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Abstract: Recurrence and metastasis remain major obstacles in colorectal cancer (CRC) treatment.
Recent studies suggest that a small subpopulation of cells with a self-renewal ability, called cancer
stem-like cells (CSCs), promotes recurrence and metastasis in CRC. Unfortunately, no CSC inhibitor
has been demonstrated to be more effective than existing chemotherapeutic drugs, resulting in a
significant unmet need for effective CRC therapies. In this study, transcriptomic profiling of metastatic
tumors from CRC patients revealed significant upregulation in the Wnt pathway and stemness genes.
Thus, we examined the therapeutic effect of the small-molecule Wnt inhibitor ICG-001 on cancer
stemness and metastasis. The ICG-001 treatment efficiently attenuated self-renewal activity and
metastatic potential. Mechanistically, myeloid ecotropic viral insertion site 1 (MEIS1) was identified
as a target gene of ICG-001 that is transcriptionally regulated by Wnt signaling. A series of functional
analyses revealed that MEIS1 enhanced the CSC behavior and metastatic potential of the CRC cells.
Collectively, our findings suggest that ICG-001 efficiently inhibits CRC stemness and metastasis by
suppressing MEIS1 expression. These results provide a basis for the further clinical investigation of
ICG-001 as a targeted therapy for CSCs, opening a new avenue for the development of novel Wnt
inhibitors for the treatment of CRC metastasis.
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1. Introduction

Colorectal cancer (CRC) is one of the most common malignant neoplasms and a major
cause of cancer-related death worldwide [1]. Although advances have been made in the
progression of chemotherapy and targeted therapy, metastasis remains a major obstacle
in CRC treatment [2]. Cancer stem-like cells (CSCs) can self-renew, differentiate, and
repopulate the entire heterogeneous population of cancer cells, thus accounting for cancer
recurrence and metastasis [3]. Therefore, the development of CSC-targeting drugs could be
a breakthrough in the treatment of CRC metastasis.

CSC-related signaling pathways, such as the Hedgehog, Notch, and Wnt signaling
pathways, have attracted great interest as therapeutic targets for CSCs [4]. Our previous
studies demonstrated that Wnt signaling is critical for the maintenance of CSCs in breast
and liver cancer [5–7]. In CRC, aberrant activation of Wnt signaling is considered an initiat-
ing step in cancer development and is associated with a poor prognosis [8,9]. Moreover,
among the primary CRC cells isolated from patient tumors, the subpopulation with higher
Wnt transcriptional activity exhibited CSC properties and had higher tumor-initiating
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potential when inoculated into mice [10]. These results suggest the potential importance of
Wnt signaling in CRC stemness. However, no Wnt inhibitor has been approved for clinical
use in CRC treatment.

ICG-001 was first identified in a screen of small molecules that inhibited Wnt transcrip-
tional activity in CRC cell lines [11]. Recent studies have provided convincing evidence
that ICG-001 treatment could have benefits for the suppression of tumor growth [12–14].
However, further preclinical study is required to ensure its effectiveness in treating CRC
metastasis. Moreover, the exact molecular mechanism underlying the therapeutic effects of
Wnt inhibition by ICG-001 remains elusive.

In this study, by exploring the transcriptomic profiles of tumor tissues from CRC
patients, we confirmed the aberrant activation of Wnt signaling in metastatic tumors. Thus,
we examined the therapeutic potential and related mechanism of ICG-001 in suppressing
CRC metastasis and CSC properties by conducting multiple functional analyses in vitro
and in vivo. Mechanistically, we identified MEIS1 as a novel target gene of ICG-001 that
promotes CSC properties and the metastasis of CRC. Our findings suggest that ICG-001 is
a potentially useful small-molecule therapeutic for targeting CSCs and may provide a basis
for further clinical evaluation in the treatment of CRC metastasis.

2. Results
2.1. Increased Stemness and Wnt Activation Are Associated with CRC Metastasis

Wnt/β-catenin signaling has shown promising potential as a treatment target in
multiple types of cancer, including CRC [8]. To investigate the relevance of Wnt signaling to
CRC stemness, we enriched the CSC population by a sphere culture [15] using human CRC
cell lines HCT116 and HT29 (Figure 1A). The RT-qPCR revealed significantly increased
expression of stemness-related genes [16–18] in spheres compared with bulk cells (Figure
1A), confirming CSC enrichment by the sphere culture, as determined in our previous
report [9]. Notably, in these CSC-enriched spheres, we observed global increases in the
expression levels of Wnt-related genes (Figure 1A). Next, to confirm this phenomenon,
we performed an immunofluorescence assay to visualize Lymphoid Enhancer Binding
Factor 1 (LEF1), a transcription factor (TF) involved primarily in the activation of Wnt
signaling [19], and OCT4, a stemness TF regulated by Wnt signaling [20]. Consistent with
the above results, immunofluorescence confirmed the concomitant elevation of LEF1 and
OCT4 expression in spheres compared with monolayer-cultured bulk cells (Figure 1B).

Next, to understand the phenotypic alterations occurring in CRC metastasis, we per-
formed a gene set enrichment analysis (GSEA), comparing the transcriptomic footprint of
metastatic CRC against the existing gene sets in MSigDB. First, we obtained the differen-
tially expressed genes (DEGs) in metastasis by comparing the primary tumors of patients
with metastatic (Dukes’ stage D) CRC and patients with early-stage nonmetastatic (Dukes’
stage A) CRC and conducted a GSEA with these DEGs (Figure 1C). Several oncogenic gene
sets were identified and LEF1 target genes were one of the most significantly enriched gene
sets associated with CRC metastasis (Figure 1C). Wnt signature genes showed global trends
of increases in metastatic CRC compared with early-stage nonmetastatic CRC (Figure 1D,
left). In addition, stemness signature genes were enriched in metastatic CRC compared
with early-stage nonmetastatic CRC (Figure 1D, right). These results suggest that the
gene alterations in metastatic CRC mimic the transcriptomic footprint of stemness and
Wnt activation.
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Figure 1. Relevance of Wnt activation and stemness to CRC metastasis. (A) RT−qPCR comparing the global trends in 
stemness- and Wnt-related gene expression between spheres and monolayer bulk cells. The data are presented as a 
heatmap with fold changes and p−values. (B) Immunofluorescence assay confirming the increased LEF1 and OCT4 protein 
levels in spheres. (C) Scheme for GSEA comparing Dukes’ stage A and D tumors from CRC patients. Top 10 oncogenic 
signature gene sets enriched in Dukes’ stage D CRC. (D) GSEA enrichment plots of Wnt signature genes (left) and stem-
ness signature genes (right). 

2.2. Targeting Wnt Signaling with ICG-001 Efficiently Attenuates CRC Stemness and 
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Given the potential importance of aberrant Wnt activation in CRC metastasis, we ex-
amined the therapeutic efficacy of ICG-001, using the malignant human CRC cell line 
HCT116, which exhibits a high tumorigenic potential in vivo [21]. Since ICG-001 inhibits 
the growth of HCT116 cells with an IC50 of 5.57 μM (Figure 2A), we treated cells with ICG-
001 at approximately half of the IC50, i.e., 2.5 μM. RT-qPCR revealed that ICG-001 treat-
ment resulted in global reductions in stemness-related gene expression levels (Figure 2B). 
Next, we conducted a serial sphere formation assay to examine the self-renewal activity 
of CSCs in vitro. During primary sphere formation, ICG-001 treatment resulted in a dose-
dependent reduction in sphere formation (Figure 2C). Then, we isolated single cells from 
spheres, replated them, and cultured them under the sphere culture conditions to generate 
secondary spheres without additional ICG-001 treatment. ICG-001 treatment significantly 
and irreversibly reduced the formation of secondary spheres (Figure 2C), suggesting its 
potent and irreversible inhibitory effect on the self-renewal activity of CSCs. 

Next, we examined the in vivo therapeutic efficacy of ICG-001, using multiple 
HCT116 xenograft models. First, we performed a limiting dilution assay (LDA) to deter-
mine the self-renewal ability of CSCs based on their tumor-initiating potential in vivo [22]. 
HCT116 tumor-bearing mice were treated daily with ICG-001 (100 mg/kg) for 6 weeks. 
Then, single tumor cells were isolated from primary tumors and reinjected into mice with-
out any additional ICG-001 treatment. The ICG-001 treatment significantly decreased the 
incidence of tumor formation in vivo (Figure 2D), suggesting an irreversible reduction in 
the self-renewal ability after ICG-001 treatment. Next, to examine the therapeutic effect of 
ICG-001 on CRC metastasis, we monitored the extent of liver metastasis in a mouse model 
established by a splenic injection of HCT116-luc cells. The ICG-001 treatment significantly 
inhibited metastatic outgrowth to the liver (Figure 2E). In addition, the tumor burden in 
the liver was efficiently reduced by the ICG-001 treatment (Figure 2F). Moreover, we an-
alyzed the gene expression levels in metastatic tumors from mouse livers and confirmed 

Figure 1. Relevance of Wnt activation and stemness to CRC metastasis. (A) RT−qPCR comparing the global trends in
stemness- and Wnt-related gene expression between spheres and monolayer bulk cells. The data are presented as a heatmap
with fold changes and p−values. (B) Immunofluorescence assay confirming the increased LEF1 and OCT4 protein levels in
spheres. (C) Scheme for GSEA comparing Dukes’ stage A and D tumors from CRC patients. Top 10 oncogenic signature
gene sets enriched in Dukes’ stage D CRC. (D) GSEA enrichment plots of Wnt signature genes (left) and stemness signature
genes (right).

2.2. Targeting Wnt Signaling with ICG-001 Efficiently Attenuates CRC Stemness and Metastasis

Given the potential importance of aberrant Wnt activation in CRC metastasis, we
examined the therapeutic efficacy of ICG-001, using the malignant human CRC cell line
HCT116, which exhibits a high tumorigenic potential in vivo [21]. Since ICG-001 inhibits
the growth of HCT116 cells with an IC50 of 5.57 µM (Figure 2A), we treated cells with ICG-
001 at approximately half of the IC50, i.e., 2.5 µM. RT-qPCR revealed that ICG-001 treatment
resulted in global reductions in stemness-related gene expression levels (Figure 2B). Next,
we conducted a serial sphere formation assay to examine the self-renewal activity of
CSCs in vitro. During primary sphere formation, ICG-001 treatment resulted in a dose-
dependent reduction in sphere formation (Figure 2C). Then, we isolated single cells from
spheres, replated them, and cultured them under the sphere culture conditions to generate
secondary spheres without additional ICG-001 treatment. ICG-001 treatment significantly
and irreversibly reduced the formation of secondary spheres (Figure 2C), suggesting its
potent and irreversible inhibitory effect on the self-renewal activity of CSCs.

Next, we examined the in vivo therapeutic efficacy of ICG-001, using multiple HCT116
xenograft models. First, we performed a limiting dilution assay (LDA) to determine the
self-renewal ability of CSCs based on their tumor-initiating potential in vivo [22]. HCT116
tumor-bearing mice were treated daily with ICG-001 (100 mg/kg) for 6 weeks. Then,
single tumor cells were isolated from primary tumors and reinjected into mice without
any additional ICG-001 treatment. The ICG-001 treatment significantly decreased the
incidence of tumor formation in vivo (Figure 2D), suggesting an irreversible reduction in
the self-renewal ability after ICG-001 treatment. Next, to examine the therapeutic effect of
ICG-001 on CRC metastasis, we monitored the extent of liver metastasis in a mouse model
established by a splenic injection of HCT116-luc cells. The ICG-001 treatment significantly
inhibited metastatic outgrowth to the liver (Figure 2E). In addition, the tumor burden
in the liver was efficiently reduced by the ICG-001 treatment (Figure 2F). Moreover, we
analyzed the gene expression levels in metastatic tumors from mouse livers and confirmed
a global reduction in the expression levels of metastasis- and CSC-related genes following
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the ICG-001 treatment (Figure 2G). Collectively, these results suggest that ICG-001 exerts
potent anti-CSC activity and efficiently inhibits CRC metastasis.
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nant CRC using the R2 platform (Figure 3A). By this method, we identified 21 genes up-
regulated in metastatic (Dukes’ stage D) tumors compared with early-stage nonmetastatic 
(Dukes’ stage A) primary tumors (p < 0.005) and 77 genes upregulated in recurrent com-
pared with nonrecurrent tumors (p < 0.005). In parallel, to identify potential Wnt target 
genes, we explored the genes correlated with LEF1 and β-catenin (CTNNB1), the TFs of 
Wnt signaling. We identified 103 genes positively correlated with LEF1 expression (p < 
0.00001) and 65 genes positively correlated with β-catenin expression (p < 0.005). By over-

Figure 2. ICG−001, a Wnt inhibitor, disrupts CRC stemness and metastasis. (A) HCT116 cells were treated with increasing
amounts of ICG−001 for 72 h, followed by MTT cell viability assays; (B) RT−qPCR confirming the global reductions in
stemness-related gene expression levels by ICG−001 treatment (2.5 µM, 72 h). (C) Schematic view of the sphere formation
assay measuring the effect of ICG−001 on the self-renewal activity of CSCs. A bar graph showing the reduction in the
sphere-forming efficiency by ICG-001 treatment. (D) Schematic view (top) and results (bottom) of the LDA measuring the
effect of ICG−001 on the self-renewal ability of CSCs. (E) Schematic view of the mouse model established by splenic injection
to measure the effect of ICG−001 on CRC metastasis. The extent of liver metastasis was monitored by visualizing luciferase
activity and (F) definitive necropsy. Representative images of gross anatomy and H&E-stained liver tissue. (G) RT−qPCR
showing global reductions in metastasis- and CSC-related gene expression levels in ICG−001-treated metastatic colonies
obtained from the livers of mice in the splenic injection model. *, ** and *** indicate p < 0.05, p < 0.01, and p < 0.001,
respectively. CTRL, control; ICG, ICG−001.

2.3. MEIS1 Is a Potential Target Gene of ICG-001, Which Is Associated with CRC Stemness and
Clinical Malignancy

To identify potential target genes of ICG-001 associated with stemness and CRC metas-
tasis, we explored the transcriptomic data of CRC patients. Among the stemness signature
genes (n = 261), we searched for a subset of genes significantly associated with malignant
CRC using the R2 platform (Figure 3A). By this method, we identified 21 genes upregulated
in metastatic (Dukes’ stage D) tumors compared with early-stage nonmetastatic (Dukes’
stage A) primary tumors (p < 0.005) and 77 genes upregulated in recurrent compared
with nonrecurrent tumors (p < 0.005). In parallel, to identify potential Wnt target genes,
we explored the genes correlated with LEF1 and β-catenin (CTNNB1), the TFs of Wnt
signaling. We identified 103 genes positively correlated with LEF1 expression (p < 0.00001)
and 65 genes positively correlated with β-catenin expression (p < 0.005). By overlapping
these four gene sets, we identified six common genes and considered them candidate target
genes for ICG-001 (Figure 3A). For validation, we analyzed the transcriptional changes in
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these candidate genes after the ICG-001 treatment and found that myeloid ecotropic viral
insertion site 1 (MEIS1) showed the most significant reduction upon ICG-001 treatment
in HCT116 cells (Figure 3B). Moreover, MEIS1 expression was significantly decreased by
LEF1 and β-catenin knockdown (Figure 3C), supporting the positive correlation between
MEIS1 and LEF1/β-catenin in tumors of CRC patients (Figure 3D). Moreover, the MEIS1
expression level in primary tumors was significantly associated with the degree of CRC
progression, being elevated in advanced-stage CRC tissues compared with early-stage CRC
tissues (Figure 3E). Furthermore, increased MEIS1 expression was associated with poorer
recurrence-free survival in CRC patients (Figure 3F). In parallel, Western blot analyses have
confirmed the elevation of MEIS1 expression in human CRC cell lines compared with a
normal colon cell line (CCD-18Co, Figure 3G). Collectively, our findings suggest MEIS1
as a potential target gene of ICG-001 treatment associated with cancer stemness and CRC
malignancy.
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Figure 3. Identification and validation of MEIS1 as a potential target gene of ICG−001. (A) Identification of candidate target
genes of ICG−001. Stemness signature genes were filtered by overlapping four gene sets obtained from the transcriptomic
data of tumors from CRC patients. Six candidate genes were upregulated in both recurrent and metastatic tumors and
positively correlated with LEF1 and β-catenin (CTNNB1) expression. (B) RT−qPCR validation performed after ICG−001
treatment (2.5 µM, 72 h). The data are presented as a heatmap with fold changes and p−values. (C) RT−qPCR and Western
blot analyses conducted 48 h after LEF1 or β-catenin knockdown. (D) Gene expression correlations between MEIS1 and
LEF1/β-catenin. (E) MEIS1 transcript levels according to the degree of CRC progression (Dukes’ stage). (F) Kaplan–Meier
survival analyses of CRC patients based on MEIS1 expression. (G) Western blot analyses comparing the MEIS1 protein level
in multiple human cell lines. ** and *** indicate p < 0.01 and p < 0.001, respectively.

2.4. MEIS1 Overexpression Enhances the Self-Renewal Capacity of CSCs and Metastasis of CRC

To confirm the potential relevance of MEIS1 to cancer stemness, we examined the
protein level of MEIS1 in CSC-enriched spheres. The immunofluorescence assay revealed
elevation of the MEIS1 protein level in CSC-enriched spheres compared with monolayer-
cultured bulk cells (Figure 4A). Next, to investigate the functional importance of MEIS1
in CRC stemness, we generated MEIS1-overexpressing (OE) HCT116 cells (Figure 4B).
The RT-qPCR analyses confirmed the global increases in stemness-related gene expression
levels upon MEIS1 overexpression (Figure 4C). Consistent with this result, in the sphere for-
mation assay, MEIS1 overexpression increased the number of spheres formed (Figure 4D),
whereas MEIS1 knockdown decreased the number of spheres formed (Supplementary
Figure S1A,B), indicating that MEIS1 enhances the self-renewal activity of CSCs in vitro.
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To validate the observance of this phenomenon, we compared the self-renewal ability be-
tween wild-type and MEIS1-OE cells based on an LDA. MEIS1-OE cells had a significantly
higher tumorigenic ability when inoculated into mice (Figure 4E), suggesting that MEIS1
is functionally important in the self-renewal activity of CSCs. In parallel, we monitored
liver metastasis in a mouse model established by a splenic injection and found that MEIS1-
OE cells had a greater ability than wild-type cells for metastatic outgrowth to the liver
(Figure 4F,G). Since the mesenchymal phenotype is known to promote cancer stemness and
metastasis [23], we conducted qPCR analyses to measure the expressions of mesenchymal
and epithelial markers in MEIS1-OE cells. As a result, we confirmed the global increase in
mesenchymal gene expression levels and decrease in epithelial gene expression levels upon
MEIS1 overexpression (Supplementary Figure S2). Our finding of a potential link between
MEIS1 and the mesenchymal phenotype supports the conclusions in our manuscript that
MEIS1 promotes cancer stemness (Figure 4E) and metastasis (Figure 4F,G). Collectively,
our data provide the first evidence that MEIS1, a potential target gene of ICG-001, plays a
critical role in CRC stemness and metastasis.
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Figure 4. Functional validation of the effects of MEIS1 overexpression on CRC stemness and metastasis. (A) Immunofluo-
rescence assay showing the increased MEIS1 protein level in spheres compared with bulk cells. (B) Validation of mRNA
and protein levels in MEIS1-OE cells. (C) RT−qPCR confirming the global increases in stemness-related gene expression
levels by MEIS1-OE. (D) Sphere formation assay comparing self-renewal ability between MEIS1-OE and control cells.
(E) In vivo LDA comparing the effect of MEIS1-OE on the self-renewal ability of CSCs. (F,G) Mouse model established by
splenic injection comparing metastatic potential between MEIS1-OE and control cells. The extent of liver metastasis was
monitored by (F) visualizing luciferase activity and (G) definitive necropsy. Representative images of gross anatomy and
H&E-stained liver tissue. ** and *** indicate p < 0.05, p < 0.01, and p < 0.001, respectively. CTRL, control; EV, empty vector;
OE, overexpression.

3. Discussion

This study first demonstrated the potent anti-CSC activity of ICG-001 against CRC
in vitro and in vivo, providing preclinical evidence that ICG-001 exerts potent therapeutic
effects on CRC metastasis. Moreover, through a series of bioinformatics and functional
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analyses, this study is the first to shed light on MEIS1, which promotes CSC properties and
the malignancy of CRC, as a target gene of ICG-001.

Recently, many advances have been made in the development of small-molecule
inhibitors that block the transcriptional activity of Wnt signaling [24]. Several previous
studies have proven that ICG-001 inhibits the growth of CRC cells [11,25]. Beyond previous
studies demonstrating the anti-growth effects of ICG-001 in CRC cells, this study strength-
ens the importance of ICG-001 by providing evidence that ICG-001 treatment efficiently
attenuates CRC metastasis and CSC properties (Figure 2). Interestingly, we confirmed that
the ICG-001-induced decrease in the sphere-forming ability persisted even when ICG-001
was removed from the culture (Figure 2C). This result supports a hypothetical mechanism
by which this irreversible reduction in self-renewal activity might be linked to the reduction
in tumor-initiating potential when ICG-001-treated HCT116 cells were reinoculated into
mice without additional ICG-001 treatment (Figure 2D). In parallel, ICG-001 exhibited
a potent inhibitory effect on liver metastasis in a mouse model established by a splenic
injection by globally suppressing the expression of stemness- and metastasis-related genes
(Figure 2E–G). Together, our findings suggest that ICG-001 is a potentially useful small
molecule for the treatment of CRC metastasis, beyond its inhibitory effect on CRC growth.

Mechanistically, we found that MEIS1, a target gene of ICG-001, facilitated CRC ma-
lignancy by enhancing CSC properties (Figures 3 and 4). MEIS1 is a developmentally
conserved member of the 3-amino-acid loop extension family that can interact with home-
obox proteins as a cofactor [26]. MEIS1 overexpression has been reported in leukemia [27]
and neuroblastoma [28], suggesting its possible correlation with tumorigenesis. This study
newly demonstrates the clinical implications of MEIS1 in CRC progression and recur-
rence (Figure 3), and highlights the functional importance of MEIS1 in CRC stemness and
metastasis (Figure 4). Additionally, our findings suggest a hypothetical mechanism by
which the elevation of MEIS1 expression in CSCs is mediated by the aberrant activation of
Wnt signaling by demonstrating the significant reduction in MEIS1 expression induced by
ICG-001 treatment (Figure 3B) and the knockdown of Wnt-signaling TFs (Figure 3C). Thus,
additional studies to better understand how MEIS1 enhances CSC properties and how we
can block the CSC-promoting function of MEIS1 would be valuable.

In summary, ICG-001 appears to robustly inhibit CRC metastasis and to reduce
CSC properties. Although further studies are needed to reveal the precise mechanisms
underlying its transcriptional and phenotypic activities, ICG-001 seems to broadly inhibit
CRC stemness and metastasis by suppressing MEIS1 expression.

4. Materials and Methods
4.1. Bioinformatics Analysis

A Kaplan–Meier plot was generated with the R2 Platform (https://hgserver1.amc.nl/cgi-
bin/r2/main.cgi, accessed on 15 September 2021), using the Sieber cohort (GSE14333) [29]. The
DEG lists were obtained using Gene Expression Omnibus (GEO, GSE14333) by comparing
Dukes’ stage A (n = 44) and D (n = 61) tumors or by comparing recurrent (n = 50) and
nonrecurrent (n = 176) tumors. The GSEA was conducted as previously described [30]. A
ranked GSEA was conducted with the DEG list using the Java implementation obtained
from MSigDB (http://www.broadinstitue.org/gsea, accessed on 15 September 2021). The
normalized enrichment score (NES) accounts for the differences in gene set sizes. The false
discovery rate (FDR) q-value was used to set the significance threshold.

4.2. Cell Culture and Reagents

The HCT116, HT29, CCD-18Co, and SKOV3 cells were purchased from the Korean
Cell Line Bank (Seoul, Republic of Korea). Cell culture and cell line authentication were per-
formed as previously described [9]. ICG-001 was synthesized by Wuxi AppTec (Shanghai,
China). The MEIS1 vector (EX-P0088-M68) and control empty vector (EX-NEG-M68) were
purchased from GeneCopoeia (Rockville, MD, USA). The generation of luciferase-tagged
HCT116 (HCT116-luc) cells was previously described [31].

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
http://www.broadinstitue.org/gsea
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4.3. Sphere Formation Assay

A sphere formation assay was performed as previously described [5]. The tumor
sphere-forming efficiency (TSFE) was calculated as the number of spheres divided by the
number of seeded cells. The detailed methods are provided in the online supplement.

4.4. Reverse Transcription–Quantitative Polymerase Chain Reaction (RT-qPCR)

The extraction of total RNA and RT-qPCR were performed as previously described [9].
The PCR was conducted using a StepOnePlus Real-Time PCR System (Applied Biosys-
tems, Foster City, CA, USA). The list of PCR primer sequences is provided in the online
supplement.

4.5. Western Blot Analysis

The protein isolation and Western blot analysis were conducted as previously de-
scribed [9]. The detailed methods are provided in the online supplement.

4.6. Immunofluorescence Assay

The immunofluorescence assay was conducted as previously described [9]. The
detailed methods are provided in the online supplement.

4.7. Animal Study

All animal experiments were conducted following approval from the Institutional
Animal Care and Use Committee (IACUC) of Gwangju Institute of Science and Technology
(GIST-2018-049). Male NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (Jackson Laboratory,
Bar arbor, ME, USA) were used. To examine the self-renewal ability of CSCs in vivo, an
LDA was conducted as described in our previous report [9]. To examine the metastatic
potential, a mouse model was established by a splenic injection as described in our previous
report [31]. The detailed methods are provided in the online supplement.

4.8. Small Interfering RNA (siRNA)-Mediated Knockdown

The siRNA-mediated knockdown was conducted as described in a previous report [9].
The list of siRNA sequences is provided in the online supplement. The efficacy tests of
siRNAs for LEF1 and β-catenin were performed as described in our previous reports [8,30]
and the most effective sequence was selected for further experiments.

4.9. Statistical Analysis

All in vitro experiments were conducted in biological triplicate, and all in vivo exper-
iments were conducted with five replicates per group. All statistical data are expressed
as means ± standard deviations (SDs) for in vitro experiments and means ± standard
errors of the mean (SEMs) for in vivo experiments. Statistical differences were determined
using Student’s t-test for comparisons between two groups or one-way analysis of variance
(ANOVA) with Dunnett’s multiple comparisons test for comparisons among three or more
groups. The log-rank test was used for Kaplan–Meier analysis. The asterisks indicate
statistical significance: *, ** and *** indicate p < 0.05, p < 0.01, and p < 0.001, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222413413/s1.
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