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Abstract: Chronic liver disease encompasses diseases that have various causes, such as alcoholic
liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Gut microbiota dysregulation
plays a key role in the pathogenesis of ALD and NAFLD through the gut–liver axis. The gut
microbiota consists of various microorganisms that play a role in maintaining the homeostasis of the
host and release a wide number of metabolites, including short-chain fatty acids (SCFAs), peptides,
and hormones, continually shaping the host’s immunity and metabolism. The integrity of the
intestinal mucosal and vascular barriers is crucial to protect liver cells from exposure to harmful
metabolites and pathogen-associated molecular pattern molecules. Dysbiosis and increased intestinal
permeability may allow the liver to be exposed to abundant harmful metabolites that promote liver
inflammation and fibrosis. In this review, we introduce the metabolites and components derived
from the gut microbiota and discuss their pathologic effect in the liver alongside recent advances in
molecular-based therapeutics and novel mechanistic findings associated with the gut–liver axis in
ALD and NAFLD.

Keywords: alcoholic liver disease; non-alcoholic fatty liver disease; gut microbiota; gut–liver axis;
dysbiosis; metabolites

1. Introduction

Globally, chronic liver disease, which is one of the most common medical conditions,
affects approximately 840 million people and accounts for 2 million deaths per year [1].
Chronic liver disease is characterized by the progressive deterioration of liver functions,
including the production of clotting factors and other proteins, the detoxification of harmful
products of metabolism, and the excretion of bile. In chronic liver disease, a continuous
process of inflammation, destruction, and regeneration of liver parenchyma leads to fibrosis
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and cirrhosis. The initial conditions or factors causing chronic liver disease include viral
hepatitis, fatty liver (alcoholic or non-alcoholic), autoimmune diseases, and genetic and
metabolic disorders. The continuation of the initial insult ultimately leads to decompen-
sated liver cirrhosis; however, the cessation of the insulting factor has still been reported to
result in the progression of liver disease [2]. To determine what influences this progression
in addition to the primary cause of chronic liver disease, investigators have evaluated the
changes in gut microbial composition, the relationship between these changes and the
different causes of liver disease, and the relevance of these changes to disease progression.

Trillions of microorganisms (bacteria, protozoa, archaea, fungi, and viruses) live in the
human gastrointestinal tract [3]. This microbiota has been known to play beneficial roles
in the body, such as immunomodulation to prevent pathogen colonization and nutrient
digestion and absorption; therefore, conditions linked to changes in the microbiota have a
fundamental impact on host physiological and pathological processes [4,5]. The regulating
potentiality of the gut microbiota is not confined to the intestine; it is affiliated with several
distant organs, such as the kidneys, brain, cardiovascular system, bone system, and liver [6].
The gut–liver axis refers to the close bidirectional connection between the intestine and the
liver via the portal vein, biliary tract, and systemic circulation.

The gut microbiota can generate bioactive metabolites from endogenous (bile acids)
and exogenous (diet and environmental) substrates, and the metabolites can be transported
to the liver through the venous branches of the portal vein [7]. These microbial metabolites
not only interact with host signal transduction pathways in the intestine but also reach the
liver through the portal vein. This review article focuses on the most recent advances in our
understanding of dysbiosis-related metabolites and treatments for alcoholic liver disease,
non-alcoholic fatty liver disease, and liver cirrhosis.

2. Gut Microbiota and Dysbiosis

The composition and number of bacteria vary according to their location in the gas-
trointestinal tract. The stomach and duodenum harbor 10–103 bacteria per gram of intestinal
content, and 104–107 and 1011–1012 bacterial numbers are found in the small and the large
intestines, respectively. The highest bacterial levels are found in the large intestine [8]. Nearly
90% of bacteria belong to two major phyla, Firmicutes (Gram positive) and Bacteroidetes (Gram
negative), followed by two minority phyla, Proteobacteria and Actinobacteria, and the rest
belong to Fusobacteria and Verrucomicrobia [9,10]. The phyla contain one or more classes that
comprise orders that in turn encompass families, genera, and species of bacteria. The rela-
tionship between the two major phyla, known as the ratio of Firmicutes to Bacteroidetes, has
been associated with individual susceptibility to disease states, including obesity [11]. In
addition, significant pathogens, such as Escherichia coli, Campylobacter jejuni, Salmonella enterica,
Vibrio cholerae, and Bacteroides fragilis, exist in the human colon, but normally at very low levels
(<0.1% gut microbiome) [12,13]. The combination of a low abundance of pathogens and a
high abundance of essential genera, such as Bacteroides, Prevotella, and Ruminococcus, indicates
a healthy state for the gut microbiota [14]. A stable cellular composition consisting of the
dominant phyla Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria is very important for
the proper function of the gut microbiota [15].

Shifts to an “abnormal” microbiota, such as a loss of keystone taxa, pathogen prolifer-
ation, and changes in metabolic capacity, are defined as dysbiosis [16]. Dysbiosis can be
characterized by a loss of beneficial bacteria, an expansion of potentially harmful organisms,
and/or a loss of overall microbial diversity [17]. A growing number of diseases, such as
inflammatory bowel diseases, metabolic disorders, autoimmune diseases, and neurological
disorders, are reported to be associated with intestinal dysbiosis [18–21]. The leading
factors affecting the composition of the gut microbiota include diet, various drugs, the
intestinal mucosa, the immune system, and the microbiota itself. Many triggering factors,
such as oxidative stress, bacteriophage induction, and the secretion of bacterial toxins, are
associated with shifts in the microbiota to the point of dysbiosis.
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3. Gut Microbiome and Metabolites

The gut microbiota has a cell number similar to that of humans. Furthermore, the
combined genomes of the gut microbiota—the microbiome—contains 450-fold more genes
than are encoded in the human genome [22]. The gut microbiota genomes encode functions
and metabolic pathways that are involved in diverse host biological processes, such as
metabolism, nutrition, and immunity [23–25]. The microbiome is defined as the assembly
of microbes and their genomic components, plus the products of the microbiota and the
host environment [26,27]. Advanced technologies, including 16S rRNA amplicon sequenc-
ing, shotgun metagenomic sequencing, and other multi-omic approaches, have led to the
identification of the functional characteristics beyond simply profiling microbiota composi-
tions. These methods make it possible to directly examine the phylogenetic markers, genes,
transcripts, proteins, or metabolites from the samples [28]. Especially, metatranscriptomics,
metaproteomics, and metabolomics are used to characterize the functional and metabolic
activities of the microbiome [29–31].

Although the microbiota generates numerous metabolites, the key microbial metabo-
lites include short-chain fatty acids (SCFAs) and bile acids, as well as recently identified
amino acid-derived metabolites (trimethylamine-N-oxide (TMAO), indole) and endoge-
nous ethanol. These metabolites are either derived from bacteria metabolisms, such
as tryptophan, or host molecules modified by bacteria, such as bile acids. In addition
to metabolites, gut-derived microbe-associated molecular patterns (MAMPs), especially
pathogen-associated molecular patterns (PAMPs), may provoke or exacerbate innate im-
mune responses in the liver. MAMPs are essential structures for the microbes and include
pathogens and nonpathogenic microorganisms. PAMPs include: microbial molecular struc-
tures, such as Gram negative-related lipopolysaccharide (LPS); Gram-positive-bacteria-
related lipoteichoic acid and peptidoglycan; lipoglycans, lipoarabinomannan, lipopeptides,
and lipomannans from mycobacteria; zymosan from yeast; and DNA from viruses and
bacteria [32,33]. PAMPs are recognized by pattern recognition receptors (PRRs). In humans,
Toll-like receptors (TLRs) constitute the main family of PRRs. TLRs are expressed by hepatic
stellate cells, liver parenchymal cells, such as hepatocytes, and cholangiocytes, as well as a
wide variety of immune cells, including resident and circulating macrophages, dendritic
cells, and neutrophils. The cellular localizations of TLRs are different, but their activation
leads to the common signal transduction pathways promoting the expression and release
of several pro-inflammatory cytokines, such as Tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, IL-6, and interferons.

Gut barrier dysfunction results in the translocation of microbes and microbially pro-
duced metabolites and products from the gut lumen to the portal vein and systemic
circulation. In the hepatic sinusoid, gut microbiota-derived metabolites and PAMPs trig-
ger a downstream complex signaling that is related to toxicity, inflammation, and gene
expression responses through the PRRs. These signaling responses can lead to metabolic
alterations in the liver and eventually direct the progression of chronic liver disease.

In the next section, the dysbiosis and microbe-derived metabolites will be examined
through the lens of their biological significance as they are related to alcoholic liver disease,
non-alcoholic fatty liver disease, and liver cirrhosis.

4. Alcoholic Liver Disease
4.1. Dysbiosis and Microbe-Derived Metabolites in Alcoholic Liver Disease

Alcohol consumption is one of the main causes of chronic liver disease and liver-related
deaths worldwide. Alcoholic liver disease clinically presents from simple steatosis to
steatohepatitis, eventually progressing to fibrosis and cirrhosis. During disease progression
(from steatohepatitis to precirrhosis to cirrhosis), a shift in the gut microbiota composition
occurs [34]. The gut microbial signature of patients with alcohol use disorder and alcoholic
liver disease can be found in Table 1.
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Table 1. Dysbiosis associated with alcoholic liver disease.

Conditions Methods Main Results (Phylum_Taxon) Ref.

Human LC with (n = 17)
or without sAH (n = 17) 16S ribosomal RNA sequencing LC with sAH: ↑ Actinobacteria, ↓

Bacteroidetes [35]

Human
HC (n = 24)

HDC (n = 20)
mAH (n = 10)
sAH (n = 24)

16S ribosomal RNA sequencing

HDC vs. HC: ↓ Bacteroidetes, ↑
Firmicutes to Bacteroidetes ratio
↑ Proteobacteria_Enterobacteriaceae,
↑ Firmicutes_Lachnospiraceae,
↑ Firmicutes_Lactobacillaceae,
↑ Firmicutes_Streptococcaceae,
↑ Bacteroidetes_Prevotellaceae,

↑ Saccharibacteria,
↑ Firmicutes_Veillonellaceae

sAH vs. HC: ↑ Proteobacteria
AH vs. HDC: ↑ Firmicutes_Veillonella,

↑ Bacteroidetes_Bacteroides

[36]

Human AH (n = 74) 16S ribosomal RNA sequencing
AH: ↓ Verrucomicrobia_Akkermansia,

↑ Firmicutes_Veillonella ↓
Bacteroidetes_Bacteroides

[37]

Human AUD (n = 36)
LC (n = 14) 16S ribosomal RNA sequencing

AUD vs. Control: ↓
Verrucomicrobia_Akkermansia,
↑ Bacteroidetes_Bacteroides,

↑ serum LPS, [38]
↑ TNF—α, IL1β, monocyte

chemoattractant protein
LC vs. non-LC: ↑ IL6, ↑ IL8

LC, liver cirrhosis; sAH, severe alcoholic hepatitis; HC, healthy control; HDC, heavy drinking control; mAH,
moderate alcoholic hepatitis; AH, alcoholic hepatitis; AUD, alcohol use disorder; LPS, lipopolysaccharide; TNF,
tumor necrosis factor; IL, interleukin.

The development of small intestinal bacterial overgrowth (SIBO) and dysbiosis in the
setting of alcoholic liver disease has been reported [39]. Alcohol consumption/feeding and
alcoholic cirrhosis are associated with a decrease in the Lactobacillus species [40–43]. The Lac-
tobacillus species are considered to be “good bacteria” and help suppress pathogens within
the Enterobacteriaceae family, such as Salmonella or Shigella, by producing bacteriocins, such
as antibiotics. Their peroxidase production contributes to inhibiting other bacteria [43,44].
The Lactobacillus species protect the host from pathogenic and invasive bacteria by adhering
to intestinal epithelial cells [45–47].

Their fermentation products include SCFAs. SCFAs are the most plentiful bacterial
metabolites derived from intestinal bacterial fermentation of indigestible carbohydrates or
dietary fibers, and SCFAs are chiefly composed of acetate, propionate, and butyrate. The
vital roles of SCFAs are to supply energy and nutrition to intestinal epithelial cells [48] and
to maintain the integrity of the intestinal barrier and mucosal immune tolerance. Chronic
ethanol administration reduces the biosynthesis of not only SCFAs but also saturated
long-chain fatty acids (SLCFAs) in intestinal bacteria, which contributes to gut barrier
dysfunction. Chen et al. reported that supplementation with SLCFAs maintained intestinal
eubiosis and reduced ethanol-induced liver injury in mice [49]. Saturated fatty acids do not
act directly on the intestine to stabilize its barrier. Instead, Lactobacilli metabolize SLCFAs
to promote their expansion. Saturated fatty acids were reported to serve as vitamin B
substitutes and promote the growth of the Lactobacillus species [50].

Elevated plasma endotoxin levels are observed in humans and animals with alcoholic
liver disease [51–53]. Endotoxins, also called LPS, are components of the outer membrane
of the cell wall of Gram-negative bacteria. Increased endotoxemia correlates with increased
intestinal permeability [54]. Gut barrier dysfunction permits endotoxins to cross the gut
barrier and reach the liver by entering the blood stream. In the liver, endotoxins interact
with and activate Kupffer cells, which produce superoxide and TNF-α, leading to liver
damage [55]. Ethanol can also induce a leaky gut through the disruption of epithelial
tight junctions, resulting in bacterial translocation [34]. The endotoxin or peptidoglycan
passage provokes cytokine release by stimulating hepatic receptors, such as TLR, ulti-
mately leading to hepatic fat disposition and inflammation [34]. Additionally, endogenous
ethanol produced by bacteria increases intestinal permeability and eventually deteriorates
microbial translocation.



Int. J. Mol. Sci. 2022, 23, 426 5 of 21

In mice, chronic ethanol feeding resulted in an increased bile acid pool and lower
intestinal farnesoid X receptor (FXR) signaling. The primary bile acids, chenodeoxycholic
acid (CDCA) and cholic acid (CA), are synthesized in the liver through the oxidation of
cholesterol. Almost all of the primary bile acids are secreted into the gut, recirculated to the
liver by the portal vein and reused by the liver, while the remaining 5% are transformed by
the gut microbiota into secondary bile acids, lithocholic acid (LCA) and deoxycholic acid
(DCA) [56]. The secondary bile acids are more hydrophobic and thus more toxic for the
intestinal and hepatic epithelial cells [57–60]. The enterohepatic circulation of bile acids is
extremely important for gut eubiosis. Disturbance of the normal intestinal microbiota can
affect bile acid metabolism, increase the degree of secondary bile acid conversion, and thus
lessen the rate of primary bile acid reabsorption [56].

Bile acids are recognized by the FXR, expressed in hepatocytes and enterocytes. FXR
contributes to the generation of antimicrobial molecules in intestinal epithelial cells and pre-
vents intestinal barrier dysfunction [61,62]. In the intestine, an FXR activated by conjugated
bile acids induces endocrine hormone fibroblast growth factor (FGF)-15/19 (FGF-15 in
rodents, FGF-19 in humans). FGF-15/19 decreases the transcription of cytochrome P450 en-
zyme 7a1 (CYP7A1) in hepatocytes, thereby suppressing de novo bile acid synthesis [63,64].
However, gut dysbiosis induced by chronic ethanol consumption results in low FGF15
plasma levels, increased hepatic CYP7A1 expression with unbalanced bile acid homeostasis,
and altered liver metabolism. The signaling pathway participating in primary bile acid
reabsorption accompanies the activation of FXR, which leads to the downregulation of bile
acid synthesis, increased bile acid clearance, and the production of antimicrobial peptides
in the lumen [56,65]. Therefore, decreased utilization of this pathway drives the intestinal
environment to be more susceptible to bacterial overgrowth.

Ethanol-associated dysbiosis reduces the levels of indole-3-acetic acid (IAA), one of
the bacterial tryptophan catabolites. Tryptophan is an essential amino acid for humans
and is present in a variety of foods, such as cruciferous vegetables, red meat, fish, cheese,
beans, and eggs [66]. Commensal bacteria can catabolize tryptophan into indole via the
action of tryptophanase. IAA is a microbiota-derived ligand of the aryl hydrocarbon
receptor (AHR), which regulates the expression of IL-22. IL-22 regulates the expression
of regenerating islet-derived 3 gamma (REG3G), a c-type lectin produced by intestinal
epithelial and Paneth cells. REG3G defends against pathogens and maintains the spatial
segregation of the microbiota and the host [67]. REG3G, mainly expressed in the small
intestine, regulates the intestinal immune response against pathogens and sustains the
homeostasis of commensal microbes [68]. IL-22 is a cytokine primarily produced by RORγt+

type 3 innate lymphoid cells (ILC3s) in the gut during homeostasis [69]. The microbiota can
regulate IL-22 production through the metabolites produced from tryptophan catabolism,
called indoles [70]. Indoles are known to help reinforce the integrity of the intestinal barrier
and are considered to be a favorable chemical signal within microbe–host interactions [71].

4.2. Microbiota-Changing Interventions in Alcoholic Liver Disease

The gut microbiome can be modulated with diet, pre-, pro-, or antibiotics, and fecal
microbiota transplantation (FMT). Probiotics are a group of nonpathogenic, beneficial
microorganisms that function to modulate and maintain a stable intestinal environment
and restore microecological balance [72]. In animal studies, probiotics, such as L. rhamnosus
or VSL#3 (a probiotic mixture, containing Bifidobacterium breve, B. longum, B. infantis, L.
acidophilus, L. plantarum, L. paracasei, L. bulgaricus, and Streptococcus thermophilus) have
been shown to ameliorate alcohol-induced liver inflammation and gut leakiness [73,74]. In
addition, Pediococcus pentosaceus alleviated ethanol-induced liver injury by reversing gut
microbiota dysbiosis, regulating SCFAs metabolism in an animal study [75]. Prebiotics are
nondigestible food ingredients. They act to help the gut peristalsis and stimulate the growth
or activity of specific species of intestinal bacteria. Fructo-oligosaccharides are commonly
regarded as a type of prebiotic substance that stimulates the growth of beneficial gut
microbes. A previous study showed that the use of prebiotics improved alcohol-induced
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liver damage in mice by increasing the level of antimicrobial protein REG3G and reducing
intestinal bacterial overgrowth [40]. Ferrere et al. reported that intestinal microbiota
manipulation via FMT or prebiotic treatment (pectin, a fiber present in fruits) restored
Bacteroides levels in mice and thus prevented liver damage by alcohol [76]. In a human
study, FMT in the case of severe alcohol hepatitis improved the three-month survival rate
compared to other treatment groups (corticosteroid/nutrition support only/pentoxifylline)
and produced favorable gut microbial changes [77].

Recently, the effectiveness of “targeted” microbiome-directed interventions, including
bioengineered commensals, drugs targeting selected microbial metabolism, and phage
therapy, has been reported mainly through animal studies (Table 2).

Table 2. Treatment targeting dysbiosis in alcoholic liver disease.

Conditions Treatment Main Results Ref.

C57BL/6J mice

Chronic feeding: 25 days, 32% of
total kcal

Short-term ethanol feeding: 2 days,
32% of total kcal

Acute single gavage (5 g/kg)

Tributyrin (butyrate supplementation),
0.83–10 mM (liquid diet or oral gavage)

(1) Protective effect to tight junction
proteins, butyrate receptor and transporter
(2) Mitigation of inflammatory measures

[78]

C57BL/6J mice

EtOH group: 5% v/v
ethanol-containing diet for 10 days +

single ethanol gavage (5 g/kg)
Control mice: isocalorically pair-fed

maltose dextrin

Tributyrin: 5 mM
Mitigation of ethanol effect-↓ disruption of
intestinal tight junction localization and
intestinal permeability, liver injury

[79]

C57BL/6J mice
(Atp4a Sl/Sl mice)

EtOH group: Lieber-DeCarli diet
containing 36% ethanol for 10 days

Bacteriophages targeting cytolytic
Enterococcus faecalis

Decrease cytolysin in the liver
Abolish ethanol-induced liver disease and
steatosis
Reduced fecal amounts of Enterococcus

[80]

C57BL/6J mice
EtOH group: Lieber-DeCarli alcohol

for 8 weeks
Control group: isocaloric control diet

Fexaramine (intestine-restricted FXR
agonist): 100 mg/kg daily during 8 weeks

of alcohol

Fexaramine treatment group
-stabilize the gut barrier
- modulate hepatic genes involved in lipid
metabolism

[81]

or AVV expressing the human
nontumorigenic FGF19-variant M52

FGF19 treatment group
- ameliorate alcoholic steatohepatitis

C57BL/6J mice
Chronic-binge ethanol diet Control

group: isocaloric control diet

IAA (gavage of 100 µL of 20 mM IAA), or

IAA treatment group
-↓ liver damage and steatosis
-↓ ALT and hepatic levels of triglyceride
-↓ ethanol-induced bacterial translocation

[82]

Engineered bacteria: Lactobacillus
reuteri/IL-22

Engineered bacteria treatment group
-restore intestinal levels of IL-22
-re-expression of REG3G
-↓ bacterial translocation and
ethanol-induced steatohepatitis

C57BL/6J mice EtOH group: Lieber-DeCarli diet
containing 5–6% ethanol for 10 or

14 days

Synthetic TLR7 ligand 1Z1
Orally administrated 1µmol or

subcutaneous injection 0.4 µmol

↓ Intestinal barrier disruption and bacterial
translocation
↑ Expression of antimicrobial peptides,
REG3B and REG3G

[83]

Modulate the microbiome

EtOH, ethanol; FXR, farnesoid X receptor; AVV, adeno-associated virus; FGF, fibroblast growth factor; IAA,
indole-3-acetic acid; ALT, alanine aminotransferase; IL, interleukin; REG3G, regenerating islet-derived 3 gamma;
TLR, Toll-like receptor; IL, interleukin.

The pharmacologic manipulation of luminal SCFAs with the prodrug tributyrin (glyc-
eryl tributyrate) showed a protective effect against the gut injury caused by ethanol expo-
sure in mice [78,79]. Another study evaluated the effects of IL-22-producing bioengineered
bacteria on ethanol-induced liver disease in mice [82]. IL-22, a cytokine mainly expressed
by ILC3s, regulates the production of REG3G lectins in the gut during homeostasis [69].
C-type lectins participate in the intestinal immune response against pathogens and retain
the homeostasis of commensal microbes [68]. Hendrikx et al. found that IL-22-producing
bioengineered bacteria induce the expression of REG3G to reduce ethanol-induced steato-
hepatitis [82]. Wang et al. also reported that a TLR7 ligand, 1Z1, ameliorated alcohol-
associated liver injury via the induction of IL-22 [83]. TLR7 signaling has been shown to
be protective against liver fibrosis in mice [84]. TLR7 is mainly expressed in immune cells,
such as macrophages, dendritic cells, and B cells. TLR7 signaling induced IFN-α production
in dendritic cells, followed by IL-1 receptor antagonist induction in Kupffer cells. An IL-1
receptor antagonist suppressed IL-1-induced hepatic stellate cell activation, resulting in
the inhibition of liver fibrosis [84]. Additionally, Wang et al. found that TLR7 signaling
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upregulated IL-22 [83]. Another study showed that the exogenous administration of IL-22
had a profound effect on tissue repair by promoting proliferation and inhibiting apoptosis
in hepatocytes of mouse models of alcoholic hepatitis [85]. Bacteriophage therapy is an
intervention that targets the microbiome. Bacteriophages are viruses that can specifically
infect and kill bacteria, and 1015 types of phage are present in the human intestine [86].
Phages are generally very specific to the bacterial subtypes and can selectively infect spe-
cific bacteria; thus, a similar effect to knocking down specific bacteria is expected. In a
study of the therapeutic effects of bacteriophages in alcoholic liver disease, Duan et al.
found that when cytolytic E. faecalis was targeted by bacteriophages, there was decreased
cytolysin secretion and an amelioration of alcohol-induced liver injury in mice [80]. This
result suggests that phage therapy could be a treatment option for alcoholic liver disease
by precisely modulating the intestinal microbiota.

5. Non-Alcoholic Fatty Liver Disease
5.1. Dysbiosis and Microbe-Derived Metabolites in Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is primarily characterized by excessive fat
accumulation in hepatocytes. Although NAFLD has many similar features to alcoholic liver
disease, NAFLD develops without the consumption of toxic levels of alcohol [87]. NAFLD
is one of the main causes leading to hepatic injury, and it is also closely associated with type
2 diabetes, metabolic syndrome, hypertension, and cardiovascular disease. For this reason,
a new term from NAFLD, metabolic dysfunction-associated fatty liver disease (“MAFLD”),
is considered to be a more suitable overarching term [88]. NAFLD consists of two different
conditions: non-alcoholic fatty liver, which is primarily an accumulation of fat in the liver,
and non-alcoholic steatohepatitis (NASH), in which fat accumulation is accompanied by
inflammation and thus poses a risk of cirrhosis and liver malignancies. Among the various
risk factors contributing to NAFLD, changes in gut microbial composition have been
recognized as risk factors for NAFLD, obesity, and diabetes [70,89,90]. The consumption of
a high-fructose diet promotes increased plasma triglyceride and insulin resistance, leading
to increased lipid accumulation in the liver [91]. Previous studies found evidence of a
relationship between gut microbiota and bacterial endotoxins in the mechanisms of hepatic
steatosis and its progression to NASH [92,93]. SIBO and microbial dysbiosis (increased
amounts of Bacteroides and Ruminococcus, but decreased amount of Prevotella) were observed
at a higher frequency in patients with NAFLD. Higher amounts of E. coli and B. vulgatus
are associated with fibrosis in stages three and four. The gut microbial signature of patients
with NAFLD can be found in Table 3.

Table 3. Dysbiosis associated with non-alcoholic fatty liver disease.

Conditions Methods Main Results (Phylum_Taxon) Ref.

Human
NAFLD (n = 57)

: NASH (n = 35) vs. No NASH (n = 22)
or F0/F1 (n = 30) vs. F2 ≤ fibrosis (n = 27)

16S ribosomal RNA sequencing
NASH and F2 ≤ fibrosis:
↑ Bacteroidetes_Bacteroides, ↓
Bacteroidetes_Prevotella [94]
F2 ≤ fibrosis: ↑ Firmicutes_Ruminococcus

Human
NAFLD (n = 25) vs. Healthy (n = 22)

NASH vs. No NASH
F0/1 vs. F2 ≤ fibrosis

16S rDNA amplicon sequencing

NAFLD: ↑ Proteobacteria, ↑ Fusobacteia,
↓ Bacteroidetes

[95]NASH: ↑ Firmicutes_Blautia,
↑ Firmicutes_Lachnospiraceae
F2 ≤ fibrosis: ↑ Proteobacteria_Escherichia,
↑ Proteobacteria_Shigella

Human

NAFLD (n = 13)
: Biopsy-proven NASH

(lean 4, overweight 5, obese 4)
Control (n = 10)

16S ribosomal RNA sequencing

F ≤ fibrosis: ↑ Firmicutes_Lactobacilli

[96]

Lean NASH: ↓ Firmicutes_Faecalibacterium,
↓ Firmicutes_Ruminococcus
Obese NASH: ↑ Firmicutes_Lactobacilli
Overweight NASH: ↓ Actinobacteria
Bifidobacterium
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Table 3. Cont.

Human
Obese NAFLD (n = 36)

Obese patients without NAFLD (n = 17)
Healthy control (n = 20)

16S ribosomal RNA sequencing

NAFLD: ↑Fermicutes, ↑
Fermicutes_Streptococcus

[97]
Obese with or without NAFLD
: ↓ Firmicutes_Blautia,
Firmicutes_Alkaliphilus,
Bacteroidetes_Flavobacterium,
Verrucomicrobia_Akkermansia

Human
NAFLD (n = 25)
NASH (n = 25)

Healthy control (n = 25)
16S ribosomal RNA sequencing

NAFLD: ↑Bacteroidetes, ↓ Firmicutes

[98]

NAFL or NASH:
↓ Firmicutes_Ruminococcaceae UCG-010,
Firmicutes_Ruminococcaceae,
Firmicutes_Clostridiales, and
Firmicutes_Clostridia

NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NAFL, non-alcoholic fatty liver.

In patients with NAFLD and obesity, increased gut barrier permeability develops;
thus, metabolic endotoxemia and an increase in the blood levels of LPS occurs. Microbiota-
derived LPS has been reported to be correlated with the degree of liver injury and progres-
sion to NASH [99].

Several studies have noted the possibility of applying some metabolites to the early
diagnosis of NASH. A previous study reported that patients with NASH have increased
ethanol produced by their gut microbiota [100]. The gut microbiota can ferment dietary
carbohydrates into ethanol, which then enters the blood circulation and is eventually
eliminated through the liver. Ethanol-producing bacteria largely include Bacteroides fragilis,
Escherichia, Bifidobacterium adolescentis, and Clostridium thermocellum [101]. In the gut, ethanol
and its metabolites, especially acetaldehyde, lead to the disturbance of tight junctions
and increased intestinal permeability, thereby causing gut barrier dysfunction. In the
liver, ethanol can cause lipid deposition and inhibit fatty acid ß-oxidation by regulating
sterol regulatory element-binding proteins-1c (SREBP-1c) and peroxisome proliferator-
activated receptor-α (PPARα) [102]. Ethanol can also aggravate hepatic inflammation and
fibrosis by increasing the activity of cytochrome P450 family 2 subfamily E polypeptide 1
(CYP2E1) [103].

In NAFLD, a decrease in bacteria that convert primary bile acids into secondary bile
acids is observed. For this reason, the stimulation of bile acid receptors by secondary
bile acids is decreased, and further disturbance of the gut microbiota occurs [104]. The
composition of the bile acid pool is essential to sustain the diversity of the commensal
bacterial community. The detergent effect of bile acids can suppress certain types of bacteria
but not others, so the balanced growth of diverse commensal bacteria is properly preserved.
FXR and Takeda G protein-receptor-5 (TGR5) are the principal receptors activated by bile
acids, and both receptors are under-stimulated because of the decreased DCA [104]. TGR5,
a plasma membrane-associated protein, is expressed by cholangiocytes, immune cells, and
hepatic stellate cells, and is activated by hydrochloric bile acids. The decreased activation
of each receptor leads to hepatic steatosis and chronic inflammatory status.

The gut microbiota can convert choline into trimethylamine (TMA), which is oxidized
into TMAO in the host liver. Choline is a water-soluble nutrient essential for biological
activities, including maintaining the structural integrity of cell membranes, supporting
cholinergic neurotransmission, and donating methyl groups in a number of biosynthetic
reactions [105]. TMAO exacerbates impaired glucose tolerance, obstructs hepatic insulin
signaling, and promotes adipose tissue inflammation in mice maintained on a high-fat,
high-sugar diet [106]. In NAFLD, the conversion of choline into TMA/TMAO is increased;
thus, choline deficiency and TMA/TMAO accumulation occur [107,108]. Choline can
induce very low-density lipoprotein transportation out of the liver; therefore, choline
deficiency leads to the accumulation of lipids in the liver.

Schwiertz et al. reported that the feces of obese individuals have higher levels of SCFAs
than that of lean individuals, and this finding suggests that gut microbiota from obese
individuals have an enhanced capability to extract and store energy from food compared
with lean individuals [109]. The overproduction of SCFAs might promote lipogenesis in
the liver because they act as substrates for lipogenesis [110].
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5.2. Microbiota-Changing Interventions in Non-Alcoholic Fatty Liver Disease

In obese children, supplementation with probiotics improved liver enzymes (alanine
aminotransferase, aspartate aminotransferase), triglycerides, and LDL-cholesterol [111]. As
shown in Table 4, there have been encouraging results indicating the benefits of probiotics
in NAFLD patients [112–114]. However, only a few strains/bacterial cocktails have been
found to be effective and to slightly improve some of parameters related to NAFLD.
Therefore, as shown in a meta-analysis, still more studies are still needed to prove the
therapeutic benefit of probiotics in patients with NAFLD [115,116].

Table 4. Treatment targeting dysbiosis in non-alcoholic fatty liver disease.

Conditions Treatment Main Results Ref.

Human
Randomized, triple blind

trial (64 children with
NAFLD)

Probiotic capsule
(L. acidophilus, B. bifidum, B. lactis, L. rhamnosus),

12 weeks or placebo

Probiotic treatment group
- enhanced liver enzyme
-↓mean cholesterol, LDL-cholesterol,
triglyceride, waist circumference

[111]

Human Open-label,
randomized controlled
clinical trial (n = 102)

300 g synbiotic yogurt (B. animalis, inulin) Synbiotic yogurt consumption group
- improved hepatic steatosis and liver enzyme

[112]or conventional yogurt, 24 weeks
or control group

Human Obese NAFLD (n = 68)
Probiotic mixture (L. acidophilus, L. rhamnosus,

Lacticaseibacillus paracasei, P. pentosaceus, B. lactis, and B.
breve) 12 weeks

or placebo

Probiotic treatment
-↓ body weight and total body fat [113]

Human NAFLD (n = 89)
Probiotic (L. casei, L. rhamnosus, L. acidophilus, B. longum,

and B. breve) or prebiotic (oligofructose), 12 weeks
or placebo

Probiotics group
-↓ triglyceride, AST, ALT, GGT, ALP [114]Prebiotics group
-↓ triglyceride, LDL-cholesterol, AST, ALT

C57BL/6J mice ND/HFD/ND + inulin/HFD + inulin for 14 weeks

Inulin treatment group
-restored abnormal indicators observed in
HFD group
-reduced TLR4 + hepatic macrophages, NF-κB,
nod-like receptor protein 3,
apoptosis-associated speck-like protein and
caspase-1
-↑ Akkermansia, Bifidobacterium
↓ Blautia, the ratio of Firmicutes/Bacteroidetes
- increase short-chain fatty acids

[117]

Human 14 patients with liver
biopsy-confirmed NASH

Randomized to receive oligofructose (8 g/day) for 12
weeks followed by 16 g/day for 24 weeks or isocaloric

placebo for 9 months

Oligofructose improved liver steatosis and
overall NAS score [118]

Human

Adult with definite
NASH, NAS score ≥ 4,
F2-3 or F1 with at least

one accompanying
comorbidity

Randomly assigned in 1:1:1
oral placebo: n = 311

obeticholic acid 10 mg: n = 312
obeticholic acid 25 mg: n = 308

Obeticholic acid at 25 mg significantly
improved fibrosis and key components of
NASH disease activity

[119]

Human NAFLD patients, n = 198

Randomly assigned in 1:1:1
placebo (n = 64)

norursodeoxycholic acid 500 mg/day (n = 67)
norursodeoxycholic acid 1500 mg/day (n = 67) for

12 weeks

Norursodeoxycholic acid at 1500 mg resulted
in a significant reduction of serum ALT within
12 weeks

[120]

NAFLD, non-alcoholic fatty liver disease; LDL, low-density lipoprotein; AST, aspartate aminotransferase; ALT,
alanine aminotransferase; GGT, gamma-glutamyl transferase; ALP, alkaline phosphatase; TLR, Toll-like receptor;
NF-Kb, nuclear factor kappa-light-chain-enhancer of activated B cells; ND, normal diet; HFD, high fat diet; NASH,
non-alcoholic steatohepatitis; NAS, non-alcoholic fatty liver activity score.

Prebiotic treatments, such as fermentable dietary fructo-oligosaccharides, favor the
growth of beneficial bacterial species (Bifidobacterium spp.), reduce hepatic triglyceride
accumulation through the PPARα stimulation of fatty acid oxidation, and lessen cholesterol
accumulation by inhibiting SREBP-2-dependent cholesterol synthesis [121]. In addition,
prebiotics also increase endogenous intestinotrophic proglucagon-derived peptide produc-
tion, lower intestinal permeability, and augment tight-junction integrity [122]. Recently,
a new study reported that inulin, a kind of indigestible dietary fiber found in an herb,
Jerusalem artichoke, prevented NAFLD by modulating gut microbiota and suppressing
inflammatory pathways, such as LPS-induced TLR4 activation in mice [117].

FMT intervention in high-fat-diet-induced steatohepatitis in mice showed a signifi-
cant decrease in intrahepatic lipid accumulation and intrahepatic pro-inflammatory cy-
tokines [123]. These results of probiotics, prebiotics, and FMT in NAFLD suggest a positive
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effect; however, these studies have some limitations due to a lack of high-quality random-
ized trials.

In addition, obeticholic acid (OCA), the FXR agonist, has been shown to ameliorate
NASH in animal models and in patients [124,125]. OCA restored a damaged gut vascular
barrier and reduced alanine aminotransferase levels and lipid accumulation in the liver of
mice with NASH [126].

6. Gut Microbiota in Liver Cirrhosis
6.1. Dysbiosis and Microbe-Derived Metabolites in Liver Cirrhosis

Cirrhosis is the end stage of chronic liver diseases, and gut microbiota have also
been reported to be altered in patients with liver cirrhosis compared with healthy con-
trols [127,128]. In other words, a deficiency of autochthonous nonpathogenic bacteria and
an excessive growth of potentially pathogenic bacteria are commonly observed in patients
with liver cirrhosis [127–129]. Autochthonous gut taxa include Lachnospiraceae, Ruminococ-
caceae, Veillonellaceae, and Clostridiales incertae sedis XIV, while pathogenic gut taxa include
Staphylococcaceae, Enterobacteriaceae, and Enterococcaceae [129]. The gut microbial signature
of patients with alcoholic liver cirrhosis or NAFLD cirrhosis can be found in Table 5. The
gut microbiota profile of patients with alcoholic liver cirrhosis had an increased relative
abundance of Enterobacteriaceae and a decreased relative abundance of Lachnospiraceae and
Ruminococcaceae. Additionally, a greater increase in the levels of oral-origin microbiota in the
stool was reported in patients with alcoholic cirrhosis than in those without cirrhosis [130].
The increase in oral microbiota in the stool in those with cirrhosis, especially in patients
with alcoholic cirrhosis, is probably an epiphenomenon given the high rate of periodontitis,
the change in salivary microbiota, proton pump inhibitor use, and relatively low gastric
acid levels in these patients [128,131–133]. NAFLD cirrhosis was associated with increases
in the levels of Veillonella parvula, Veillonella atypica, Ruminococcus gnavus, Clostridium bolteae,
and Acidaminococcus spp., and accompanied by decreases in the abundances of Eubacterium
eligens, Eubacterium rectale, and Faecalibacterium prausnitzii. Veillonella parvula and Faecalibac-
terium prausnitzii were reported to be the most critical species for discriminating between
NAFLD cirrhosis and the control group [134].

Table 5. Dysbiosis associated with liver cirrhosis.

Conditions Methods Main Results (Phylum_Taxon) Ref.

Alcoholic LC (n = 43) vs. other etiologies
(n = 170) Multi-tagged pyrosequencing

Alcoholic LC: ↑ Proteobacteria_Enterobacteriaceae,
↑ Proteobacteria_Halomonadaceae,
↓ Firmicutes_Lachnospiraceae,
↓ Firmicutes_Ruminococcaceae,
↓ Firmicutes_Clostridialies XIV

[129]

Alcohol dependence with LC vs. Alcohol
dependence (n = 27) without LC (n = 72) Shotgun metagenomic analysis

Alcoholic LC: ↑ Firmicutes_Lactobacillus salivarius,
↑ Firmicutes_Veillonella parvula,

↑ Firmicutes_Streptococcus salivarius,
↑ Actinobacteria_Bifidobacterium

[130]

NASH cirrhosis (n = 32) vs. other etiologies
(n = 181) Multi-tagged pyrosequencing NASH cirrhosis: ↑ Bacteroidetes_Porphyromonadaceae,

↑ Bacteroidetes_Bacteroidaceae, ↓ Firmicutes_Veillonellaceae [129]

Non-NAFLD group (n = 54) vs.
NAFLD-cirrhotic group (n = 27) Shotgun metagenomic analysis

NAFLD cirrhotic group: ↑ Firmicutes_Veillonella parvula, ↑
Firmicutes_Veillonella atypica,

↑ Firmicutes_Ruminococcus gnavus,
↑ Firmicutes_Clostridium bolteae,
↑ Firmicutes_Acidaminococcus spp.,
↓ Firmicutes_Eubacterium eligens,
↓ Firmicutes_Eubacterium rectal,

↓ Firmicutes_Faecalibacterium prausnitzii

[134]

LC of multiple aetiology (n = 36) vs. Healthy
control (n = 24) 16S ribosomal RNA sequencing

LC: ↓ Bacteroidetes_Bacteroidetes, ↓ Proteobacteria, ↓
Fusobacteria, ↑ Proteobacteria_ Enterobacteriaceae,

↑ Firmicutes_Veillonellaceae, ↑ Firmicutes_Streptococcaceae,
↓ Firmicutes_Lachnospiraceae

[43]

LC of multiple aetiology (n = 47) vs. Control
(n = 14) 16S ribosomal RNA sequencing

LC: ↑ Proteobacteria_Enterobacteriaceae,
↓ Firmicutes_Lachnospiraceae, ↓ Firmicutes_Ruminococcaceae,

↓ Firmicutes_Blautia
[135]

LC, liver cirrhosis; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.
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Changes in the microbiota composition in liver cirrhosis are derived from reduced
small bowel motility, bile acid abnormalities, and impaired intestinal immunity. Ascites is
one of the key contributors to delaying gut transit and developing dysbiosis in cirrhotic
patients [136,137]. An altered bile acid pool exhibits reduced primary bile acid levels and
increased secondary bile acid levels in the gut [135,138,139]. SIBO is commonly observed
in cirrhotic patients as a result of decreased intestinal motility and delayed transit times,
and the deterioration of liver cirrhosis is related to SIBO [140]. The severity of SIBO can
be connected to the degree of deterioration of the liver cirrhosis status [141]. Increased
intestinal permeability may promote bacterial translocation into systemic circulation. SIBO
is known as a main risk factor in the etiology of both spontaneous bacterial peritonitis
(SBP) and hepatic encephalopathy (HE) in cirrhotic patients [142,143]. In cirrhotic patients,
HE and SBP commonly occur. Ammonia and endotoxins that are produced by urease-
producing bacteria, such as Klebsiella and Proteus, are known as the main contributors
to the development of HE [144]. Disturbed intestinal barriers and increased microbial
translocation are involved in the mechanism of SBP development [145]. LPS is a main
product from Escherichia/Shigella, and the overgrowth of these bacteria can lead to increased
intestinal permeability and cause endotoxemia, which is related to deteriorating disease
severity and complications in cirrhosis [146].

One of the proposed mechanisms of dysbiosis in patients with cirrhosis pertains to the
decreased production of bile acids. Ruminococcaceae is one of few taxa known to contain
secondary bile acid-producing bacteria, and it has been reported that there is a positive
correlation between the abundance of Ruminococcaceae and DCA production [135]. Most
bile acids are reabsorbed in the terminal ileum and transported back to the liver through
gut–liver circulation. However, some bile acids reach the colon and are converted by
the gut microbiota into secondary bile acids. Secondary bile acids modulate functions
connected with glucose and fat metabolism in the liver [147,148]. Lactobacillus, Bifidobacteria,
Enterobacter, Bacteroides, and Clostridium are related to secondary bile acid formation. A
decreased conversion of primary to secondary bile acids is caused by dysbiosis in cirrhotic
patients [135,149]. Reduced bile flow, decreased fecal bile acids, and increased serum
bile acids are characteristics of cirrhosis that also deteriorate in proportion with cirrhosis
severity [135,138,139]. Liver dysfunction can lead to the impairment of the synthesis and
excretion of bile acids; as a result, decreased levels of total bile acids in the gut and increased
levels in the serum are observed. Additionally, decreased bile flow leads to diminished
intestinal FXR signaling, which disturbs intestinal barrier function by decreasing mucous
thickness and antimicrobial peptide synthesis, and injuring the gut vascular barrier.

There are some similarities and some unique differences in the gut microbiota compo-
sition and metabolites in patients with ALD, NAFLD, and cirrhosis (Figure 1).

6.2. Microbiota-Changing Interventions in Liver Cirrhosis

Recently, in an international cirrhosis cohort study, Bajaj et al. reported that a diet
rich in fermented milk, vegetables, cereals, coffee, and tea was associated with greater
microbial diversity, and this was linked to a lower risk of long-term hospitalization [150].
Dairy proteins and vegetable proteins contribute to a decrease in serum ammonia levels
due to increasing ammonia detoxification through the urea cycle and accelerating intestinal
transit by their high fiber content. Vegetable proteins also lead to reduced circulating
mercaptans and indoles [151–153]. Diet control may be one of the treatment strategies for
gut microbiota modification, but the results are not promising due to poor compliance.

Probiotics that provide beneficial effects to liver cirrhosis can be found in Table 6. Shi
et al. reported that L. salivarius or P. pentosaceus extended the survival time and consider-
ably ameliorated carbon tetrachloride (CCl4)-induced liver cirrhosis in rats [154]. They
found that L. salivarius or P. pentosaceus achieved this effect through the alleviation of
gut microbiota dysbiosis, an improvement in intestinal barrier function, decreased bac-
terial transformation, and reduced liver inflammatory response. In another study using
CCl4-induced experimental cirrhosis, a probiotic mixture (VSL#3: S. thermophiles, B. breve,
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B. longum, B. infantis, L. paracasei, L. acidophilus, L. delbrueckii ssp. bulgaricus and L. plantarum)
decreased bacterial translocation, the proinflammatory state (decrease in TNF-α levels),
and ileal oxidative damage, and increased ileal expression of the tight junction protein
occludin [155]. In addition, A. muciniphila showed beneficial effects on immune-mediated
liver injury in C57BL/6 mice by alleviating inflammation and hepatocellular death [156].
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Table 6. Treatments targeting dysbiosis in liver cirrhosis.

Conditions Treatment Main Results Ref.

Human
Double blind trial, LC with an

episode of HC during the
previous month

Probiotic preparation (VSL #3) (n = 66)
6 months or placebo (n = 64)

↓ The risk of hospitalization for HE
↓ CTP and MELD score [157]

Human
LC with MHE

: randomized LGG
or placebo group

Probiotic group, 8 weeks
or placebo

↓ Endotoxemia, TNF-α

[158]
Alteration in gut microbiome
-↓ Enterobacteriaceae, ↑ Clostridiales
Incertae Sedis XIV, ↑ Lachnospiraceae

Rat CCl4-induced
cirrhotic rats

LI01: L. salivarius
LI05: P. pentosaceus
L. rhamnosus GG,

C. butyricum MIYAIRI and Bacillus,
13 weeks

LI01 or LI05

[154]

-prevent liver fibrosis, ↓ hepatic
expression of profibrogenic genes
Alteration in gut microbiome
-↓ Enterobacteriaceae, ↑ Clostridiales
Incertae Sedis XIV and Lachnospiraceae

C57BL/6J mice Bile-duct ligation
CCl4-induced cirrhosis

FXR-agonists oral gavage
: fexaramine (100 mg/kg/day)

obeticholic acid (30 mg/kg/day)

FXR-agonists treatment group
- ameliorate pathological translocation of
GFP-E. coli from the ileal lumen to the
liver in cirrhotic mice
Obeticholic acid treatment group
-significantly increases ileal TJ protein
expression (ZO1, claudin-1,-2, and
occludin), upregulating them to the level
of healthy control mice

[159]

LC, liver cirrhosis; HC, hepatic encephalopathy; CTP, Child–Turcotte–Pugh; MELD, model for end-stage liver
disease; MHE, minimal hepatic encephalopathy; CCl4, carbon tetrachloride; TNF, tumor necrosis factor; FXR,
farnesoid X receptor; TJ, tight junction; GFP-E. coli, green fluorescent protein, Escherichia coli.
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Bajaj et al. reported that oral FMT capsules were safe and well tolerated in in patients
with cirrhosis and recurrent HE, and that they improved duodenal mucosal diversity,
dysbiosis, and cognitive function [160]. In addition, they found that oral capsular FMT led
to microbial functional changes (higher secondary/primary fecal and serum bile acid ratios)
and the improvement of cognitive function in randomized, placebo-controlled trial [161].
However, larger studies are needed to confirm the beneficial FMT effect on microbial
functional change and longer-term outcomes after FMT in cirrhosis.

7. Conclusions

Chronic liver disease with diverse etiologies progresses to liver fibrosis through multi-
ple common mechanisms of pathogenesis. The altered gut microbiome is one of the main
mechanisms that are shared within various liver disease etiologies. Several common and
overlapping important pathophysiologic processes include: (1) SIBO and gut dysbiosis;
(2) gut barrier dysfunction and abnormal intestinal permeability; (3) changes in primary
and secondary bile acid profiles; and (4) alteration of microbial-produced metabolites
caused by gut dysbiosis (Figure 2).
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Figure 2. Dysbiosis and therapeutic intervention in chronic liver disease. The defective intestinal
barrier due to the malfunction of the tight junctions promotes the translocation of bacterial products
into the portal vein. Therapeutic interventions targeting gut microbiota composition or their metabo-
lites have been attempted. TJ, tight junction; IL-22, interleukin-22; LPS, lipopolysaccharide; SCFAs,
short-chain fatty acids; BAs, bile acids; FXR, farnesoid X receptor; FGF19, fibroblast growth factor 19.

An understanding of the gut–liver axis has advanced in the last decade. It has been
confirmed that there is a strong connection between the gut microbiota and the liver, the
so-called “gut–liver axis”, which acts as an important contributor to the pathogenesis of
chronic liver diseases. The coexisting microorganisms, with the majority living in the
digestive tract from where they produce or modify various chemicals, or trigger host
reactions that affect various physiological functions and pathologies. However, the precise
mechanism of this connection in diverse liver diseases is still uncertain. Most studies are
snapshots of microbiome landscapes; therefore, more expanded knowledge is needed on
the short-term and long-term dynamics of the intestinal microbiome.

In the studies using probiotics, prebiotics, and FMT, the modulation of the intestinal
microbiota can potentially be a preventive and therapeutic approach for chronic liver
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disease. To identify candidate microorganisms for therapy, appropriate preclinical models
are necessary. Although human and murine gut floras share 90% and 89% similarities in
phyla and genera, respectively [162], there are key discrepancies in the makeup and abun-
dance of microbes, representatively the Firmicutes/Bacteroidetes (F/B) ratio (with humans
having a greater F/B ratio, whereas the inverse is true for mice) [163–165]. Therefore, the
establishment of a humanized gnotobiotic mouse model through the FMT of human feces
into germ-free mice provides a powerful tool to mimic the human microbial system. Upon
transplantation into germ-free mice, microbial species of the human microbiota are affected
by a diet dissimilar to the human donor. However, by employing diet questionnaires to
fecal donors and customizing corresponding research diets, there is an opportunity to take
humanized murine microbiota studies to higher precision and translatability.

Finally, to standardize microbiota modulation therapy and guide personal everyday
health behavior or clinical practice, large prospective randomized controlled studies of long
duration are required. Although both the gut microbiota composition and gut microbe-
produced metabolites have been tested as therapeutic targets, we have a long way to go
before achieving mechanistic insights into how the gut microbiome mediates or modifies
various liver diseases. Future studies on the interactions within the global intestinal
microbial community, including fungi, bacteriophages, and eukaryotic virus, are needed.
In addition, the integration of microbiome data with other omics data and bio-clinical
variables is required. These efforts will give hope for a new therapeutic strategy against
chronic liver disease.
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