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Abstract Glutamate acting on AMPA-type ionotropic glutamate receptor (AMPAR) mediates the
majority of fast excitatory synaptic transmission in the mammalian central nervous system. Dynamic
regulation of AMPAR by post-translational modifications is one of the key elements that allow the
nervous system to adapt to environment stimulations. S-palmitoylation, an important lipid modification by
post-translational addition of a long-chain fatty acid to a cysteine residue, regulates AMPA receptor
trafficking, which dynamically affects multiple fundamental brain functions, such as learning and
memory. In vivo, S-palmitoylation is controlled by palmitoyl acyl transferases and palmitoyl thioesterases.
In this review, we highlight advances in the mechanisms for dynamic AMPA receptors palmitoylation,
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and discuss how palmitoylation affects AMPA receptors function at synapses in recent years.
Pharmacological regulation of S-palmitoylation may serve as a novel therapeutic strategy for neurobio-
logical diseases.

& 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license. 
1. Introduction

Glutamate is the primary excitatory neurotransmitter in the
mammalian central nervous system. As an important ionotropic
glutamate receptor, α-amino-3-hydroxy-5-methylisoxazole-4-pro-
pionic acid receptor (AMPAR) mediates the fast excitatory
synaptic transmission in the mammalian brain1. The plenty of
AMPARs at synapses plays a pivotal role in determining synaptic
efficacy. An abundance of convincing evidence has shown that
AMPAR is a crucial factor in normal cellular and synaptic
activities and in the pathogenesis of multifarious neuropsychiatric
and neurodegenerative diseases1. Only 30%–50% of AMPARs are
expressed on the surface of neurons and a significant proportion of
intracellular receptors are located in dendrites. Dynamics of
AMPARs at synapse provide a compelling mechanism for under-
standing the cellular basis of neuropsychiatric and neurodegenera-
tive diseases. S-palmitoylation, a principal type of lipid
modifications, controls functions of various neuronal proteins by
affecting their surface trafficking, including AMPARs. This
process is mainly mediated by post-translational addition of a
long-chain fatty acid to a cysteine residue of AMPARs or its
regulators via a thioester linkage. Considering the critical role of
AMPARs in the central nerve system function and neurobiological
diseases, regulation of their dynamical trafficking by S-
palmitoylation also serves as a predominant determinant of multi-
ple fundamental brain functions and pathological process. Phar-
macological regulation of S-palmitoylation may emerge as a
potential therapeutic strategy for neurobiological diseases in the
future.
2. What is palmitoylation?

Protein lipid modification, one important post-translational modi-
fication, commonly includes isoprenylation2, myristoylation3,
glycophosphatidyl inositol and palmitoylation4–6. Among them,
palmitoylation is a sort of major lipid modifications of proteins. It
is defined as the covalent attachment of saturated 16-carbon
palmitic acid to specific cysteine and less frequently to serine
and threonine residues of proteins4,7. From aspect of chemical
biology, palmitoylation increases the hydrophobicity of targeted
proteins and facilitates their membrane association (Fig. 1A).
Depending on the site of palmitoylation, it can be divided into N-
palmitoylation and S-palmitoylation (Fig. 1B). N-palmitoylation,
through the formation of a stable N-amide bond, was discovered
via the analysis of the secreted morphogen Sonic Hedgehog8.
Furthermore, the N-palmitoylation of sonic hedgehog proteins is
stable and irreversible9. On the contrary, S-palmitoylation, through
the formation of a labile thioester bond, is a distinctive, reversible
lipid modification4, and potentially regulates the function of
proteins via cycles of palmitoylation and depalmitoylation cata-
lyzed by protein palmitoyltransferases and protein thioesterases
respectively (Fig. 1C). This review focuses on the effect of S-
palmitoylation on AMPARs function.

2.1. Palmitoylation-related enzymes

As a class of aspartate-histidine-histidine-cysteine (DHHC) pro-
teins (also known as ZDHHC proteins)10–15, palmitoyl acyl
transferases (PATs)14,15 containing a genetically conserved DHHC
cysteine-rich domain (the catalytic center of the enzyme)16

catalyze palmitoylation of multiple targets in vivo. PATs were
first discovered in Saccharomyces cerevisiae12,13 and subsequently
in various of mammalian cells11,17–23. So far, 23 mammalian
DHHC proteins and their targets have been discovered11,24

(Fig. 1D). For example, in the past several decades, several studies
have demonstrated that AMPARs subunits-GluA1 and GluA2 can
be palmitoylated by DHHC3, which regulates AMPARs surface
expression21. PSD95, as a scaffolding protein, was also palmitoy-
lated by DHHC 2, 15, 3, and 725. Recent study shows that DHHC8
can palmitoylate protein interacting with C-kinase 1 (PICK1), as a
PDZ domain-containing protein, which is required for cerebellar
long-term depression (LTD) in mouse26. Palmitoylation of both
AMPAR subunits and synaptic scaffolding proteins affects synap-
tic function assembly25,26.

2.2. Depalmitoylation-related enzymes

Depalmitoylation is catalyzed by palmitoyl protein thioesterases,
such as palmitoyl-protein thioesterase-1 (PPT1), acyl-protein thioes-
terase-1 (APT1) and acyl-protein thioesterase-2 (APT2). Palmitoyl
protein thioesterases remove thioester-linked saturated 16-carbon
palmitic acid from modified cysteine residues in proteins or peptides
during lysosomal degradation. APT1 is a unique thioesterase which
is engaged in depalmitoylation of cytoplasmic proteins, such as Ras
(rat sarcoma), Gα subunits, endothelial nitric oxide synthase and
SNAP-23 (soluble N-ethylmaleimide-sensitive fusion protein-
attachment protein receptor protein-23)27–30. APT2 catalyzes the
depalmitoylation of peripheral membrane-associated GAP-43
(growth associated protein-43)28. Besides as a thioesterase, PPT1
is a lysosomal enzyme associated with the degradation of palmi-
toylated proteins28,31, and the deficit of PPT1 causes neuronal ceroid
lipofuscinosis of infants30.
3. Direct regulation of AMPARs trafficking by self-
palmitoylation

AMPARs are heterotetrameric and ionotropic glutamate receptors,
consisted of 4 subunits: GluA1-432. In mammals, AMPARs are highly
conserved. GluA4-containing forms predominantly appear in
early postnatal development, while heteromers of GluA1-GluA2
and GluA2-GluA3 mainly exist in the mature mammalian
hippocampus33,34.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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AMPARs surface delivery is a crucial procedure in the synaptic
transmission and synaptic plasticity. Palmitoylation of AMPARs is
a subunit-specific process which affects its trafficking35. Thus,
palmitoylation of AMPARs plays a crucial role in the regulation of
AMPARs function21,35,36. The dynamic regulation of palmitoyla-
tion and depalmitoylation provides a pivotal mechanism for
synaptic plasticity.

Two sites of AMPARs can be directly palmitoylated. One site is
the cysteine-610 in the second transmembrane domain of GluA1
and GluA2. The other is different between GluA1 and GluA2.
GluA1 (Fig. 2A) and GluA2 (Fig. 2B) are palmitoylated at
cysteine-811 and cysteine-836 respectively in the juxta-
transmembrane region of the C-terminal cytoplasmic tail21. In
GluA1, palmitoylation of cysteine-811 indirectly affects AMPARs
trafficking to the cell surface through decreasing interaction with
the protein band 4.1N21, which is relative to stabilize surface
expression of GluA111 (Fig. 2A).

Notably, neuronal activity highly regulates palmitoylation of
AMPARs. Depalmitoylation of AMPARs is rapidly induced by the
stimulation of glutamate. But the level of total receptors in
neuronal cultures are not altered21,35. DHHC3, as a PAT, catalyzes
palmitoylation of the transmembrane domain site of AMPARs.
Thus, it may negatively regulate AMPARs trafficking, and affect
expression of AMPARs on the plasma membrane21. However, its
precise role in synaptic plasticity remains yet largely unknown.
4. Indirect regulation of AMPARs trafficking via
palmitoylation and AMPAR-interacting proteins

Many AMPAR-interacting proteins that control surface insertion
of AMPARs have been identified, such as postsynaptic density-95
(PSD-95), glutamate receptor interacting protein (GRIP)/AMPA
receptor binding protein (ABP), PICK1, 4.1N and the A-kinase
anchoring protein 79/150 (AKAP79/150). Palmitoylation of these
proteins facilitates their membrane association, stabilizes their
postsynaptic density and increases their interactions with intracel-
lular receptors15. Thus, palmitoylation of AMPAR-associated
proteins always produce a contrary effect in contrast to the
palmitoylation of AMPARs.

4.1. The palmitoylation of PSD-95 and AMPARs trafficking

PSD-95 is a major scaffolding protein in postsynaptic density, and
its palmitoylation is pivotal for AMPARs trafficking37. The
surface expression of AMPARs is dynamically increased by
palmitoylation of PSD-9525. The palmitoylated sites of PSD-95
are cysteines-3 and -5 at the N-terminus of the protein. The
mutation of the palmitoylated sites on PSD-95 blocks its palmi-
toylation, and notably decreases surface expression of AMPARs37.
Figure 1 PATs and cycles of palmitoylation-depalmitoylation. (A)
The schematic diagram of palmitoylation-depalmitoylation cycles. (B)
The classification of palmitoylation. Palmitoylation divides into N-
palmitoylation (through the formation of a stable N-amide bond) and
S-palmitoylation (through the formation of a labile thioester bond). (C)
The reaction process between palmitates and proteins in S-palmitoyla-
tion. S-palmitoylation is a reversible lipid modification, and potentially
regulates the function of proteins via cycles of palmitoylation and
depalmitoylation catalyzed by protein palmitoyltransferases and pro-
tein thioesterases respectively. (D) The phylogenetic tree of the human
DHHC protein family. According to the alignment of the DHHC-CRD
core domains, the 23 DHHC proteins are classified into several
subfamilies.



Figure 2 Topology and palmitoylation of AMPAR subunits. (A) Schematic of the GluA1 subunit. The cysteine residues of palmitoylation are
indicated in purple. (B) Schematic of the GluA2 subunit. The cysteine residues of palmitoylation are highlighted in purple. Subdomains, mediating
the interaction with 4.1N protein (A) or GRIP/ABP or PICK1 (B), are marked in red.
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Moreover, Ca2þ/calmodulin can promote dissociation of PSD-95
from the postsynaptic membrane via binding to the N-terminus of
PSD-95, and preventing palmitoylation of PSD-9538. It affects the
surface expression of AMPARs.

The N-terminal palmitoylation is essential for stabilization of
PSD-95 within the postsynaptic density39. And DHHC 2, 3, 5,
7, 8, and 15, a series of DHHC-PAT family members, catalyze
PSD-95 palmitoylation15. Among these DHHCs, DHHC3 and
DHHC2 are both essential in the process of postsynaptic
accumulation of PSD-95, but only DHHC2 is implicated in
the palmitoylation of PSD-95 in response to the decreasing
synaptic activity40.

The decreasing neuronal activity initiates a rapid mobilization
of dendritic DHHC2 close to the postsynaptic membranes, there-
fore mediating robust palmitoylation and improving synaptic
accumulation of PSD-95. Finally, it contributes to the increasing
surface expression of AMPARs after neuronal stimulation40.

Regulation of PSD-95 palmitoylation may serve as a novel
target for controlling AMPARs surface delivery. Although the lack
of selective pharmacological antagonist, we may use the specific
peptide to inhibit palmitoylation of PSD-95 by intervening
interaction between DHHCs and PSD-95 in the future.

4.2. The palmitoylation of GRIP/ABP and AMPARs trafficking

GRIP also called ABP, with a multi-PDZ domain scaffold,
links and stabilizes AMPAR GluA2/3 subunits at synapses.
Palmitoylated N-terminal splice variant expression specifically
induces multiple changes relative to non-palmitoylated form,
contributing to increase of synaptic transmission and AMPARs
surface trafficking, as well as development of presynapse and
postsynapse41.

GRIP1 targets to the endosome, and controls the dynamic
recycling of internalized AMPARs back to the plasma mem-
brane42. GRIP1b mediates NMDA-induced AMPARs internaliza-
tion, and GRIP1a inhibits this process43. Furthermore, GRIP1b,
targeting to trafficking endosomes, palmitoylated by DHHC5/8,
mediates activity-dependent AMPARs trafficking44.
4.3. The palmitoylation of PICK1 and AMPARs trafficking

PICK1, a key candidate as a bidirectional regulator of synaptic
AMPARs trafficking, mediates the trafficking of GluR2/3 and
participate in many physiological and pathological processes. As a
postsynaptic density-95/discs large/zona occludens-1 (PDZ)
domain protein, PICK1 binds directly with the C termini of the
GluA2 and GluA3 subunits of AMPARs45,46. PICK1 plays an
inverse role in regulating the membrane expression of GluA2-
containing and GluA2-lacking Ca2þ-permeable AMPARs (CP-
AMPARs). The membrane expression of GluA2 was decreased
in PICK1 over-expressed neurons, while the surface expression
of CP-AMPARs was increased47. On the contrary, knockout
of PICK1 reduced surface expression of CP-AMPARs in cultured
neurons, but the levels of surface GluA2/3 were elevated48,49.
Palmitoylation on cysteine-41450 juxta-C terminus of PICK1
by DHHC826 contributes to the internalization of postsynaptic
GluA2-containing AMPARs51, which is essential for cerebellar
LTD.

4.4. 4.1N and palmitoylation of AMPARs

4.1N, consisting in major neurons of the adult mouse brain, is a
neuronal homolog of 4.1R52. Besides binding to the actin
cytoskeleton, 4.1N selectively interacts with the membrane prox-
imal region of GluA1, but not GluA253,54. 4.1N regulates
AMPARs trafficking through providing a pivotal link between
AMPARs and the actin cytoskeleton. Consequently, 4.1N is
essential to GluA1 insertion. Depalmitoylation of the C811 residue
of GluA1 facilitates the interaction between GluA1 and 4.1N. The
relationship between 4.1N and palmitoylation is close to AMPARs
trafficking and synaptic plasticity.

4.5. The palmitoylation of AKAP79/150 and AMPARs trafficking

AKAP79/150, encoded by the AKAP5 gene, is a sort of scaffold
protein that expressed in human and rodent, respectively. It targets
kinases such as protein kinase A (PKA), protein kinase C (PKC),
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and calcineurin to the PSD to regulate its phosphorylation, which
controls trafficking process of AMPARs55–61. The neuronal
activity regulates palmitoylation of AKAP79/150, and mediates
its targeting to postsynaptic membrane lipid rafts and dendritic
endosomes. Crucially, spine enlargement, endosome recycling,
and AMPARs trafficking pathways associated with long-term
potentiation (LTP) are regulated by the palmitoylation of
AKAP79/15062.
5. AMPARs trafficking in disease

Disorder of the synaptic AMPARs trafficking contributes to
cognitive dysfunction in Alzheimer's disease (AD). The expression
level of AMPAR subunits, such as GluA1, GluA2 and GluA2/3,
was decreased in CA1 of hippocampus, the subiculum and
entorhinal cortex of patients with AD63,64.

Fragile X syndrome (FXS), caused by the loss of fragile X
mental retardation protein (FMRP)65, also associates with dysre-
gulation of AMPARs trafficking. The translation level of GluA1
and GluA2 subunits was significantly increased65, but the surface
expression level of GluA1 is reduced in the amygdala of fragile X
mental retardation 1 (Fmr1) knock-out mice66.

However, there are few reports on palmitoylation regulates
AMPARs trafficking in neurobiological diseases.
6. Conclusions and perspectives

We have seen considerable steps forward in our understanding of
the extent and roles of palmitoylation of AMPARs and their
regulators in past several decades. The development of two
complemental methods have been used in the global palmitoyl
proteomic analysis. The acyl-biotinyl exchange (ABE) method67–69

can be applied to analyze palmitoylated proteins from any cell-free
protein extract. In contrast to the ABE method, metabolic labeling
with the 17-octadecynoic acid (17-ODYA, as the palmitic acid
analog)70,71 can identify dynamically palmitoylated proteins
in vivo.

The large DHHC family plays essential roles in a range of
physiological functions, and several DHHC genes are closely
associated with diseases, such as cancers72, schizophrenia73,74,
mental retardation75,76, and Huntington's disease77. However, how
the DHHCs dynamically regulate palmitoylation of targeted
proteins in several diseases including neuropsychiatric disorder
yet remains elusive.

Palmitoylation of postsynaptic proteins, such as PSD-95 and
GRIP1, may up-regulate the membrane expression of AMPARs,
and enhance the synaptic function15. Consequently, palmitoyla-
tion-dependent regulation of AMPARs trafficking inevitably plays
pivotal roles in physiological activities of neurons and synapses,
and in the pathogenesis of multiple neuropsychiatric and neuro-
degenerative diseases, such as cocaine addiction78.

Both the pharmacological antagonist of PATs 2‑bromopalmi-
tate44 and shRNA knockdown or rescue approaches62 are widely
used to explore the roles of specific palmitoylation events.
Recently, 2-bromopalmitate analogs (1,2-bromohexadec-15-ynoic
acid and 2-bromooctadec-17-ynoic acid), serve as novel and
chemical tools to probe PATs in cell signaling and diseases79.
But it is a pity that the 2-bromopalmitate analogs are not selective
to pharmacologically antagonize one of PATs. Considering the
key role of palmitoylation in the regulation of AMPARs function,
these PATs inhibitors may serve as medicinal approaches to rescue
neuropsychiatric and neurodegenerative diseases in the future.

Regardless of these progresses in research on palmitoylation of
AMPARs, there are many mechanisms on dynamical regulation of
between palmitoylation and depalmitoylation remain elusive.
Therefore what primary challenges lie ahead?

First and foremost, a selective pharmacological antagonist for
PATs is lacking. 2-Bromopalmitate, pervasively used in palmi-
toylation of studies, can block all of PATs. It causes a serious
trouble for our research on a specific type of PAT. Consequently,
it is high time that we found specific and selective pharmacolo-
gical antagonists for PATs which is helpful for the studies on
palmitoylation of AMPARs, even for all of researches about
palmitoylation.

Besides, until now, most studies focused on the physiological
role of palmitoylation, but little reports about the role of
palmitoylation in pathogenesis of neuropsychiatric disorders,
including major depressive disorder, drug addiction and post-
traumatic stress disorder, have been revealed. Surface delivery of
AMPARs plays a principal role in pathogenesis of neuropsychia-
tric disorders; interestingly, palmitoylation regulates AMPARs
trafficking. Therefore, we should pay more attention to the role
of palmitoylation in the neuropsychiatric diseases. A clarification
for the relationship between palmitoylation in the blood and
neuropsychiatric disorders will ultimately translate AMPARs
modifications from laboratory to bedside. Furthermore, palmitoy-
lating/depalmitoylating enzymes associated with AMPAR traffick-
ing might become potential therapeutic targets of neuropsychiatric
disorders in the future.
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