flux to the gradient of pressure, noting that cells move from
higher pressure to lower pressure regions. Here we propose that this pressure is linearly
proportional to the concentration of cells. Hence, Equation (3) yields:

∂C(x, t)
∂t

= K∇2C(x, t) + Π , (4)

where K denotes ability of cells to respond to the gradient of concentration. This property
depends on cell diffusivity (D) in response to the gradient of the concentration and adhesion
forces between cells ( f ), i.e., K = K̂(D, f ). Cell adhesion reduces the ability of cells to move
in response to the gradient of concentration. Therefore, to simplify the model we propose a
linear relation, K = εD, where 0 < ε < 1. The volumetric growth depends on the type of
cells, concentrations of nutrients, growth factors and environmental cues. Here we propose
a simple linear relation for volumetric growth, Π = η C(x, t), where η is the rate of cell
proliferation. This assumption is correct for early growth of tumor spheroids since they are
usually small, such that all cells can receive enough oxygen and nutrient and no hypoxia
occurs in the tumor. Under this assumption, Equation (4) can be rewritten as:

∂C(x, t)
∂t

= K∇2C(x, t) + η C(x, t) . (5)

Spherical coordinates, which are well suited to represent the spherical shape of tumor
spheroids, can be used to advantage. Since the early stage of growth is radially sym-
metric, our analysis focuses on radially symmetric solutions. Equation (5) in spherical
coordinates become:

∂C(r, t)
∂t

=
K
r2

∂

∂r

(
r2 ∂C(r, t)

∂r

)
+ η C(r, t) , (6)

subject to the following boundary and initial conditions:

∂C(r, t)
∂r

∣∣∣∣
r=0

= 0 , (7a)

C(r, t)
∣∣∣∣
r=R(t)

= C0 , (7b)

C(r, t = 0) = Ci , for 0 < r < R(0) , (7c)

where R(t) is tumor radius, C0 is the imposed boundary condition on concentration of
cells, and Ci is the initial cell concentration, assumed spatially constant. Denoting the free
surface boundary by Ω (t) = {x ∈ R3| r− R(t) = 0}, the change in radius can be derived
by integrating cell motion on the entire volume of the tumor as (see Appendix A.1)

dR(t)
dt

= −K
∂C(r, t)

∂r

∣∣∣∣
r=R(t)

; R(0) = R0, (8)

in which R0 is the initial radius. The proliferation inside the tumor increases local con-
centration of cells and generates a pressure gradient, and consequently a concentration
gradient. Equation (5) indicates that cells move from higher concentration regions to lower
concentration regions to create a uniform concentration (relaxed concentration) everywhere
so that cells do not feel any extra pressure. For this pressure increment to be stabilized
by the adhesion forces between cells, the volume of the tumor must increase to reach the
relaxed concentration. To model this equilibrium, we introduce boundary condition (7b)
which imposes a constant relaxed concentration on the boundary of the tumor spheroid.
Solutions to Equations (6) and (8) with corresponding initial and boundary conditions
in (7) give the distribution of cells and change in radius of the tumor spheroids over time.



Micromachines 2021, 12, 749 5 of 18

2.1. Analytical Solution

Equation (6) is a linear concentration-dependent reaction–diffusion equation with
mixed boundary conditions. The reaction–diffusion form with constant source term is:

∂C(r, t)
∂t

= K∇2C(r, t) + ηCi . (9)

Proposition 1. If C1(r, t) is a solution of (9), the following is a solution of (6) (see Appendix A.2):

C(r, t) = −η
∫ t

0
C1(r, τ)eητdτ + C1(r, t)eηt . (10)

If a solution to (9) satisfies the initial and boundary conditions (7), then so does (10).
Therefore, the first step is to solve Equation (9) subject to initial and boundary conditions (7).
Using the variable change C1(r, t) = U(r, t) + C0, Equation (9) becomes a standard homo-
geneous PDE with zero boundary conditions and constant initial condition, as follows:

∂U(r, t)
∂t

= K∇2U(r, t) + ηCi , (11a)

∂U(r, t)
∂r

∣∣
r=0 = 0 , (11b)

U(R1(r), t) = 0 , (11c)

U(r, t = 0) = Ci − C0 , for 0 < r < R(0) , (11d)

where R1(t) is the radius of tumor spheroids without proliferation. The following solution
is obtained for R1(t) (see Appendix A.3):

R1(t) =
Ci − C0√

ηCi
erfi
√

ηCiKt + R(0) . (12)

The solution to the full reaction–diffusion Equation (5), is obtained as (see Appendix A.4):

dR(t)
dt

= −K fi

(
−η

∞

∑
n=1

(−1)n

n

∫ t

0
R(0)e(η−λ2

nK+ηCiK)τ F(R(t), n)dτ

+R(0)
∞

∑
n=1

(−1)n

n
e(η−λ2

nK+ηCiK)τ F(R(t), n)

)
.

(13)

2.2. Model Simplification

By introducing a new variable, R̄ = nπ
R(t)
R1(t)

, F(R(t), n) can be written as

F(R(t), n) =
R̄(t) cos(R̄(t))− sin(R̄(t))

R(t)2 . (14)

The timescale of proliferation is small enough compared to that of cell motility
such that at each instant the radius of the diffusion-only model, R1(t), is close to the
concentration-dependent reaction–diffusion one, R(t). In the limit of separation of time
scales this approximation becomes exact. Therefore, it can be assumed that R̄(t) ≈ nπ.
Substitution of Equation (14) into Equation (13) simplifies the rate of change of radius to

dR(t)
dt

= −πK fi

(
−η

∫ t

0

R(0)
R2(τ)

∞

∑
n=1

e(η−λ2
nK+ηCiK)τdτ +

R(0)
R2(t)

∞

∑
n=1

e(η−λ2
nK+ηCiK)t

)
, (15)
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which, after simplifications, has the following solution (see Appendix A.5)

R(t) = α

(√
π (2ηt− 1)

2
√

η
erfi(

√
ηt)−

√
t eηt

)
. (16)

2.3. Numerical Solution

In this section, numerical solutions of the model expressed in Equations (6) and (8) are
presented. Equation (6) is a reaction–diffusion equation with mixed boundary conditions
coupled with the ODE in Equation (8). To solve this system of equations, temporal and
spatial discretizations are required. The boundary of the tumor spheroid is moving in time,
which requires a new spatial discretization at each time-step. To keep the number of nodes
constant, the position of each node must be able to move in time. To this end, a mapping

is introduced by non-dimensional variables t̄ =
t
τ

and r̄(t̄ ) =
r

R(t̄ )
, where τ = tmax and

R(t̄) is the moving boundary of the tumor. Using this change of variables, the moving
domain of the solution is mapped to a new domain which always stays between zero and
one. Equations (6) and (8) can be rewritten in the new variables as

∂C(r, t̄ )
∂t̄

= λ

(
2
r̄

∂C(r̄, t̄ )
∂r̄

+
∂2C(r̄, t̄ )

∂r̄2

)
+ η τ C(r̄, t̄ ) (17a)

dR(t̄)
dt̄

= −λR(t̄)
∂C(r̄, t̄ )

∂r̄

∣∣∣∣
r̄=1

, (17b)

where λ =
τK

R(t̄ )2 , subject to the following boundary and initial conditions:

∂C(r̄, t̄)
∂r̄

∣∣∣∣
r̄=0

= 0 , (18a)

C(r̄, t̄)
∣∣∣∣
r̄=1

= C0 , (18b)

C(r̄, t̄)
∣∣∣∣
t̄=0

= Ci , for 0 < r̄ < 1 , (18c)

R(0) = R0 . (18d)

Here to solve this system of equations, the Crank–Nicolson (CN) finite difference
scheme was employed [51] (see Appendix A.6).

3. Results and Discussion
3.1. Model Analysis

The term α in Equation (16) contains the influence of both cell motility in response
to the gradient of concentration, K, and the relaxed concentration of cells, C0. The higher
the absolute difference, C0 − Ci, the more shrinkage is expected. This qualitative effect
holds for K as well, i.e., the higher the motility, the faster cells respond to the gradient
of concentration. To show this effect quantitatively, the value of the normalized radius,

R∗(t) =
R(t)− R0

R0
, versus normalized time, t∗ =

t
tmax

, is plotted in Figure 1a for Ci 6 C0

and different values of K∗ =
K
K0

holding other parameters fixed. Please note that we

selected tmax = 210 h to be consistent with the experimental results in the next section.
Additionally, we take K0 to be 10−10 cm2·s−1 [52]. As can be seen, the shrinkage of the
tumor is faster for cells with higher motility (K). The tumor spheroid decays further
until the concentration of cells reaches the relaxed concentration where the diffusivity
of cells and adhesion forces are in balance (minimum tumor radius). At this point, the
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proliferation continues to elevate cell concentration and breaks the balance. To reach a
new balance, the tumor spheroid increases its radius to reduce the local concentration
which finally leads to monotonic growth. Rate of proliferation for highly proliferative
cancer cells is normally in the order of η0 = 10−2 h−1. This value was used as a reference
number to non-dimensionalize the proliferation rates in our analysis. The effect of cell
motility on formation of spheroids is illustrated in Figure 1a in which parameters are set

as η = 1.8× η0,
C0

Ci
= 1.5 and R0 = 0.01 cm. The higher K in the figure corresponds to

lower minimum radius and faster shrinkage. This result also shows that tumor spheroids
with higher K grow faster since cells can rapidly respond to local proliferation and reach
balance by moving the boundary of the tumor. Unlike many types of mammalian cells
which have an intrinsic cell program that restricts their proliferation, most cancer cells are
highly proliferative [2]. When cells proliferate, the local concentration increases, and the
generated pressure moves cells away. The formation of a tumor spheroid is faster if cells
have a high proliferation rate. To illustrate this effect, the formation of a tumor spheroid

is depicted in Figure 1b for different values of η∗ =
η

η0
, holding other parameters fixed,

i.e., K∗ = 1,
C0

Ci
= 1.5 and R0 = 0.01 cm. As can be seen, a tumor spheroid with a higher

proliferation rate assembles faster.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

K
1

*
 = 1 (low cell motility)

K
2

*
 = 2

K
3

*
 = 3 (high cell motility)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1

*
 = 1.6 (low proliferation)

2

*
 = 1.8

3

*
 = 2 (high proliferation)

Figure 1. Formation of tumor spheroids with different values of (a) cell motility, K∗1 = 1, K∗2 = 2 and
K∗3 = 3 (with η∗ = 1.8, C0

Ci
= 1.5 and R0 = 0.01 cm), (b) proliferation rate, η∗1 = 1.6, η∗2 = 1.8 and

η∗3 = 2 (with K∗ = 1, C0
Ci

= 1.5 and R0 = 0.01 cm). A tumor spheroid with higher cell motility grows
faster since cells can rapidly respond to local proliferation and reach balance by moving the boundary
of the tumor. Additionally, a tumor spheroid with a higher proliferation rate assembles faster.

To compare the analytical and numerical solutions, the formation of the tumor

spheroids was obtained for two sets of parameters, (i) η∗ = 1.6,
C0

Ci
= 1.5, K∗ = 1,

R0 = 0.01 cm, and (ii) η∗ = 2,
C0

Ci
= 2, K∗ = 1, R0 = 0.02 cm, using the Crank–Nicolson

scheme outlined in Appendix A.6. Results are compared with the analytical solution in
Figure 2.
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-0.2
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0.8

1

1.2

1.4

1.6 Analytical

Analytical

Numerical  ( high proliferation rate-set1)

Numerical  ( low proliferation rate-set2 )

Figure 2. Formation of tumor spheroid obtained by analytical solution and numerical prediction,
using two sets of parameters; set 1: η∗ = 1.6, C0

Ci
= 1.5, K∗ = 1, R0 = 0.01 cm, and set 2: η∗ = 2,

C0
Ci

= 2, K∗ = 1, R0 = 0.02 cm. In the contraction phase the analytical and numerical solutions
reasonably match. The analytical solution loses accuracy once growth becomes dominant. This is a
result of the simplification we made in Equation (14).

As can be seen in the figure, analytical and numerical solutions match very well in the
contraction phase. The analytical solution loses accuracy once growth becomes dominant.
This is a result of the simplification we made in Equation (14). Both solutions predict that
the tumor spheroid in parameter set 2, which has higher proliferation rate, experiences
faster contraction and faster growth.

3.2. Model Validation

In this section, the theoretical model is validated against the formation of in vitro
solid tumor spheroids generated from glioma cell lines (U251 and U87 hGB cells), as the
most lethal type of intracranial tumors. Reproducibility, ease of assembly and ability to
provide high-throughput screening make them a promising candidate for in vitro three-
dimensional tumor models. Figure 3 shows the rates of proliferation of the two cell lines,
ηU251 = 0.037± 0.004 h−1 and ηU87 = 0.026± 0.003 h−1, which are in the range of data
reported in [53], i.e., ηU251 = 0.038 h−1 and ηU87 = 0.033 h−1. Results of U251 spheroid
formation over 210 h are shown in Figure 4. During the formation phase, intercellular
interactions generate adhesion forces which pull cells together and increase the concentra-
tion of cells within the spheroid. The size of the spheroid reduces since the proliferation is
not yet dominant. The tumor spheroid shrinks until the concentration reaches the relaxed
concentration (C0). At this minimum radius, the driving forces are in balance, i.e., adhesion
forces and forces due to high concentration of cells within the spheroid. This balance
breaks once the proliferation of cells becomes dominant, elevating the local concentration
above the relaxed concentration. To remove the produced force, the boundary of the tumor
spheroid moves to increase the volume. This volume increment reduces the concentration
of cells and equilibrates the forces inside the tumor spheroid.

For spheroids which did not have a full spherical shape, the average of the largest
and smallest diameters was considered to be the spheroid diameter. Figure 5 shows the
size of the tumor spheroids over time compared with analytical and numerical solutions.
As shown in the figure, the mathematical model provides a reasonable prediction of the
formation of tumor spheroids and the minimum diameter. The model predictions were able
to follow the trend of formation and growth until approximately 160∼180 h, after which
the tumor spheroids lost their homogeneity in terms of cell viability level. It is evident that
in big spheroids, cells close to the core become hypoxic and change their metabolism. This
can reduce the accuracy of the model.
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U251 U87
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Figure 3. Proliferation rates of U251 and U87 cells cultured in DMEM supplemented with 10% (v/v)
Fetal Bovine Serum (FBS) and 1% (v/v) Penicillin/Streptomycin, and incubated at 37 °C in 5% CO2.
Rates were calculated by counting cells using Trypan blue assay over 24 h (n = 3).

Figure 4. In vitro formation of U251- spheroids over 210 h. Spheroids undergo an initial shrinkage
and subsequent growth due to the competition between adhesion forces and proliferation pressure.
Scale bars show 500 µm.
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Figure 5. Formation of a tumor spheroid over time, obtained by spheroid culture of hGB cancer cell
lines (n = 3), (a) U251 and (b) U87, and compared with both analytical and numerical predictions.
The model is able to predict the formation of tumor spheroids and the minimum diameter, but loses
accuracy after approximately 160∼180 h. This divergence from experimental results is started when
the tumor spheroids lose their homogeneity due to hypoxia and/or necrosis initiation.

4. Experimental Methodology
4.1. Proliferation Rate

HGB cells were cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM) sup-
plemented with 10% (v/v) Fetal Bovine Serum (FBS) and 1% (v/v) Penicillin/Streptomycin,
and incubated at 37 °C in 5% CO2. The number of cells, N1 and N2, was counted using
a Trypan blue assay after 24 h and 48 h, respectively (fresh media was added after 24 h).
Rates of proliferation (1/h) were calculated, shown in Figure 3, for both cell lines as

η =
N2 − N1

N1 ∗ 24
. (19)

4.2. Spheroid Culture

For culturing spheroids, cells cultured in Section 4.1, were dissociated with GibcoTM

Trypsin-EDTA (0.5%) and were centrifuged at 300× g for 5 min. After removing the
supernatant and suspending the cell pellet in 1 mL of medium, the number of cells was
counted using a Trypan blue assay. Afterwards, self-filling micro-well arrays (SFMAs)
were used to produce uniform tumor spheroids [54]. The desired concentration of cells
was loaded dropwise through guiding channels of SFMAs and were gently seeded into the
wells. The microwells were kept in an incubator and imaging started 5 h after seeding to let
the cells fully settle in the wells. Cells were supplemented with fresh medium every 24 h
to maintain the concentration of nutrients. The formation of spheroids was imaged using
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optical microscopy (Axio Observer, ZEISS, Oberkochen, Germany) over 210 h. The size of
spheroids was measured using ImageJ [55].

5. Conclusions

In this work, we have presented an analytical solution for the formation of solid tumor
spheroids. The process of tumor spheroid formation includes a preliminary contraction
phase where adhesion forces densify cell aggregation. This phase proceeds until the cell
concentration reaches a threshold, the so-called “relaxed concentration” at equilibrium.
Afterwards, cell proliferation raises concentration and produces pressure which breaks the
equilibrium. The tumor spheroid evolves in size to compensate for the generated pressure.
This transient phase in formation and growth of tumor spheroids was mathematically
modeled using a system of coupled PDE and ODE with appropriate boundary and initial
conditions. To validate model predictions, human glioblastoma cancer cell lines were
spheroid cultured and their size was imaged over 210 h. Results showed that although the
model loses accuracy after approximately 160∼180 h, it can nevertheless provide reliable
prediction of the size of the spheroids before they become inhomogeneous.It should be
noted that this study is limited to the modeling of solid tumor formation with no access to
environmental stimuli such as stroma, immune cells, etc. However, our approach has the
potential to include the inhibitory effect of drugs using an additional reaction–diffusion
equation. The effect of a drug on the tumor development may be expected either to simply
extend the contraction phase, or to cause a monotonic contraction after the expansion,
in either case due to the apoptotic effect of the drug.
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Appendix A

Appendix A.1. Rate of Change of Spheroid’s Volume

In this section, we derive an expression to relate the gradient of concentration at the
boundary of a tumor to the time rate of change of its radius.

The rate of change of volume is

dV(t)
dt

=
∫

V
∇ · v(x, t) dV = −

∫
V

K∇2C(r, t)dV = −
∫

Ω
K∇C(r, t) · n dΩ , (A1)

where n is normal to the surface, i.e., n = êr. Additionally, ∇C(r, t) =
∂C(r, t)

∂r
êr, and

dV(t)
dt

= 4πR2(t)
dR(t)

dt
. The surface element on a sphere of radius R is dΩ = R2 sin(φ)dθdφ,

where θ and φ are azimuthal and polar angles, respectively. Hence, Equation (A1) gives:

4πR2(t)
dR(t)

dt
= −

∫ π

0

∫ 2π

0
K

∂C(r, t)
∂r

êr · êr R2(t) sin(φ) dθdφ , (A2)

which further simplifies to:

dR(t)
dt

= −K
∂C(r, t)

∂r

∣∣∣∣
r=R(t)

. (A3)
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Appendix A.2. Proof of Proposition 1

In this section, the proof of Proposition 1, which was used as an intermediate step to
solve Equation (6), is provided.

Taking derivatives of (10) gives:

∂C(r, t)
∂r

= −η
∫ t

0

∂C1(r, t)
∂r

eητdτ +
∂C1(r, t)

∂r
eηt , (A4a)

∂2C(r, t)
∂r2 = −η

∫ t

0

∂2C1(r, t)
∂r2 eητdτ +

∂2C1(r, t)
∂r2 eηt , (A4b)

∂C(r, t)
∂t

=
∂C1(r, t)

∂t
eηt . (A4c)

By substitution, it can be shown that (A4) satisfies Equation (6), as follows.

∂C1

∂t
=

K
r2

∂

∂r

(
r2 ∂C1

∂r

)
+ ηCi

by assumption. The LHS of (6) is
∂C
∂t

=
∂C1

∂t
eηt .

The RHS of (6) is

K
r2

∂

∂r

(
r2 ∂C

∂r

)
+ η C =

K
r2

∂

∂r

(
r2
[
−η

∫ t

0

∂C1

∂r
eητdτ +

∂C1

∂r
eηt
])

+ ηC

=
K
r2

∂

∂r

(
r2 ∂C1

∂r

)
eηt − η

∫ t

0

K
r2

∂

∂r

(
r2 ∂C1

∂r

)
eητdτ + ηC

=

(
∂C1

∂t
− ηCi

)
eηt − η

∫ t

0

(
∂C1

∂τ
− ηCi

)
eητdτ + ηC

=
∂C1

∂t
eηt − ηCieηt − η

[
C1eητ |t0 − η

∫ t

0
C1eητdτ

]
+ ηCi

∫ t

0
ηeητdτ + ηC

=
∂C1

∂t
eηt − ηCieηt − η[C− Ci] + ηCi(eηt − 1) + ηC

=
∂C1

∂t
eηt .

Hence Equation (6) is satisfied.

Appendix A.3. Solution of R1(t)

Here, we solve Equation (11a) and derive an approximate expression for R1(t).
Using separation of variables, U(r, t) = P(r) T(t), one can derive the solution of

(11a) as

U(r, t) =
∞

∑
n=1

Dne−(λ
2
n−ηCi)Kt sin(λnr)

r
, (A5)

where Dn = 2R(0) (C0 − Ci)
(−1)n

nπ
and λn =

nπ

R1(t)
. Hence,

C1(r, t) =
∞

∑
n=1

Dne−(λ
2
n−ηCi)Kt sin(λnr)

r
+ C0 . (A6)

Substitution of (A6) into (A3) gives

dR1(t)
dt

=
2K(Ci − C0)

R1(t)

∞

∑
n=1

e−(λ
2
n−ηCi)Kt . (A7)
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The infinite series in Equation (A7) is convergent and has upper and lower bounds
as follows: ∫ ∞

1
e−(λ

2
n−ηCi)Ktdn 6

∞

∑
n=1

e−(λ
2
n−ηCi)Kt 6

∫ ∞

0
e−(λ

2
n−ηCi)Ktdn . (A8)

Using the identity
∫

e−(λ
2
n−ηCi)Ktdn =

R1(t) eηCiKt

2
√

πKt
erf

(
nπ
√

Kt
R1(t)

)
+ constant, the in-

equalities in (A8) become

√
K(Ci − C0)√

π
eηCiKt

1− erf
(

π
√

Kt
R1(t)

)
√

t

 6
2K(Ci − C0)

R1(t)

∞

∑
n=1

e−(λ
2
n−ηCi)Kt

6

√
K(Ci − C0)√

πt
eηCiKt .

(A9)

Here, we observe that the upper and lower bounds in Equation (A9) are very tight,
at least for system parameters in a reasonable range. Therefore, considering either bound

as an approximate solution for
dR1(t)

dt
is acceptable. To show this, the solution of R1(t)

using the upper bound, R1(t)ub, and lower bound, R1(t)lb, are found by a finite difference

method and the corresponding relative error,
R1(t)ub − R1(t)lb

R1(t)lb
, is shown in Figure A1.

System parameters are adopted in the range of biological properties of tumor spheroids as
K = 10−10 cm2/s, R0 = 0.01 cm. We also assume that the initial phase of growth does not

take longer than a few days, tmax =240 h, and
C0

Ci
= 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.2

0.4
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0.8

1

1.2

1.4
10

-8

Figure A1. The relative error in the solution of R1(t) in Equation (A7) using the upper bound,
R1(t)ub, and lower bound, R1(t)lb, of Equation (A9). Parameters are set as K = 10−10, R0 = 0.01 cm,
tmax =240 h and C0

Ci
= 2.

As can be seen in the figure, the error is very small, indicating that both bounds are
acceptable in this range. To reduce the complexity in the analytical solution procedure,

we used the upper bound as the solution of
dR1(t)

dt
, for which the analytical solution is

available as

R1(t) =
Ci − C0√

ηCi
erfi
√

ηCiKt + R(0) . (A10)
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Appendix A.4. Solution of Full RD Equation

In this section, the solution to the full reaction–diffusion Equation (5) is obtained.
By substitution of Equation (A6) into (10), one can obtain:

C(r, t) = −η fiR(0)
∞

∑
n=1

(−1)n

n

∫ t

0
e−(λ

2
n−ηCi)Kτ sin(λnr)

r
eητdτ − ηC0

∫ t

0
eητdτ

+R(0) fi

∞

∑
n=1

(−1)n

n
e−(λ

2
n−ηCi)Kt sin(λnr)

r
eηt + C0 eηt ,

(A11)

which further simplifies to:

C(r, t) = −η fiR(0)
∞

∑
n=1

(−1)n

n

∫ t

0
e−(λ

2
n−ηCi)Kτ sin(λnr)

r
eητdτ

+R(0) fi

∞

∑
n=1

(−1)n

n
e−(λ

2
n−ηCi)Kt sin(λnr)

r
eηt + C0 ,

(A12)

where fi =
2(C0 − Ci)

π
. It should be noted that there are two radii in this solution, i.e., R1(t)

and R(t). The former is the radius of the reaction–diffusion form with constant source,
Equation (9), and the latter is the radius of the concentration-dependent reaction–diffusion
form, Equation (5). By substitution of (A12) into (A3), the first order differential equation
for R(t) is obtained as:

dR(t)
dt

= −K fi

(
−η

∞

∑
n=1

(−1)n

n

∫ t

0
R(0)e(η−λ2

nK+ηCiK)τ F(R(t), n)dτ

+R(0)
∞

∑
n=1

(−1)n

n
e(η−λ2

nK+ηCiK)τ F(R(t), n)

)
,

(A13)

where F(R, n) =
λnR(t) cos(λnR(t))− sin(λnR(t))

R(t)2 .

Appendix A.5. Model Simplification

Here, steps to simplify Equation (15) are provided. Equation (15) gives the rate of
change of radius as

dR(t)
dt = −πK fi

(
−η
∫ t

0
R(0)

R2(τ) ∑∞
n=1 e(η−λ2

nK+ηCiK)τdτ + R(0)
R2(t) ∑∞

n=1 e(η−λ2
nK+ηCiK)t

)
. (A14)

Using the same identity used in (A9) and the argument proposed in deriving Equation (A10),
Equation (A14) simplifies to

dR(t)
dt

= −α

(
−η

∫ t

0

R(0)R1(τ)

R2(τ)

eητ(1+CiK)
√

τ
dτ +

R(0)R1(t)
R2(t)

eηt(1+CiK)
√

t

)
, (A15)

where α =
fi
√

πK
2

. It should be noted that CiK � 1, (1 + CiK ≈ 1). Hence, Equation (A15)
simplifies approximately to the following nonlinear integro-differential equation:

dR(t)
dt

= −α

(
−η

∫ t

0

R(0)R1(τ)

R2(τ)

eητ

√
τ

dτ +
R(0)R1(t)

R2(t)
eηt
√

t

)
. (A16)

Please note that R(0) is the initial radius, and R1(t) and R(t) are radii for the constant-
source reaction–diffusion equation and the concentration-dependent reaction–diffusion
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equation, respectively. It can be shown that the term
R(0)R1(t)

R2(t)
fluctuates around 1 during

the shrinkage and early growth phase as follows:

R(0)R1(t)
R2(t)

= 1, at t = 0 , (A17a)

R(0)R1(t)
R2(t)

> 1, in the shrinkage phase , (A17b)

R(0)R1(t)
R2(t)

≈ 1, in the transition phase , (A17c)

R(0)R1(t)
R2(t)

< 1, in the initial growth phase . (A17d)

Thus, we write
R(0)R1(t)

R2(t)
= 1 + ε(t), where ε(t) denotes the variation around 1

and depends on the intrinsic properties of the system, such as proliferation rate (η), cell
diffusivity (D), etc. Although the form of function ε(t) cannot be specified precisely, we
make the approximation ε(t) ≈ 0 to simplify Equation (A16). This assumption is not
accurate, especially for the growth phase. However, the comparison between the analytical
solution and both numerical and experimental results in Sections 3.1 and 3.2 confirms
that this approximation provides an acceptable prediction on the formation of spheroids

in the range of interest. Using the identity
∫ t

0

eητ

√
τ

dτ =

√
π

η
erfi(

√
ηt), Equation (A16)

then yields:

dR(t)
dt

= −α

(
−√πη erfi (

√
ηt) +

eηt
√

t

)
; R(t)

∣∣∣∣∣
t=0

= R0 . (A18)

Please note that if Ci = C0 then α = 0, and the size of the tumor does not change,
but experimentally, the initial seeding concentration, Ci, is always less than C0, since a
compact tumor mass has not yet formed, so this can be considered physically implausible.
Using the fact that

∫ t

0
erfi(
√

ητ)dτ =
(2ηt + 1)erfi(

√
ηt)− 2eηt√ηt√

π

2η
, (A19)

the solution to (A18) can be obtained as

R(t) = α

(√
π (2ηt− 1)

2
√

η
erfi(

√
ηt)−

√
t eηt

)
. (A20)

Appendix A.6. Numerical Method

The Crank–Nicolson scheme is implicit, unconditionally stable, and gives second-
order convergence. Considering temporal (i) and spatial (j) discretizations, the following
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approximations to temporal and spatial derivatives transform the differential
Equations (6) and (8) into an algebraic system of equations.

∂C(i, j)
∂t̄

=
Ci+1

j − Ci
j

∆t̄
, (A21a)

dR(i)
dt̄

=
Ri+1 − Ri

∆t̄
, (A21b)

∂C(i, j)
∂r̄

=
1
2

(Ci
j+1 − Ci

j−1

∆r̄
+

Ci
j+1 − Ci

j−1

∆r̄

)
, (A21c)

∂2C(i, j)
∂r̄2 =

1
2

(Ci+1
j+1 − 2Ci+1

j + Ci+1
j−1

∆r̄2 +
Ci

j+1 − 2Ci
j + Ci

j−1

∆r̄2

)
. (A21d)

Substitution of these approximations into (17) gives a system of linear algebraic
equations in the form of Ax = b, where A is square matrix of coefficients and vector x
contains unknown concentrations at each node. The CN scheme is implicit in both time
and space. Based on this method, the (k + 1)th iteration of unknown concentrations, C(k+1),
is defined as:

C(k+1) = A−1
lower

(
b− AupperC(k)

)
, (A22)

where Alower and Aupper are respectively a lower triangular and strictly upper triangular
decomposition of matrix A. As the iterations proceed, the approximations converge until
the error reaches a defined tolerance. MATLABr [56] was used to perform iterations to
obtain unknown concentrations at each node. Please note that we used explicit value of
R(t) in Equation (17a), i.e., Ri(t), such that we could solve for the concentrations first and
plug them into Equation (17b) to obtain Ri+1(t).
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