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Abstract

We study continuous-time multi-agent models, where agents interact according to a network

topology. At any point in time, each agent occupies a specific local node state. Agents

change their state at random through interactions with neighboring agents. The time until a

transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) sim-

ulations are often the preferred—sometimes the only feasible—approach to study the com-

plex emerging dynamical patterns of such systems. However, each simulation run comes

with high computational costs mostly due to updating the instantaneous rates of intercon-

nected agents after each transition. This work proposes a stochastic rejection-based, event-

driven simulation algorithm that scales extremely well with the size and connectivity of the

underlying contact network and produces statistically correct samples. We demonstrate the

effectiveness of our method on different information spreading models.

Introduction

Networks provide a general language for the representation of interconnected systems.

Computational modeling of stochastic dynamical processes happening on top of network

typologies is a thriving research area [1–3]. Here, we consider continuous-time spreading

dynamics on networks. That is, at each point in time all agents (i.e. nodes) occupy a specific

local state (resp. compartment, internal state, or node state). The node states change over time

but the underlying contact network which specifies the connectivity remains the same.

The most common framework for such processes is the Susceptible—Infected—Suscepti-

ble (SIS) model and its many variants [4–6]. In the SIS model, agents are either susceptible

(healthy) or infected. Infected agents can recover (become susceptible again) or infect neigh-

boring susceptible agents. SIS-type diffusion models have proven to be useful for the analysis,

prediction, and reconstruction of opinion- and meme-spreading in online social networks [7,

8] as well as for the propagation of neural activity [9, 10], and the spread of malware [11] and

blackouts in financial institutions [12, 13].

Agents change their state either by interacting with another agent (e.g., they become

infected) or spontaneously and independently from their neighbors (e.g., when they recover).

We call the state change of an agent an event. Previous work focused primarily on so-called
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Markovian models, in which the probability of an agent changing its state in the next infinitesi-

mal time unit is constant (that is, independent of the time the agent has already spent in its

current state). We call these agents memoryless, because they don’t “remember” how much

time they have already spend in their internal state.

As a consequence of the memoryless property, the time until an agent changes its local state

follows an exponential distribution. The exponential distribution is parameterized by some

rate l 2 R�0. This rate can vary for different types of events (recovery, infection, etc.) and

depend on the direct neighborhood.

It is long known that it is unrealistic to assume exponentially distributed inter-event times

in many real-world scenarios. As empirical results show, this holds for instance for the spread

of epidemics [14–18], opinions in online social networks [19, 20], and neural spike trains [21].

Assuming inter-event times that can follow arbitrary distributions complicates the analysis of

such processes. Often Monte-Carlo simulations are the only feasible way to investigate the

emerging dynamics, but even these suffer from high computational costs. Specifically, they

often scale badly with the size of the contact networks.

Recently, Masuda and Rocha introduced the Laplace-Gillespie algorithm (LGA) for the sim-

ulation of non-Markovian dynamics on networks in [22]. The method is based on an earlier

approach, the non-Markovian Gillespie algorithm (nMGA) by Boguná et al [23]. Masuda and

Rocha aim at minimizing the computational burden of sampling inter-event times. However,

both methods, nMGA and LGA, require a computationally expensive updating of an agent’s

neighborhood in each simulation step. We explain both methods in more detail later. For Mar-

kovian spreading models, rejection-based simulation was recently successfully applied to over-

come these limitations [24–26].

Contribution

ChangeColor This work is an extension of [26] in terms of theoretical analysis and experimen-

tal evaluation of our method. Specifically, we provide an additional case study, add a correct-

ness and runtime analysis, and investigate the limitations of our method. Moreover, we

provide additional examples of models and of commonly used inter-event time densities. We

also compare our method with an additional baseline.

Generally speaking, this work extends the idea of rejection-based simulation to networked

systems that admit non-Markovian behavior. We propose RED, a rejection-based, event-

driven simulation approach. RED is based on three main ideas:

1. We express the distributions of inter-event times as time-varying instantaneous rates

(referred to as intensity or rate functions).

2. We sample inter-event times based on an over-approximation of the intensity function,

which we counter-balance by using a rejection step.

3. We utilize a priority (resp. event) queue to decide which agent fires next.

The combination of these ideas allows to reduce the computational costs of each simulation

step. More precisely, if an agent transitions from one local state to another one, no update of

neighboring agents is required, even though their instantaneous rates might change as a result

of the event. In short, the reason that it is not necessary to update an agent if its neighborhood

changes, is that (by using the rate over-approximation) we always assume the “worst-case”

behavior of an agent. If a neighboring agent is updated, the (actual) instantaneous rate of an

agent might change but it will never exceed the rate over-approximation, which was used to

PLOS ONE Efficient simulation of non-Markovian dynamics on complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0241394 October 30, 2020 2 / 18

Funding: This work was partly funded by the

German Research Foundation (DFG) under grant

SFB 1223. There was no additional external funding

received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0241394


sample the firing time. Hence, the sampled firing time is always an under-approximation of

the true one, regardless of what happens to adjacent nodes.

Naturally, this comes with a cost, in our case rejection (or null) events. Rejection events

counter-balance the over-approximation of the instantaneous rate. The larger the difference

between actual rate and over-approximated rate, the more rejection events will happen. Rejec-

tion events and the over-approximated rates complement each other and, in combination,

yield a statistically correct (i.e. exact) algorithm. Utilizing a priority queue to order prospective

events, renders the computational costs of each rejection step extremely small. We provide

numerical results showing the efficiency of our method. In particular, we investigate how the

runtime of our methods scales with the size and the connectivity of the contact network.

Multi-agent model

ChangeColor Here we introduce our formalism for agent-based dynamics on complex net-

works. Our goal is to have a framework that is as expressive as possible while remaining intui-

tive. In particular, we make the following assumptions:

• The state transitions of an agent can depend on its whole (direct) neighborhood in a non-lin-

ear way.

• The time delay until an agent changes its state and the choice of a successor state can

follow an arbitrary probability distribution whose parameterization depends on the agents’

neighborhood.

• The number of local states can be arbitrarily high so that they are expressive enough to

encode all information of interest.

• Individual nodes and edges may carry specific information that the model may take into

account (e.g., some agents might be more reactive than others or connections might vary in

strength).

With the above assumptions, it is possible to describe a wide range of epidemic-type appli-

cations (SIS, SIR(S), threshold and voter model, etc.) as well as inter-event times following

arbitrary distributions. We will also ensure that the framework is easily adaptable (e.g. to

directed or temporal networks).

Next, we specify how, at any given point in time, a (global) network state is defined. After

that, we explain how the dynamics can be formalized, that is, how agents change under the

influence of two functions: ϕ, for choosing a time of an agent’s state change, and ψ, for choos-

ing a local successor state. Note that, instead of explicitly using a probability density function

(PDF) to encode the firing times of agents, we formulate so-called intensity functions. They

have the same expressiveness but are more intuitive to use and easier to parametrize on the

neighborhood of an agent. An intensity function determines how likely an agent fires in the

following infinitesimal time interval. We will discuss in detail intensity functions in a dedi-

cated section below.

Let G ¼ ðV; EÞ be an undirected finite graph called contact network specifying the connec-

tivity of the system. We assume that G is strongly connected. That is, all nodes are reachable

from all other nodes. Each node v 2 V is an agent.

Network state

At any given time point, the current (global) state of a network G is described by two

functions:
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• S : V ! S assigns to each agent v a local state SðvÞ 2 S, where S is a finite set of local states

(e.g., S ¼ fS;Ig for the SIS model);

• R : V ! R�0, describes the residence time of each agent (the time elapsed since the agent

changed its local state the last time).

We say an agent fires when it transitions from one local state to another. The time between

two firings of an agent is denoted as inter-event time. Moreover, we refer to the remaining

time until it fires as its time delay. The firing time depends on the direct neighborhood of an

agent. At any point in time, the neighborhood state M(v) of an agent v is a set of triplets con-

taining the local states and residence times of all neighboring agents and the agents them-

selves:

MðvÞ ¼ fðSðv0Þ;Rðv0Þ; v0Þ j ðv; v0Þ 2 Eg :

We use M to denote the set of all possible neighborhood-states in a given model.

Network dynamics

Next, we specify how the network state evolves over time. Therefore, we assign to each agent

v 2 V two functions ϕv and ψv. ϕv governs when v fires and ψv defines its successor state. Both

functions depend on the current state (first parameter), the residence time of of v (second

parameter), and the neighborhood M(v) (third parameter).

• �v : S � R�0 �M! R�0 defines the instantaneous rate of v. If λ = ϕv(S(v), R(v), M(v)),

then the probability that v fires in the next infinitesimal time interval tΔ is λtΔ (assuming

tΔ! 0);

• cv : S � R�0 �M! PS determines the successor state when a transition occurs. More pre-

cisely, it determines for each local state the probability to be the successor state. Here, PS

denotes the set of all probability distributions over S. Hence, if p = ψv(S(v), R(v), M(v)), then

—assuming agent v fires—the subsequent local state of v is s 2 S with probability p(s).

Note that we assume that these functions have no pathological behavior. That is, we exclude

the cases in which ϕv is defined so that it is not integrable or where some intensity function ϕv
would cause an infinite amount of simulation steps in finite time (see Examples).

A multi-agent network model is fully specified by a tuple (G; S; {ϕv}, {ψv}, S0), where S0

denotes a function that assigns to each agent its initial local state.

Examples

Standard Markovian SIS model. Consider the classical SIS model with S ¼ fS;Ig. ϕv
and ψv are the same for all agents:

�vðs; t;mÞ ¼

cr if s ¼ I

ci
X

s0;t0;v02m

1
I
ðs0Þ if s ¼ S

8
><

>:
cvðs; t;mÞ ¼

1
S

if s ¼ I

1
I

if s ¼ S

(

Here, ci; cr 2 R�0 are the infection and recovery rate constants. The infection rate is propor-

tional to the number of infected neighbors while the recovery rate is independent from the

neighborhood. Moreover, 1s : S ! f0; 1g is such that 1sðs0Þ is one if s = s0 and zero otherwise.

The model is Markovian (w.r.t. all local states) as neither ϕv nor ψv depends on the residence

time of any agent. As in most binary state models, ψv is deterministic in the sense that an agent

in state I always transforms to S with probability one and vice versa.
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Complex cascade model. ChangeColor Consider a modification of the independent cas-

cade model [27] with local states susceptible (S), infected (I), and immune/removed (R).

Infected nodes try to infect their susceptible neighbors. The infection attempts can be success-

ful (turning the neighbor from S to I) or unsuccessful (turning the neighbor from S to R).

Agents that are infected or immune remain in these states.

This model can be used to describe the propagation of some type of information on social

media. Infected agents can be seen as having shared (e.g. re-tweeted) the information. A user

exposed to the information decides right away if she considers it to be worth sharing. Seeing

the information multiple times or from multiple sources does not increase the chances of shar-

ing it (i.e. becoming infected). However, multiple infected neighbors might decrease the time

until the information is perceived by an agent. Again, ϕv and ψv are the same for all agents. We

define the instantaneous rate

�vðs; t;mÞ ¼
e� tdist if s ¼ S and

X

s0 ;t0 ;v02m

1
I
ðs0Þ > 0

0 otherwise:

8
<

:

Here, tdist denotes the time elapsed since the latest infected neighbor became infected. Thus,

the intensity at which infected agents “attack” their neighbors decreases exponentially and

only the most recently infected neighbor counts. Moreover, the next internal state of an agent

is selected according to the distribution:

cvðs; t;mÞ ¼ fI! pi; R! 1 � pi; S! 0g ;

where pi 2 [0, 1] denotes the infection probability. This example is both: non-Markovian,

because the residence times of the neighbors influence the rate, and non-linear, because the

individual effects from neighboring agents do not simply add up.

Pathological behavior. Assume two connected agents. Agent A always stays in state S.

Agent B switches between states I1 and I2. The frequency at which B alternates increases with

the residence time of A (denoted by R(A)). Let the rate to jump from I1 to I2 (and vice versa)

be 1

1� RðAÞ for R(A)<1. Assume that we want to perform a simulation for the time interval [0, 1].

It is easy to see that the instantaneous rate of B approaches infinity and the number of simula-

tion steps (state transitions) will not converge. Generally speaking, pathological behavior may

occur if ϕv(s, t, m) approaches infinity with growing R(v0) (within the simulation time), where

v0 is a neighbor of v. However, it is allowed that ϕv(s, t, m) approaches infinity with growing

t (t = R(v)). Then no pathological behavior can occur because of the reset of R(v) with each

state transition of v.

Semantics

We specify the semantics of a multi-agent model in a generative matter. That is, we describe a

stochastic simulation algorithm that generates trajectories of the system. Recall that the net-

work state is specified by the mappings S and R. Let tglobal denote the global simulation time.

The simulation is based on a race condition among all agents: each agent picks a random

firing time, but only the one with the shortest time delay wins and actually fires. Because each

agent only generates a potential/proposed time delay, we might refer to this sampled value as

time delay candidate. The algorithm starts by initializing the global clock tglobal = 0 and setting

R(v) = 0 for all v 2 V. The algorithm performs simulation steps until a predefined time horizon

is reached. Each simulation step contains the following sub-steps:
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1. Generate a random time delay candidate tv for each agent v. Identify the agent v0 with the

smallest time delay tv0.

2. Select the successor state s0 for v0 using ψv0(S(v0), R(v0)+ tv0, M(v0)) and set S(v0) = s0. Set R(v0)
= 0 and R(v) = R(v)+ tv0 for all v 6¼ v0.

3. Set tglobal = tglobal+ tv0 and go to Line 1.

This simulation approach is however—while being intuitive—very inefficient. Our

approach, RED, will be statistically equivalent while being much faster.

Generating time delays. Recall that, in this manuscript, we encode inter-event time distri-

butions using intensity functions. The intensity function of agent v is used to generate time

delay candidates which then compete in a race-condition (the shortest time delay “wins”). The

relationship between time delays and intensities is further discussed in the next section.

There are several ways to generate a time delay candidate for an agent v. In one way or

another, we have to sample from an exponential distribution with a time-varying rate parame-

ter. In principle, there are many different possible methods for this. For an overview, we refer

to [28–31].

An obvious way is to turn the intensity function induced by ϕv into a PDF (cf. Fig 1) and

sample from it using inverse transform sampling. A more direct way is to perform numerical

integration on ϕv assuming the neighborhood of v stays the same. Let us, therefore, define for

each v the effective rate λv(�) which is the evolution of the intensity ϕv starting from the current

time point, assuming no changes in the neighboring agents:

lvðtDÞ ¼ �nðSðnÞ;RðnÞ þ tD;MtD
ðnÞÞ;

where MtD
ðnÞ ¼ fðSðn0Þ;Rðn0Þ þ tDÞ j n; n0 2 Eg :

Here, tΔ denotes the time increase of the algorithm.

The effective rate makes it possible to sample the time delay tv after which agent v fires (if it

wins the race), using the inversion transform method. First, we sample an exponentially dis-

tributed random variate x with rate 1, then we integrate λv(�) to find tv. Formally, tv is chosen

such that the equation

Z tv

0

lvðtDÞdtD ¼ x ð1Þ

Fig 1. (a-c) Sampling event times with an intensity function
1t2½1;2�

2� t . (a) Generate a random variate from the exponential distribution with rate λ = 1, the

sample here is 0.69. (b) We integrate the intensity function until the area is 0.69, here tn = 1.5. (c) This is the intensity function corresponding to the

uniform distribution in gðtÞ ¼ 1t2½1;2�. (d) Rejection sampling example: Sampling tv from a time-varying intensity function λ(t) = sin2(2t) using an

upper-bound of c = 1. Two iterations are shown with rejection probabilities shown in red. After one rejection step, the method accepts in the second

iteration and returns tv = 1.3.

https://doi.org/10.1371/journal.pone.0241394.g001
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is satisfied. The idea is the following: We first sample a random variate x assuming a fixed rate

(intensity function) of 1. The corresponding density is exp(−x), leading to P(X> x) = exp(−x)

(sometimes referred to as survival function). Next, we consider the “real” time-varying inten-

sity function λv(�) and choose [0, tv] such that the area under the time-varying intensity func-

tion is equal to x (cf. Eq (1)). Hence,

PðX > xÞ ¼ exp ð� xÞ ¼ exp �

Z tv

0

lvðtDÞdtD

� �

¼ PðY > tvÞ

and tv is thus distributed according to the time-varying rate λv(�). Intuitively, by sampling the

integral, we apriori define the number of infinitesimal time-steps we take until the agent will

eventually fire. This number naturally depends on the rate function. If the rate decreases, more

steps will be taken. We refer the reader to [29] for a proof.

An alternative approach to sample time delays is to use rejection sampling (this is not the

rejection sampling which is the key of the RED method though) which is illustrated in Fig 1d.

Assume that we have c 2 R�0 with λv(tΔ)�c for all tΔ. We start with tv = 0. Next, we sample a

random variate t0v which is exponentially distributed with rate c. Next, we set tv ¼ tv þ t0v and

accept tv with probability
lvðtvÞ
c . Otherwise, we reject t0v and repeat the process. If a reasonably

tight over-approximation can be found, rejection sampling is much faster than numerical inte-

gration. The correctness can be shown similarly to the correctness of RED. That is, one creates

a complementing- (or shadow-process) which accounts for the difference between the upper-

bound c and λ(t). In total, the null events and the complementing process cancel out, yielding

statistically correct samples of tv.

Intensities and inter-event times

In our framework, the distribution of inter-event times is expressed using intensity functions.

This is advantageous for the combination with rejection sampling. Here, we want to further

establish the relationship between intensity functions and probability densities. Let us assume

that at a given time point and for an agent v, the probability density that the agent fires after

exactly tD 2 R�0 time units is given by a PDF γ(tΔ). Leveraging the theory of renewal processes

[31–33], we find the relationship

lðtDÞ ¼
gðtDÞ

1 �
R tD

0
gðt0Þdt0

and gðtDÞ ¼ lðtDÞe
�
R tD

0
lðyÞdy :

We set λ(tΔ) to zero if the denominator is zero. Using this equation, we can derive intensity

functions from any given inter-event time distribution (e.g., uniform, log-normal, gamma,

power-law, etc.). In cases where it is not possible to derive λ(�) analytically, we can still com-

pute it numerically. Some examples of λ(�) for common PDFs are shown in Fig 2.

All density functions of time delays can be expressed as time-varying rates (i.e. intensities).

However, only intensity functions with an infinite integral can be expressed as PDF. If
R1

0
lðtÞdt is finite, the process might, with positive probability, not fire at all. This follows

directly from Eq 1. The sampled reference area x can be arbitrarily large, if it is larger than
R1

0
lðtÞdt the process does not fire. For instance, consider an intensity function λ(t) which is 1

if t 2 [0, 1] and zero otherwise. If x> 1, the process reaches t = 1 (without having already

fired) and will also not fire while t> 1.

PLOS ONE Efficient simulation of non-Markovian dynamics on complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0241394 October 30, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0241394


Previous simulation approaches

Most recent work on non-Markovian dynamics focuses on formal models of such processes

and their analysis [34–38]. Research has mostly focused on how specific distributions (e.g. uni-

formly distributed curing times) alter the behavior of the epidemic spreading, for instance, the

epidemic threshold (see [3, 4] for an overview). Most of this work is, however, rather limited

in scope, in the sense that only certain distributions or only networks with infinite nodes or

only the epidemic threshold but not the full emerging dynamics are considered. Even though

substantial effort was dedicated to the usage of rejection sampling in the context of Markovian

stochastic processes on networks [24, 25, 39], only a few approaches are known to us that are

dedicated to non-Markovian dynamics [22, 23].

Here, we shortly summarize the relevant algorithms in order to lay the grounds for our

RED algorithm which was first introduced in [26]. We present an adaptation of the classical

Gillespie method for networked processes as well as the non-Markovian Gillespie algorithm

(nMGA) and its adaptation, the Laplace-Gillespie algorithm (LGA). To keep this contribution

focused, we discuss all algorithms only for use in networked systems and within the notation

of this paper.

Non-Markovian Gillespie algorithm

Boguná et al. develop a modification of the Gillespie algorithm for non-Markovian systems,

nMGA [23]. Their method is statistically exact but computationally expensive. Conceptually,

nMGA is similar to the baseline in Section Semantics but computes the time delays using so-

called survival functions which simplifies the computation of the minimal time delay over all

agents. An agent’s survival function describes the probability that the time until its firing is

larger than a certain threshold t (for all t). The joint survival function of all agents determines

the probability that all time delays are larger than t. The joint survival function can then be

used to sample the next event time.

Unfortunately, in nMGA, it is necessary to iterate over all agents in each simulation step in

order to construct the joint survival function. The authors also propose a fast approximation.

Therefore, only the current instantaneous rate (at the beginning of each step) is used, and one

assumes that all instantaneous rates remain constant until the next event. This is reasonable

when the number of agents is very high because, if the number of agents approaches infinity,

the time delay of the fastest agent approaches zero.

Fig 2. Schematic illustration of intensity functions and inter-event time densities. Examples of the relationship between common PDFs for inter-

event times and their corresponding intensity functions. All functions are only defined on t� 0.

https://doi.org/10.1371/journal.pone.0241394.g002
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Laplace-Gillespie algorithm

Masuda and Rocha have introduced the Laplace-Gillespie algorithm (LGA) in [22]. The method

aims at reducing the computational costs of finding the next event time compared to nMGA.

They only consider inter-event time densities that can be expressed as a continuous mixture of

exponentials:

gvðtDÞ ¼
Z 1

0

pvðlÞle
� ltDdl : ð2Þ

Here, pv is a PDF over the rate lv 2 R�0. The restriction of inter-event times limits the scope

of the method to survival functions which are completely monotone [22]. The advantage is that

we can sample the time delay tv of an agent v by first sampling λv according to pv and then sam-

pling from an exponential distribution with rate λv. That is, tv = −ln u/λ using for a uniformly

(in (0, 1)) distributed random variate u.

Our method

In this section, we propose the RED algorithm for the generation of statistically correct trajec-

tories of non-Markovian spreading models on networks. The main idea is to use rejection

sampling to reduce the computational cost of each simulation step. Specifically, when an agent

changes its local state, we make it obsolete to update the rates of the agent’s neighbors.

Rate over-approximation

Recall that we use the effective rate λv(�) to express how the instantaneous rate of v changes

over time, assuming that no neighboring agent changes its state (colloquially, we extrapolate

the rate into the future). A key ingredient of our approach is the construction of l̂vð�Þ which

upper-bounds the instantaneous rate of v, taking into consideration all possible state changes

of v’s neighboring agents. That is, at all times l̂vðtDÞ is larger than (or equal to) λv(tΔ) while we

allow that arbitrary state changes of neighbors occur at arbitrary times in the future. In other

words, l̂vð�Þ upper-bounds λv(�) even when we have to re-compute λv(�) due to a changing

neighborhood. Formally, the upper-bound always satisfies:

l̂vðtDÞ � sup
M02Mv;tD

�nðSðnÞ;RðnÞ þ tD;M
0Þ; ð3Þ

where Mv;tD
denotes the set of reachable neighborhoods (that is, with positive probability) of

agent v after tΔ time units. Sometimes l̂vð�Þ is referred to as a dominator of λv(�) [30].

Note that it is not feasible to compute the over-approximation algorithmically, so we derive

it analytically. Upper-bounds can be constant or dependent on time. For multi-agent models

(with a finite number of local states) time-dependent upper-bound exists for all practically rel-

evant intensity functions since we can derive the maximal instantaneous rate w.r.t. all reach-

able neighborhood states which is typically finite except for some pathological cases (cf.

Section Limitations).

Example. How does one find an over-approximation and why does it eliminate the need

to update an agent’s neighborhood? Consider again the Markovian SIS example from earlier.

The recovery of an infected agent does not depend on its neighborhood. Hence, the rate is

always cr, which is also a trivial upper-bound. The rate at which a susceptible agent becomes

infected is given by the ci times “number of infected neighbors”. This means that the instanta-

neous infection rate of v can be bounded by l̂vðtDÞ ¼ kvci where kv is the degree (number of
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neighbors) of v. Note that this upper-bound does not depend on tΔ. When we use this upper-

bound to sample the time delay candidate of an agent, this time point will always be an under-

approximation. When a neighbor changes (e.g., becomes infected) the under-approximation

remains valid.

However, consider for instance a recovery time that is uniformly distributed on [1, 2]. In

this case, λv(�) approaches infinity (cf. Fig 1b) making a constant upper-bound impossible

(even without considering any changes in the neighborhood).

The RED algorithm

As input, our algorithm takes a multi-agent model ðG;S; f�vg; fcvg; S0Þ and corresponding

upper-bounds fl̂vg. As output, the method produces statistically exact trajectories (samples)

following the semantics introduced earlier. RED is based on two main data structures:

Labeled graph. A graph represents the contact network. In each simulation step, each

agent (node) v is annotated with its current state S(v) and T(v), the time point of its last state

change.

Event queue. The event queue stores all (potential) future events (i.e. firings). An event is

encoded as a tuple ðv; m̂; t̂ vÞ, where v is the agent that wants to fire, t̂ v the prospective absolute

time point of firing, and m̂ 2 R�0 is an over-approximation of the true effective rate (at time

point t̂ v). The queue is sorted according to t̂ v.
A global clock, tglobal, keeps track of the elapsed time since the simulation started. We ini-

tialize the simulation by setting tglobal = 0 and generating one event per agent. Using T(v) (as

in Line 2) is a viable alternative to using R(v) in order to encode residence times since R(v) =

tglobal − T(v). Practically T(v) is more convenient, as it avoids the explicit updates of R(v) for all

agents after any event happens. Again, we simulate until some stopping criterion is fulfilled.

Each simulation step contains the sub-steps:

1. Take the first event ðv; m̂; t̂ vÞ from the event queue and update tglobal ¼ t̂ v.

2. Evaluate the true instantaneous rate μ = ϕv(S(v), tglobal − T(v), M(v)) of v at the current sys-

tem state.

3. With probability 1 � m

m̂
, reject the firing and go to Line 5.

4. Randomly choose the next state s0 of v according to the distribution ψv(S(v), tglobal − T(v), M
(v)). If S(v)6¼s0: set S(v) = s0 and T(v) = tglobal.

5. Generate a new event for agent v and push it to the event queue.

6. Go to Line 1.

The main difference to previous approaches is that traditionally the rate has to be updated

for all neighbors of a firing agent. In RED only the rate of the firing agent has to be updated.

Event generation. Here, we specify how the event generation in Line 5 is done. We sam-

ple a random time delay tv according to l̂vð�Þ and set t̂ v ¼ tglobal þ tv (because the event con-

tains the absolute time). To sample tv according to the over-approximated rate, we either use

the numerical integration of Eq (1) or sample directly from an exponential distribution which

upper-bounds the intensity function (cf. Fig 1d). Finally, we set m̂ ¼ l̂vðtvÞ. Alternatively,

when appropriate for l̂vðtÞ, we can even use an LGA-like approach to sample tv (and also set

m̂ ¼ l̂vðtvÞ) [23].
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Asymptotic time complexity

ChangeColor Here, we discuss how the runtime of RED scales with the size of the underlying

contact network (and the number of agents). Assume that a binary heap is used to implement

the event queue and that the graph structure is implemented using a hashmap. Each step starts

by popping an element from the queue which has constant time complexity. Next, we compute

μ. Therefore, we have to look up all neighbors of v in the graph structure and iterate over

them. We also have to look up all states and residence times. This step has linear time-com-

plexity in the number of neighbors. More precisely, lookups in the hashmaps have constant

time-complexity on average and are linear in the number of agents in the worst case. Comput-

ing the rejection probability has constant time complexity. When no rejection events takes

place, we update S and T. Again, this has constant time-complexity on average. Generating a

new event does not depend on the neighborhood of an agent and has, therefore, constant

time-complexity. Note that this step can still be somewhat expensive when it requires integra-

tion to sample te but not in an asymptotic sense. Thus, a step in the simulation is linear in the

number of neighbors of the agent under consideration.

In contrast, previous methods require that after each update, the rate of each neighbor v0 is
re-computed. The rate of v0, however, depends on the whole neighborhood of v0. Hence, it is

necessary to iterate over all neighbors v@ of every single neighbor v0 of v.

Correctness

ChangeColor The correctness of RED can be shown similarly to [24]. Here, we provide a

proof-sketch. First, consider the rejection-free version of the algorithm:

1. Take the first event ðv; m; t̂ vÞ from the event queue and update tglobal ¼ t̂ v.

2. Randomly choose the next state s0 of v according to the distribution ψv https://www.

overleaf.com/project/5e26f009c28b95000160ad41 (S(v), tglobal − T(v), M(v)).

3. If S(v) = s0: Generate a new event for agent v, push it to the event queue, and go to Line 1
(no state transition of v).

4. Otherwise set S(v) = s0 and generate a new event for agent v and push it to the event queue.

5. For each neighbor v0 of v: Remove the event corresponding to v0 from the queue and gener-

ate a new event (taking the new state of v into account).

6. Go to Line 1.

Rejection events are not necessary for this version of the algorithm because all events in the

queue are generated by the “real” rate and are therefore consistent with the current system

state. In other words, the rejection probability would always be zero. It is easy to see that the

rejection-free version is a direct event-driven implementation of the naïve simulation algo-

rithm which was introduced in the Semantics Section. The correspondence between Gillespie-

approaches and event-driven simulations is exploited in the literature, for instance in [4].

Thus, it is sufficient to show that the above rejection-free simulation and RED are statistically

equivalent.

First, note that it is possible to include self-loop events to our model without changing the

underlying dynamics (resp. statistical properties). These are events in which an agent fires but

transitions into the same internal state it already occupies. Until now, we did not allow such

self-loop behavior. In the algorithm, self-loop events correspond to the condition S(v) = s0 in
the third step. Such events do not alter the network state and, therefore, do not change the
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statistical properties of the generated trajectories. The key idea is now to change ϕv and ψv to

�̂v and ĉv, respectively, such that the events related to �̂v and ĉv also admit self-loop events

with a certain probability. Specifically, self-loops have the same probability as rejection events

in the RED method but, apart from that, �̂v and ĉv admit the same behavior as ϕv and ψv. For-

mally, this is achieved by using so-called shadow-processes [24, 39]; sometimes also referred to

as complementing process [30]. A shadow-process does not change the state of the correspond-

ing agent but still fires at a certain rate. In the end, we can interpret the rejection events not as

rejections, but as the statistically necessary application of the shadow-process.

We define the rate of the shadow-process, denoted by ~l, to be the difference between the

rate over-approximation and the true rate. For all v, t, this gives rise to the invariance:

l̂vðtÞ ¼ lvðtÞ þ ~lvðtÞ :

We define ĉv such that it includes the shadow-process.

The only thing remaining is to define �̂v such that the shadow-process does not influence

the system state. Therefore, we simply trigger a null event (or self-loop) with the probability

that is proportional to how much of �̂v is induced by the shadow-process. Hence, the probabil-

ity for a null event is
~�v
�̂v

. Consequently,

ĉvðs; t;mÞ ¼ p where p is defined such that :

pðsÞ ¼
~�v

�̂v

; pðs0Þ ¼ 1 �
~�v

�̂v

 !

cvðs
0; t;mÞ ð8s0 6¼ sÞ

W.l.o.g., we assume that the original system has no inherent self-loops. In summary, the

model specification with and without the shadow-process are equivalent (i.e., admit the same

dynamics). This is because it has no actual effect on the system, all the additional reactivity is

compensated by the null event. Secondly, simulating the rejection-free algorithm including the

shadow-process directly yields RED. In particular, the rejections events have the same likeli-

hood as the shadow-process being chosen in ĉ.

Limitations

The practical and theoretical applicability of our approach depends on how well the intensity

function of an agent can be over-approximated. The larger the difference between λ(�) and

l̂ð�Þ becomes, the more rejection events occur and the slower our method becomes. In general,

since rejection events are extremely cheap, it is not a problem for our method when most of

the events in the event queue will be rejected.

However, it is easy to think of examples where RED will perform exceptionally bad. For

instance, consider an SIS-type model, but nodes can only become infected if exactly half of

their neighbors are infected. In this case, the over-approximation would assume that for all

susceptible nodes this is always the case, causing too many rejection events. Likewise, the

problem can also occur in the time domain. Consider the case that infected nodes only infect

their susceptible neighbors in the first tΔ time-units of their infection with rate λ, where tΔ is

extremely short (e.g. 0.001) and λ is extremely high (e.g. 1000). Given a susceptible node, we

do not know how many of its neighbors will be newly infected in the future, so we have to

assume that all neighbors are infectious all of the time.

Similarly, in some cases, it might not be possible to find a theoretical upper-bound for the

rate at all. Consider the case where an infected agent with residence time t attacks its neighbors
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at rate |−log(t)| (which converges to infinity for t! 0). This still gives rise to a well-defined

stochastic process because the integration of |−log(t)| leads to non-zero inter-event times and,

therefore, it is possible to sample inter-event times even though the rate starts at infinity. How-

ever, we cannot build an upper-bound because, again, we have to assume that all neighbors of

a susceptible node are always newly infected.

There are also more practical examples like networked (self-exiting) Hawkes processes [40].

Here, the number of firings of a neighbor increases the instantaneous rate of an agent. As it is

not possible to bound (in advance) the number of times the neighbors fire (at least not without

additional assumptions), it is not possible to construct an upper-bound for the intensity func-

tion for any future point in time.

Case studies

We demonstrate the effectiveness of RED on three case studies. We generate synthetic graphs

to use as contact networks. Therefore, we use the stochastic configuration model where the

degree distribution is specified by a truncated power-law [41]. That is, for a degree k, P(k)/k−β

for 3 � k � jN j. We use β 2 {2, 2.5} (a smaller value for β leads to to a larger average degree

and higher connectivity). RED is implemented in Julia and publicly available (github.com/
gerritgr/non-markovian-simulation). The evaluation was performed on a 2017

MacBook Pro with a 3.1 GHz Intel Core i5 CPU. Runtime results for different models are

shown in Fig 3. To compute the step-wise CPU time, we completely ignore the rejection steps

to not give our method an advantage. We remark that RED and Baseline are both statisti-

cally correct, meaning that they sample from the correct distribution in the sense of the model

semantics, while nMGA provides an approximation.

Baseline

We compare the performance of RED with a baseline-algorithm and and an nMGA-type

approach. As a baseline, we use the rejection-free variant of the algorithm where, when an

agent fires, all of its neighbors are updated (described in more detail in Section Correctness).

In the Voter-model the baseline uses an LGA-type approach to sample inter-event times (fol-

lowing Eq 2). In the other experiments we sample inter-event times using the rejection-based

approach from Fig 1d. We do note that LGA and RED are not directly comparable as they are

associated with different objectives. In short, LGA focuses on optimizing the generation of

inter-event times while RED aims at reducing the number of times that are necessary to gener-

ate inter-event times. We want to emphasize that the reason we include an LGA-type and

Fig 3. Results. Computation time of a single simulation step w.r.t. network size and connectivity (smaller β) higher connectivity). We measure the

CPU time per simulating step by dividing the simulation time by the number of successful (i.e., non-rejection) steps.

https://doi.org/10.1371/journal.pone.0241394.g003
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nMGA-type sampling approach is to highlight that our performance gain is not part of the spe-

cifics on how inter-event times are generated.

We use an nMGA-type method as a second comparison. It is a re-implementation of the

approximate version of nMGA from [23]. The method stores all agents with their associated

residence time in a list. In each step, we iterate over the list and generate a new firing time

(candidate) for each agent assuming that the instantaneous rate remains constant (note that

assuming a constant rate means sampling an exponentially distributed time delay). Then, the

agent with the shortest time delay candidate fires and the residence times of all agents are

updated. The approximation error decreases with an increasing network size because the time

periods between events become smaller.

SIS model

As our first test case, we use a non-Markovian modification of the classical SIS model. Specif-

ically, we assume that infected nodes become (exponentially) less infectious over time. That is,

the rate at which an infected agent with residence time t attacks its susceptible neighbors is

ue−ut for u = 0.4. This does not directly relate to a probability density because the infection

event might not happen at all. Empirically, we choose parameters which ensure that the infec-

tion actually spreads over the network. We upper-bound the rate at which a susceptible agent

v (with degree kv) gets infected with l̂vðtÞ ¼ ukv. The upper-bound is constant in time and

conceptually similar to the earlier example (cf. Section Rate over-approximation). We sample

tv using an exponential distribution (i.e., without numerical integration). The time until an

infected agent recovers is independent from its neighborhood and uniformly distributed in

[0, 1] (similar to [42]). Hence, we can sample it directly. We start with 5% randomly selected

infected agents.

Voter model

The voter model describes the spread of two competing opinions, denoted as A and B. Agents

in state A switch to B and vice versa, thus ψ is deterministic.

In this experiment we use an inter-event time that can be sampled using an LGA-type

approach (cf. Eq 2). Moreover, to take full advantage of the LGA-formulation, we assume that

the neighborhood of an agent modulates the PDF pv which specifies the continuous mixture of

rates (otherwise, we could simply pre-compute it). Here, we choose pv to be a uniform distri-

bution in [0, ov], where ov is the fraction of opposing neighbors of agent v. That is, if v is in

state A (resp. B), then ov is the number of neighbors in B (resp. A) divided by v’s degree kv.
Hence, we can sample an time delay candidate by sampling a uniformly distributed random

variate λv 2 [0, ov] and then sampling the time delay candidate tv which is exponentially dis-

tributed with rate λv. The resulting inter-event time distribution resembles a power-law with a

slight exponential cut-off [22]. The cut-off becomes more dominant for larger ov. Formally,

gvðtÞ ¼
Z ov

0

1

ov
le� ltdl ¼

1 � e� ovtð1þ ovtÞ
ovt2

and

lvðtÞ ¼
1

t
�

ov
eovt � 1

t � 0 :

To upper-bound the instantaneous rate we set ov = 1. To sample tv in RED, we use rejection

sampling (Fig 1d). The baseline uses the LGA-based approach, but changing to rejection sam-

pling does not noticeably change the performance. We initialize the simulation with 50% of

agents in A and B respectively.

PLOS ONE Efficient simulation of non-Markovian dynamics on complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0241394 October 30, 2020 14 / 18

https://doi.org/10.1371/journal.pone.0241394


Neural spiking

ChangeColor To model neural spiking behavior, we propose a networked (i.e., multivariate)

temporal point-processes [43]. In temporal point-processes, agents are naturally excitable (S)

and can get activated for an infinitesimally short period of time (I). After that, they become

immediately excitable again. Point-processes model scenarios where one is only interested in

the firing times of an agent not in their local state. They are commonly used to model spiking

behavior of neurons [44, 45] or information propagation in social networks (like re-tweeting)

[40]. A random trajectory of a system identifies each agent v with a list of time points Hv of its

activations. Here, we consider multivariate point-processes, where each agent (node) repre-

sents one point-processes and neighboring agents influence each other by inhibition or

excitement. Therefore, we identify each (undirected) edge v, u with a weight wv,u of either 1

(excitatory connection) or −1 (inhibitory connection). Moreover, neurons can spontaneously

fire with a baseline intensity of m 2 R�0. Formally,

�vðs; t;mÞ ¼ f mþ
X

s0 ;t0;v02m

wv;v0

1þ t0

 !

with f ðxÞ ¼ maxð0; tanhðxÞÞ :

The function f is called a response function, it converts the synaptic input into the actual fir-

ing rate. We use the same one as in [46]. Without f, the intensity could become negative. Note

that ψv is deterministic. Our model can be seen as a non-Markovian modification of the model

of Benayoun et al. in [46]. Contrary to Benayoun et al., we do not assume that active neurons

stay in their active state for a specific (in their case, exponentially distributed) amount of time.

Instead, we assume that they become immediately excitable again and that an activation affects

the neighboring neurons through a kernel function 1/(1+ t0). The kernel ensures that neigh-

bors who fired more recently (i.e., have a smaller residence time t0) have a higher influence on

an agent.

The residence time of an agent itself does not influence its rate. In contrast to multivariate

self-exiting Hawkes processes, only the most recent firing—and not the whole event history

Hv—contributes to the intensity of neighboring agents [40, 47]. Taking the whole history into

account is not easily possible with a finite amount of local states and introduces intensity func-

tions which cannot be upper-bounded (cf. Limitations). For our experiments, we set μ = 0.01,

define 20% of the edges to be inhibitory and use the trivial upper-bound of one (induced by

the response function).

Discussion. Our experimental results provide a clear indication that rejection-bases simu-

lation (and the corresponding over-approximation of the instantaneous rate) can dramatically

reduce the computational costs of stochastic simulation in the context of non-Markovian sim-

ulation on networks.

As expected, we see that the runtime behavior is influenced by the number of agents

(nodes) and the number of interconnections (edges). Interestingly, for RED, the number of

edges seems to be much more relevant than the number of agents. Most noticeably, the CPU

time of each simulation step does practically not increase (beyond statistical noise) with the

number of nodes. Moreover, one can clearly see that RED consistently outperforms the base-

line up to several orders of magnitude (cf. Fig 3), while the gain in computational time (i.e.,

RED CPU time by baseline CPU time) ranges from 10.2 (103 nodes, voter model, β = 2.5) to

674 (105 nodes, SIS model, β = 2.0).

Note that, we only compared an LGA-type sampling approach with our method in the voter

model experiment The other case-studies could not straightforwardly be simulated with LGA
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due to its constraints on the time delays. However, we still assume that the rejection-free base-

line algorithm is comparable with LGA in the other experiments as both of them only update

the rates of the relevant agents after an event. We also tested an nMGA-like implementation

where rates are considered to remain constant until the next event. However, the method

scales—albeit it is only approximate—worse than the baseline.

Note that the SIS model is somewhat unfavorable for RED as it leads to the generation of a

large number of rejection events, especially when only a small fraction of agents are overall

infected. For concreteness, consider an agent with many neighbors of which only very few are

infected. The over-approximation simply assumes that all neighboring agents are infected all
the time. Nevertheless, the low computational costs of each rejection event seem to easily atone

for their large number. In contrast, the neural spiking model is very favorable for our method

as the tanh(�) response function provides a global upper-bound for the instantaneous rate of

each agent. Performance-wise the differences between the two models are, surprisingly, pretty

small.

Conclusion

We proposed RED, a rejection-based algorithm for the simulation of non-Markovian agent

models on networks. The key advantage, and most significant contribution of our method, is

that it is no longer required to update the instantaneous rates of the whole neighborhood in

each simulation step. This practically and theoretically reduces the time complexity of each

step compared to previous simulation approaches and makes our method viable for the simu-

lation of dynamical processes on real-world networks which often have millions of nodes. In

addition, rejection steps provide for some inter-event time distributions a fast alternative to

integrating the intensity function. Currently, the most notable downside of the method is that

the over-approximations l̂ have to be constructed manually. It remains to be determined if it

is possible to automate the construction of l̂ in an efficient way as the trivial way of searching

in the state space of all reachable neighborhoods is not feasible. We also plan to investigate

how correlated events (as in [22, 48]) can be integrated into RED.
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