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ABSTRACT: To achieve the goals of the Safe Drinking Water Act, state and
local water authorities need to make decisions about where to direct limited
funding for infrastructure improvements and currently do so in the absence of
adequate evaluative metrics. We developed a framework grounded in utility
theory that compares trade-offs explicitly and broadens the factors considered in
prioritizing resource allocations. Relevant existing indices were reviewed to
identify data applicable to drinking water decision-making. A utility-theory-
based decision analysis framework was developed and applied to evaluate how
different objectives affect funding decisions for lead service line replacement
(LSLR) programs in Pennsylvania and Michigan, United States. The decision
framework incorporates drinking water quality characteristics with community
and environmental quality attributes. We compare additive and multiplicative
model structures, different weights, and spatial scales. Our decision framework
showed that the inclusion of additional data beyond what is usually considered
in LSLR decisions could change the top 10 counties or public water systems prioritized. Further, the counties or water systems in the
top 10 were influenced by the model structure and weights. Prioritization changed based on which data were included, and has
implications for the use of evaluative metrics beyond traditional water system data.
KEYWORDS: equity, environmental justice, drinking water, funding, policy

1. INTRODUCTION
The investment gap between needed and available funds for
the nation’s drinking and wastewater infrastructure, driven by
decades of underinvestment, is projected to grow to $136
billion by 2039.1 Despite this gap, state primacy agencies and
local utilities must make decisions on where and how to invest
available funds, which may mean prioritizing some public water
systems (PWSs) over others due in part to limited resources.
Water infrastructure projects are notoriously expensive and
politically complex; therefore, to assist in and standardize the
allocation decisions, decision-making tools are critical. The
1974 Safe Drinking Water Act (SDWA), which sets national
drinking water standards and enforceable regulatory require-
ments, was amended in 1996 to establish the Drinking Water
State Revolving Fund (DWSRF). The DWSRF is the primary
means through which states fund water system infrastructure
improvements.2 Currently, states have some flexibility in
evaluating and ranking the project applications they receive,
but the required primary objectives are to prioritize funding
projects that are necessary to ensure compliance with SDWA,
address the most serious risks to human health, and assist
systems most in need according to affordability criteria.3

The number of violations accrued by a water system is the
primary metric for compliance under SDWA; however, the

methodology for obtaining and reporting a violation is
unreliable. For example, a contaminant’s maximum contami-
nant level (MCL) is set based on the concentration closest to
the recommended level that is feasible to measure and achieve,
which suggests that water users may be exposed to
contaminant levels that are harmful to human health prior to
triggering an MCL violation.4,5 For instance, studies have
observed an increased risk of adverse health effects from
ingesting drinking water with nitrate concentrations below the
MCL.6 Further, studies have found significant under-reporting
or inaccurate reporting of violation data in the Safe Drinking
Water Information System (SDWIS).7−9 For example, a 2009
audit of 14 states estimated that these states inaccurately
reported or did not report 26% of health-based violations and
84% of monitoring violations.10 This is important given that
recent work has found relationships between the incidence of
violations and community attributes, such as socioeconomic or
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demographic factors. The incidence of drinking water
violations has been found to be higher among community
water systems serving uninsured households, communities of
color, and low-income communities.7,11−13 Rural community
water systems have been found to have more frequent
violations.8 This unreliability in reporting may result in mis-
characterized or -contextualized relationships found between
community attributes and violations, such as the under-
predicting of violations14 or the total exclusion of very small
water systems from violation trend analyses due to their
likelihood of having inadequate reporting practices.8 Ulti-
mately, incomplete or inaccurate data limit states’ ability to
identify and prioritize systems with the most serious
compliance problems. Consequently, estimating the DWSRF’s
impact on compliance by looking at violation data alone is
insufficient.
Prior work suggests that to accurately assess the risk to

human health, consideration should be given to the individual,
cumulative, and collective impact of contaminants and
nonchemical stressors (e.g., economic, psychological, or
nutritional) on certain communities.15−19 For example, the
frequency and intensity of exposure to environmental
pollution, including drinking water contamination, have been
found to be variable and associated with socioeconomic status,
race, and location, including proximity to multiple exposure
(multimodal) pathways.11,20,21 A household’s ability to cope
financially and psychologically with the consequences of a
drinking water violation has also been associated with race,
ethnicity, and class.12,22 In other words, drinking-water-related
risk is not experienced independently from other socio-
environmental attributes or alternative sources of risk, nor is
it equitably distributed. To achieve equity in drinking water,
more diverse data should be included in the decision-making
process. Importantly, not all studies have found consistent
relationships between these variables (e.g., Mueller and
Gasteyer, Statman-Weil et al.),21,23 indicating that these
relationships may be place-based and influenced by the spatial
scale at which the study was conducted (e.g., county, public
water system, census tract).18,21,23,24

Despite growing evidence indicating the importance of
community attribute data and place-based decision-making in
the context of drinking water, the DWSRF, which is the
primary tool used to allocate limited state funding for drinking
water infrastructure, has not been updated to include them.15

To create a more comprehensive tool, additional data sources
need to be identified and included. Indeed, other federal
programs, such as the Older Americans Act, require states to
distribute funding to local jurisdictions based on a combination
of the geographic distribution of older adults (e.g., rural
residence) and the unmet need (e.g., income, disability status)
of those adults.25,26 In the context of drinking water, case
studies in which community-specific, high-resolution data were
collected have demonstrated the importance of including non-
water system data in analyses to understand nuanced
relationships with water quality.11,22,27 It is also necessary to
understand how to incorporate additional data. A possible
solution is to use a cumulative metric in the form of an index.
An index is composed of diverse data, or attributes, which
result in a cumulative value or measurement when combined.
For example, the United States air quality index combines
information about five criteria pollutants to produce one
measurement, or index value, which serves as an indicator of
air quality.28 Several indices exist that focus on environmental

exposure through drinking water; they provide useful data and
serve as indicators of exposure, vulnerability, or risk.29−33

However, many are non-adaptable, meaning that they are
highly specific to their objective, and tend to weight all the
attributes within the index equally, which may not be an
appropriate assumption. For example, a livelihood vulnerability
index proposed by Hahn et al.33 uses primary household data
and weights all seven subcomponents of the index equally,
implicitly assuming that an equal marginal change in the value
of each attribute has the same effect on the community. While
the use of household data is ideal for high-resolution analyses,
it is not always possible to obtain these same data at a more
granular level. Furthermore, it is impossible to know if equal
weighting is a valid assumption without assessing how the
estimations change as a function of weighting. Prior work with
the Multidimensional Poverty Index, for example, showed how
the resulting estimates are sensitive to a variety of weights,
including expert opinion, frequency-based, and equal weighting
schemes.34

An alternative to a cumulative metric such as the index is the
use of utility functions, which allows stakeholders to select the
model’s functional forms and weights for each attribute to
clearly align the valuations implied by the index system with
the intended valuations of the decision-makers.35−37 It also
frames the decision-making via a method that is reproducible
and adaptable for a variety of different stakeholders and
objectives. For example, Guikema and Milke38 used utility
functions to integrate multistakeholder objectives to prioritize
funding environmental conservation projects. Karner et al.37

demonstrated how utility functions might be used to prioritize
transportation planning decisions. Prior scholarship by Balazs
and Ray39 and Vanderslice40 demonstrated that it is possible to
assess disparities in environmental exposure based on
community attributes using adaptable frameworks. Therefore,
we propose a decision-making framework using utility
functions to identify and integrate additional available data
with current evaluation metrics in the context of drinking
water.
To demonstrate how this framework might be applied, we

take inspiration from the Infrastructure Investment and Jobs
Act that was recently passed in the United States and will
allocate an additional $15 billion41 for the replacement of lead
service lines through the Drinking Water State Revolving
Fund. With an estimated 6 to 10 million lead service lines42

across the United States and an average replacement cost of
$4700 per line,43 these additional federal funds still fall at least
$13 billion short.44 As cities in Pennsylvania and Michigan
have both experienced recent exceedance of the Lead and
Copper Rule (LCR)45,46 and are undertaking lead service line
replacement (LSLR), these are relevant locations to which
these funds may be directed and serve as exemplar states for
demonstrating our framework. Lead is a contaminant with high
regional variability for which the number and location of
regulatory samples are often insufficient to identify all water
systems with increased lead concentrations.46,47 Not only
might the LCR be an insufficient metric of community lead
exposure, but the resulting harm is not uniform across
communities.7,20,39 Consequently, we apply the decision-
making framework to demonstrate which counties and public
water systems that Michigan and Pennsylvania could prioritize
for replacement and how the prioritization changes with
different data or weights. We review relevant indices to select
appropriate data for the decision analysis.
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With this proposed method, we strive to address how LSLR
allocation decisions will change (1) with the inclusion of
multimodal lead exposure data and community attribute data,
such as susceptibility to lead exposure and ability to cope with
the exposure consequences; (2) based on changes in the
composite model form and weight selection; and (3) with
spatial scale. Lastly, we evaluate the equity implications of
different attribute and weighting assumptions by comparing
demographics of regions prioritized. Further, the demographics
of our model results are compared to current state DWSRF
funding priority lists and locations with the highest frequency
of LCR violations. We organize this paper by first reviewing
the literature to select appropriate additional data and
community attributes. Next, we select utility functions based
on the additional data and community attribute structures. We
then use the utility functions to calculate objective functions.
Finally, we combine objective functions to calculate overall
composite metrics, and evaluate the results at the county
(Michigan and Pennsylvania) and PWS spatial scales
(Pennsylvania).

2. BACKGROUND
2.1. Review of Relevant Indices and Attributes. One

way to combine information for decision-making is to create an
index and use the relative cumulative value of the index to
prioritize the use of resources. Indices are utilized in a variety
of disciplines to provide a standardized metric for measuring
and comparing a bundle of community attributes, defined by
geographical location, or time periods. Localized community
attributes, such as measures of living conditions, resources, or
attributes of populations, can be incorporated into an index to
guide efforts in the improvement of living conditions and
uncover areas of concern, allowing for a more directed
distribution of resources.48 To review the existing indices for
applicability and to select the appropriate additional data for
our analysis, we conducted a review of relevant indices and
attributes in the risk management (e.g., susceptibility or
vulnerability), poverty, environmental health, and water
management literature.
Myriad indices have been proposed to measure susceptibility

or vulnerability.24,49−53 Some indices have been created to
answer a specific question or adapted from a previously
established index for a particular community or condition. For
example, indices have been developed to measure a
community’s vulnerability to climate change.33,54 Several
water-related indices have been defined in the last four
decades, many of which provide some measurement of water
scarcity, quality, or security,30,32,55,56 and existing reviews of
these indices provide a thorough overview.29,31,57 In recent
years, the associations between community attributes and their
environmental health outcomes have been increasingly
investigated.18,20,23,39,40,58−61 While these works do not
propose an index, they use attributes in a similar manner to
examine or compare an outcome through time and space.
Moreover, they emphasize that an entire population is not
uniform and that different people and communities face
varying likelihoods of negative health consequences following
exposures. For example, age and nutrition affect one’s
susceptibility to negative health effects associated with lead
exposure.7,62 A detailed description of the attributes used in
the works cited above is provided in Table S6.
While there are many indices that measure variability in the

human ability to cope with exposure to a hazard, as well as

indices related to water management or security, we found that
such indices tend to be site-specific and nontransferable across
location, community, or decision context. For example, the
Falkenmark Water Stress Index (WSI), a measure of the
amount of freshwater available per person annually, is heavily
cited and widely used but is less suited for urban use.56 Sullivan
et al. established a Water Poverty Index30,63 (WPI) designed to
measure household and community water stress and included
measures of access to water, water quantity, quality and
variability, and capacity for water management, among others.
While the WPI methodology has been applied to various other
indices (e.g., Hahn et al.33), the primary focus of the WPI is on
people in poverty and does not include other attributes, such
as race or insurance status, which are relevant to capturing
coping ability in the United States.7,12 To capture the urban
context, Jensen and Wu propose a set of Urban Water Security
Indicators indicative of water stress, quality, and management
capacity.32 These attributes are designed to measure a city’s
water security score, and not all of the included attributes are
relevant to funding decision-making. None of the relevant
reviewed indices were applicable, as is, to the chosen decision-
making scenario.
Notably, many of the indices reviewed were constructed

using balanced weighted averages, meaning that all attributes
are given the same weight or are balanced relative to the other
attributes in a sub-index. Consequently, a 1% increase in
attribute X is just as significant as a 1% increase in attribute Y,
which may not be an appropriate assumption for some
attributes. For example, a 1% increase in a proxy for lead
exposure such as the number of homes built before 1978 is not
equivalent to a measured 1% increase in lead load from paint
to which a community is exposed. Additionally, many of these
indices require data that are not publicly accessible or not
widely collected. While tailored data collection can provide
valuable insight into the association between community
attributes and the index objective, the use of such data limits
the applicability of such indices to other objectives.
2.2. Decision Analysis and Utility Theory Approaches.

A decision analysis concept, utility functions, provides
solutions to some of the critiques identified among existing
indices and is a reproducible approach that supports complex
decisions with multiple stakeholders.36,38,64−67 Utility func-
tions integrate quantitative and categorical data, or attributes,
and explicitly represent and quantify trade-offs between
attributes to create an overall score or index value. Utility
functions take a functional form that relates attribute levels to
the utility (i.e., degree of satisfaction) derived by stakeholders
to better align available data with objectives. Selection of
functional forms incorporates specific assumptions about the
attributes into the model and should be considered in the
model selection process.38 For example, the functional form of
a utility function can be additive, multiplicative, exponential, or
some other mathematical form. Objective utility functions can
be weighted and combined based on the overall objective and
decision context, and trade-offs among objectives assessed.
Selection of attribute or utility function weights is a current
topic of debate in the literature.68 To combine attributes or
functional forms, different structures may be used. For
example, the majority of the indices described in the section
above use an additive structure when combining attributes.
However, there are benefits to considering alternative forms
and alternative weights, such as comparing how decision
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results change. In this work, we compare a weighted additive
functional form to a multiplicative form.

3. METHODS
Utility theory-based decision analysis is a data-driven approach
designed to help decision-makers identify their objectives and,
in this case, apply those objectives consistently when
prioritizing water systems for lead service line replacements.
The framework proposed consists of four steps shown in
Figure 1 and described below.
3.1. Frame the Decision. In decision analysis, the framing

phase consists of identifying all stakeholders and decision-
makers and determines the attributes included in the
framework and the utility functions used.38 More specifically,
first, the primary decision-maker is identified (e.g., the state
primacy agency authority). With stakeholder input, the
decision-maker designs the problem space by selecting the
decision objective (e.g., funding allocation for infrastructure

improvements). Second, the decision-maker further defines the
objective function through measurable objectives (e.g.,
reducing public health risk). Third, the location of interest is
specified, and last, the spatial scale of analysis is defined (e.g.,
county or public water system). The selected objectives should
be listed into a hierarchy representative of the order of priority.
Often, objectives must be defined by their component parts.
Typically, objectives lower in the hierarchy describe the
highest objective and are defined such that they may be
measured mathematically.
For the current scenario, the decision-maker is the state

primacy agency, and the decision is where in Michigan and
Pennsylvania to allocate DWSRF funding for LSLR. Michigan
and Pennsylvania were selected as the locations of interest
because they include both rural and urban regions, have a
range of land uses, experienced the majority of their
development prior to 1980 (prior to the existence of
regulations restricting lead use in housing, plumbing, and

Figure 1. General decision framework used to build utility functions.

Figure 2. Objective hierarchy identifying overall objective, subsequent component objectives, and attributes used to define each objective. The
color indicates the objectives specified in the model.
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industrial processes), have public water systems of all sizes, and
recently experienced lead-related violations. The decision
objective is to maximize the societal benefits associated with
LSLR. The relationship between this primary objective and the
lower-level component objectives such as other source of lead
exposure and risk factors associated with negative health
outcomes following lead exposures is defined in Figure 2. The
data sources and spatial resolution of each attribute are defined
in Supporting Information S1 and Table S1.
Ideally, analysis would allow for a comparison among water

systems, allowing primacy decision-makers to target funds to
specific water systems. However, few states publish water
system boundaries, making it challenging to associate
community attributes to a specific water system. As a result,
prior work examining disparities in water quality is often
limited to county-level analysis.40,69 Pennsylvania does publish
the spatial boundaries for all community water systems,
allowing for two spatial scales to be compared. Comparison of
results by spatial scale (county versus public water system
boundary) allows for an analysis of how the prioritized areas
might shift and describes the importance of creating a national
database of water system boundaries.
3.2. Step 1: Select Attributes and Utility Functions.

Based on the decision objectives, the decision-maker and
relevant stakeholders select attributes to measure each defined
objective. These attributes may be selected from the literature,
local expert interviews, or stakeholder input.36 Attributes
should be normalized to a consistent scale, such as 0−1. In
decision analysis, each attribute should be assigned a utility
function to convert the attribute score to a utility score.38 The
decision-maker should select the utility functions based on the
attribute characteristics and such that changes in attribute
levels are reflective of changes in stakeholder preferences. For
example, if an increase in an attribute value has an exponential
effect (e.g., a hypothetical change from 1 to 2 units benefits the
decision-maker less than a change from 2 to 3), an exponential
utility function or similar should be selected to reflect the non-
incremental change.
For the current scenario, the attributes that best describe

each component objective are drawn from the literature. Then,
the functional form for each objective’s utility function is
selected based on attribute data structure, distribution, and
known associations from the literature. The first two objectives
capture sources of lead exposure, and the second two
objectives measure the likelihood of negative health outcomes
following lead exposure.

3.2.1. Objective 1: Lead in Water Exposure. To maximize
LSLR benefits, areas where the likelihood of exposure to lead
via drinking water is the highest should be prioritized.
Attributes indicative of these locations are identified based
on a review of Lead and Copper Rule documentation70 in
addition to EPA and state-specific water quality data sets.71−73

Attributes beyond the current regulatory trigger, an exceedance
of the LCR action level, were selected to incorporate current
knowledge of risks posed by lower lead concentrations.100 The
attributes selected include the following: the number of LCR
violations is selected to capture locations with a history of lead
exposure; the most recent 90th percentile lead concentration is
selected to measure current exposure using the LCR metric
triggering treatment changes; and the median concentration of
lead samples is used as an attribute to capture low-level
exposures that could still pose a risk to residents.100

3.2.2. Objective 2: Other Sources of Lead Exposure. To
maximize LSLR benefits, areas where the likelihood of
exposure to lead via alternative sources is the highest should
be prioritized. Common sources of lead today include legacy
lead-bearing building materials (e.g., lead paint in houses built
prior to 1978), industrial pollution, and deposition from piston
aircraft using leaded aviation gas.74,75 Attributes describing
these sources include US Census estimates of the proportion of
housing stock built prior to 1978,76 EPA Toxic Release
Inventory records of lead released per year,77 and National
Emissions Inventory estimates of lead pollution from piston
engine aircraft.78

3.2.3. Objective 3: Negative Health Effects. To maximize
LSLR benefits, areas where the likelihood that exposure to lead
will result in a negative health outcome is the highest should be
prioritized. Certain community and health attributes can
increase an individual’s likelihood of experiencing negative
health effects from lead exposure.70 Such attributes include
children in early development (under the age of 5 years), poor
nutrition, and general poor health resulting in an increase in
lead absorption. Past research has also found an association
between poverty and minority communities having an
increased risk of elevated blood lead levels.74,79,80 Blood lead
level data are not used as they are not publicly available and
data are not collected evenly across a region or population;81

therefore, they may not be representative of the health risks
posed by lead exposure.

3.2.4. Objective 4: Ability to Cope with Environmental
Hazards. To maximize LSLR benefits, areas where there is a
reduced ability of a community to cope with a water-related
emergency should be prioritized. Attributes descriptive of a
community’s ability to cope are identified from a review of the
literature, and the CDC’s social vulnerability index is used as a
starting point. Selected attributes target measurement of
coping ability via financial (disposable income for bottled
water, point-of-use water filters, etc.), mental (stress manage-
ment, ability to read and comprehend communications about
drinking water quality or status), and physical (access to
medical care, access to sanitary services) means. Further, CDC
SVI attributes are removed if they are clearly unrelated to lead
exposure or are captured in another objective (e.g., housing
attributes are captured elsewhere, and transportation attributes
are not deemed sufficiently relevant). Attributes found in the
literature but not included in the CDC’s SVI are then added
(e.g., poor mental health). The selected set of attributes
includes single-parent households,24,82 school education or
less,24 speaking English less than well,24 unemployed,24

households without health insurance,83 poor mental
health,84,85 and absence of complete plumbing facilities.86

Next, the utility function is selected based on an inspection
of the structure and distribution of each attribute and known
relationships from the literature. Tables S1 and S2 show more
detailed information about each attribute’s range, utility
function, and objective structure. For attributes that are in
units of lead concentration (mass/volume) or load (mass/
time), the utility function is selected to be logarithmic because
research has shown that a nonlinear relationship exists between
lead exposure and health risk, indicating that there is a greater
marginal increase in the negative health outcomes from lead
exposure occurring at the lowest lead concentrations.62 Other
attributes presented as percentages (e.g., the percent of the
population under the age of 5 years) are used without
transformation. The numerical range covered by an attribute is
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analyzed to assess the implicit valuation that may be
incorporated into the model as a result of the difference in
range among attributes to be combined (see Table S2).
These selected attributes are not descriptive of all possible

sources of lead exposure or all variables that may contribute to
negative health outcomes or reduced coping ability; rather,
they are meant to represent major contributors with a
documented relationship to the described objective. All
selected attributes are from publicly available databases and
available at the census tract scale unless otherwise stated.
Public access to data is a requirement as it is the intention that
any decision-maker should be able to apply these techniques.
In other applications, decision-makers should use the best
available data that describe the objectives of interest. For the
county-level analysis, data sets defined at the same spatial units
are combined by first calculating the intersection of each data
set within the county boundaries and then calculating the
weighted area average of each attribute for all intersected
polygons within a county. When aggregating water system
attributes to the county level, a population weighted average is
used instead to reflect the population affected. The same area-
weighting process is used to aggregate all data sets to the water
system boundary spatial unit.
3.3. Step 2: Calculate the Utility Functions. Utility

functions are used to combine attributes within each objective
as well as the objectives into the overall objective function.
Many functional forms of utility functions exist, each with
assumptions.36 If the decision-maker chooses to assign weight
to the attributes or utility functions, the weights should be
determined using expert opinion, attribute-level trade-off
analysis, or references from the literature.87 Weighting is also
useful to reflect the hierarchical ranking of objectives from the
framing phase.38 Importantly, when weights are not specifically
selected, any combination of attributes still implies a relative
weighting, and this weighting may not be an accurate
representation of decision-maker objectives. A sensitivity
analysis should be performed to examine the overall effect of
the selected weights on the objective values. Once the weights
are defined, the objective functions may be calculated for the
selected spatial unit (e.g., public water system, county) for the
location of interest.
For the current scenario, all attributes are structured such

that an increase in attribute value (e.g., increase in the median
lead sample concentration) corresponds to an increase in the
overall utility function. Attributes are grouped by objective and
transformed as described in Table S1; transformed attributes
are summed to compute the four objectives. Two functional
forms�additive and multiplicative�combine objectives and
are then compared. Given that the decision-maker in this
scenario is a state primacy agency and the goal is to prioritize
locations to receive DWSRF funds for LSLR, we begin by
placing the most emphasis on the first objective, as it is a direct
measure of lead exposure from a drinking water system. As
such, in the additive objective function (eq 1), the highest
weighting is applied to the lead in water objective. The
prioritization among objectives and the associated selected
weights may vary among decision-makers and is a source of
uncertainty in the model. Weighting of individual attributes
may be necessary if the direct combination of attributes is
illogical due to a difference in scale or if decision-maker
valuation of attributes necessitates it.88 Given the number of
attributes selected here, valuation of each attribute may be an
onerous task; therefore, attributes were grouped or trans-

formed such that unweighted combination could be used. Each
decision-maker must make this calculation and decide the
approach that’s best for their decision.
In the multiplicative function (eq 2), the water lead exposure

objective is multiplied by the sum of the other objective
functions, and the other sources of lead exposure objective is
given the greatest weighting, as a lead exposure must be
present for any risk to occur. The last two objectives were
given second and equal weight. Weights are intentionally
selected within each function such that they add to one.

= + +

+

U U U U

U

0.5 0.25 0.125

0.125

additive WaterPb AltPb NegHealth

Cope (1)

= +

+

U U U U

U

(0.5 0.25

0.25 )

multiplicative WaterPb AltPb NegHealth

Cope (2)

Following the initial evaluation of the utility functions
described in eqs 1 and 2, we parametrically vary the objective
weights to assess how potential changes in weights will impact
the analysis. As discussed above, this is done due to the
subjective nature of weight selection. As weights are adjusted
systematically between 0.1 and 1 in 0.1 increments, the overall
objective function value is recalculated. Where weights did not
add to 1, all objective weights are scaled such that they would
sum to 1. The resulting set of objective function values of all
weight combinations is characterized by calculating the
fraction of iterations for which a specific county or water
system has an objective function value ranked in the top
quartile. If objective functions are not highly sensitive to
weight, one would expect the rankings to remain mostly
constant, with the same counties or water systems ranked
highest across the vast majority of the simulation iterations.
3.4. Step 3: Evaluate the Utility Functions. The final

step is evaluative. Decision-maker review of objective values
and objective function rankings motivates discussion among
stakeholders and helps ensure that decisions enacted reflect
local values. The decision-maker may evaluate the change in
objective values across the study area with the goal of
maximizing the utility of the decision. Observing trends in
objective function valuation and location rankings allows for
trade-offs among objectives to be quantified. Further, decision-
makers may consider the recommended project prioritization
in context with trade-offs among objectives. Locations
identified in rankings and the associated demographics of
those locations are compared to Project Priority Lists (PPLs)
published for each state and allow decision-makers to see the
effect of this approach on project selection.89,90 Decision-
makers may also iterate on their selected attributes, functional
forms, or weights. In this scenario, locations with the highest
objective function value represent locations where the greatest
benefits would result from water system investment. The
evaluations for the scenario are elucidated in the following
section.

4. RESULTS AND DISCUSSION
4.1. How Will LSLR Allocation Decisions Change with

Each Objective Function and the Associated Changes
in the Attributes? For both Michigan and Pennsylvania, each
selected objective prioritizes different regions within the state
(see Figure 3). This indicates that the inclusion of lead
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exposure data from sources other than drinking water and
attributes that make a community more susceptible to lead
exposure will result in a change of how available LSLR funds
are prioritized. The lead in water exposure objective, shown in
Figure 3A,B, combines three different drinking water lead
metrics (the number of LCR violations, median of lead sample
concentrations, and 90th percentile of lead sample concen-
trations) and provides a more complete picture of lead
exposure via drinking water in each state. LCR violations are

designed to capture the historical compliance of a region,
measured as 10% of samples being greater than 15 ppb.
Depending on the underlying causes of elevated drinking water
lead levels, the median lead sample concentration provides
additional information. The ranked order of counties based on
the lead in water objective is not equivalent to the ranked order
of counties based on the number of LCR violations. More
specifically, 4 of the top 10 and 6 of the top 25 counties in
Pennsylvania and 4 of the top 10 and 8 of the top 25 counties

Figure 3. County-level objective and overall objective utility results for Michigan (left) and Pennsylvania (right). Darker shades indicate higher
values. Top row (A and B) objective results indicate counties where the likelihood of exposure to lead via drinking water is highest. Second row (C
and D) objective indicates areas where the likelihood of exposure to lead via alternative sources is highest. Third row (E and F) objective identifies
areas where the likelihood that exposure to lead will result in a negative health outcome is highest, and the bottom row (G and H) identifies areas
where there is a reduced ability of a community to cope with a water-related emergency. Top 10 highest-ranked counties are outlined in black.
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in Michigan change when additional drinking water lead data
are included in the decision process (see Table S3 and S4).
Similar geographic trends are seen for lead in water and

alternative sources of lead exposure and include a combination
of urban and rural counties. Alternative sources of lead
exposure describe deposition from aviation gasoline, regulated
industrial lead releases, and a higher frequency of old housing
stock, which is more likely to include lead paint (Figure 3C,D),
and geographic trends reinforce that lead exposure is not an
exclusively urban risk. Pearson’s rank correlation coefficients
were calculated to compare the two lead exposure objectives
and were positively correlated for Pennsylvania (corr = 0.3, p <
0.05) but not significant for Michigan (see Supporting
Information Section S2). Lead exposure occurs at the local
scale; for example, households may have lead paint or
plumbing, and neighborhoods may contain lead polluting
industries. Aggregation to the county scale results in a loss of
spatial specificity, reduces the sample size of the analysis, and
can lead to inconclusive results. This motivates the spatial scale
analysis conducted in Section 4.5 and the need for an
improved collection of household-level lead exposure data.
When the objective is to identify communities with

attributes associated with negative health effects due to lead
exposure, Michigan’s Detroit region and rural areas, specifically
Upper Peninsula counties, are prioritized (Figure 3E). In
contrast, urban and peri-urban southeast and southwest
counties dominate the Pennsylvania rankings (Figure 3F).
When the objective is to identify communities with attributes
associated with a reduced ability to cope with a water-related
emergency, central Pennsylvania rural counties have the
highest ranking (Figure 3H), and results are uncorrelated
with the negative health effects objective. In Michigan, rural
counties are still prioritized (Figure 3G) but in different
locations than under the negative health effects objective (corr
= 0.3, p < 0.05).
In Michigan and Pennsylvania, the change in county

rankings indicates that if additional drinking water lead
concentration data are combined with LCR violation data,
then LSLR funds will be disbursed differently. Further,
comparison with the alternative sources of lead objective
shows that the inclusion of multimodal lead sources would

identify different target locations for LSLR programs. Lead is
not a unique contaminant in having multiple modes of
exposure; more broadly, index systems allow for exposure
indicators at different spatial scales or units of measure to be
aggregated such that the way people experience pollution
across sources�drinking water, housing, air, or food�and
throughout their daily lives� home, work, or, school�is
better reflected in decision-making tools. When considering
community susceptibility objectives, regions with different
characteristics than the lead exposure objectives are identified.
This indicates that locations where any type of lead exposure is
more likely highest are not necessarily the locations with the
populations that are most susceptible to experiencing a
negative health outcome or are less able to cope with such
exposures. Reinforcing this point, the negative health effects
and coping objectives are negatively correlated or uncorrelated
with lead exposure objectives (Figures S7 and S8).
These results suggest that, in the case of drinking water, it is

critical to include additional data because SDWA violations are
not consistently reported69 and consideration of community
attributes is critical to capture what communities are exposed
to and also how susceptible they are to such exposures.
Further, the LCR is not structured to measure drinking water
lead exposure equally across a service area.91 More specifically,
Allaire et al8 and McDonald and Jones7 showed that violations
are more likely to occur in low-income or rural regions and in
smaller water systems; Marcillo and Krometis92 identified
increased rates of monitoring and reporting violations in small
water systems, a possible indicator of under-reporting of other
violations and water quality concerns. This observation is
supported by our result showing that a higher incidence of
LCR violations is associated with locations that have a lower
proportion of both Black residents and residents below the
poverty threshold (see Table 1). Is the number of LCR
violations increased in larger, whiter, richer, and more urban
water systems (1) because lead risk is truly higher in these
locations or (2) because smaller, poorer, minority, and rural
systems lack reliable reporting and accurate data? We cannot
clearly answer these questions without a better drinking water
lead monitoring across all water systems; however, our results
do show that the number of violations is an insufficient metric

Table 1. Distribution of Demographics for Locations Identified by Each Objective and Current Project Priority List and
Frequency of LCR Violations

percent Black percent poverty

min median mean max min median mean max

Michigan counties
all Michigan counties 0.35% 1.36% 2.75% 28% 5.50% 12.30% 12.80% 32.10%
current PPL 0.6% 6.4% 8.9% 28.1% 7.4% 12.0% 11.5% 17.2%
LCR violations 0.6% 3.2% 4.0% 8.6% 5.6% 9.6% 9.7% 12.6%
lead in water objective 0.5% 1.1% 2.8% 8.6% 5.6% 10.8% 10.5% 16.3%
alternative sources of lead objective 0.3% 2.0% 5.1% 28.1% 6.0% 10.8% 11.3% 17.2%
negative health effects objective 0.5% 2.1% 5.8% 28.1% 9.1% 12.5% 13.1% 17.2%
coping objective 0.5% 1.0% 1.7% 7.2% 11.2% 16.5% 17.4% 23.1%

Pennsylvania counties
all Pennsylvania counties 0.4% 1.8% 3.1% 31.0% 4.7% 10.2% 10.2% 18.8%
current PPL 0.7% 2.5% 2.8% 4.8% 5.2% 12.2% 12.0% 19.6%
LCR violations 1.1% 2.2% 3.8% 14.1% 4.7% 8.1% 8.5% 11.9%
lead in water objective 1.1% 2.7% 4.2% 14.1% 4.9% 7.7% 8.6% 15.4%
alternative sources of lead objective 0.9% 2.9% 3.3% 7.7% 4.7% 7.3% 7.6% 10.4%
negative health effects objective 0.9% 3.8% 7.1% 31.0% 4.7% 11.4% 11.0% 18.8%
coping objective 0.9% 1.7% 3.5% 20.9% 7.8% 13.1% 12.6% 15.8%
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to identify communities and water systems in need of
infrastructure investment. Frameworks such as what we are
introducing provide a more complete picture of where water
system improvements will result in the greatest benefit, not just
the greatest reduction in number of violations.
4.2. How Do the Demographics of Prioritized

Locations Change Based on the Objective and
Compared to Decision Criteria Such as Current Project
Priority Lists and LCR Violations? When the demographics
represented by the lead in water objective are compared to the
demographics of other objectives, the need to include
attributes other than water system data if equity is a specific
priority project selection priority is highlighted. Further, each
selected objective prioritizes different locations than were
selected by each state’s current selection process, represented
by their respective DWSRF PPLs (see Tables S3−S5). The
current DWSRF PPL funds water system needs beyond lead.
As a result, criteria beyond those selected here are likely
included; therefore, the specific water systems and their
associated counties would be expected to differ from our
results. However, comparing the demographic characteristics
of DWSRF PPLs, the locations identified by our objectives,
and the overall state statistics does allow us to assess how well
equity goals are incorporated into decision-making processes.
Table 1 shows the range, mean, and median statistics across
the set of prioritized projects selected by each of our
objectives, locations with the greatest number of LCR
violations, and the DWSRF PPLs. Demographics for the

locations with the greatest number of LCR violations are
shown for comparison because these would be current priority
locations for LSLR projects. Where the PPL included multiple
projects in the same county, duplicates were removed.
Prioritized county-level demographics changed with the

objectives selected in our model. For Michigan, the top 10
counties based on the lead in water objective have similar
demographics to the counties identified using LCR violation
rankings alone in that the population of those counties has a
lower proportion of Black residents and residents in poverty
than PPL locations. For Michigan, the alternative sources of
lead and negative health effects objectives selected counties
with the highest mean proportion of the Black residents, 5.1
and 5.8%, respectively, but still lower than the current PPL
locations. In contrast, the coping objective selected counties
with the highest proportions of residents below the poverty
threshold, 13.1% of the population on average, higher than the
statewide average and the current priority list (8.9%). In
Pennsylvania, the negative health effects objective selected
counties with the highest average proportion of Black residents
(7.1%), and the coping objective selected counties with the
highest proportion of residents below the poverty threshold
(12.6%). For both objectives, representation was higher than
the demographic statistics for the current priority list (2.8%
average percent Black and 12.0% average percent below
poverty threshold) and state-wide demographics (3.1% average
percent Black and 10.2% average percent below poverty
threshold).

Figure 4. Overall objective functions for (A and C) Michigan and (B and D) Pennsylvania. The additive model is shown in panels A and B, and the
multiplicative form is shown in panels C and D. The top 10 counties are outlined in black in each panel.
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The prior section showed divergence among locations
prioritized by each objective function and clarifies the different
types of communities that would be prioritized for LSLR
funding when lead exposure versus health and coping
attributes are considered in decision-making. These results
are important because, similar to the approach of the EPA’s
EJSCREEN,93 prioritizing environmental justice in infra-
structure decisions requires metrics that combine community
attributes with indicators of exposure. This drove the inclusion
of demographic attributes, such as the proportion of the
population that identifies as Black and the proportion in
poverty, which are included in a subset of objective functions.
This demographic analysis also shows how community
composition changes with the selected objective and confirms
that the inclusion of these variables within the negative health
and coping objectives changes priority rankings. Comparison
of results with the current PPL demographics suggests that the
inclusion of equity consideration is used in the current PPL
selection process. However, the current specific selection
criteria are incorporated into the project weighting process and
do not allow for tradeoffs to be assessed. The method
presented is transparent and allows for this type of tradeoff
assessment to be conducted�valuable information for
decision-makers.
4.3. How Will LSLR Allocation Decisions Change if We

Integrate All Additional Data into Composite Models?
Selecting a prioritization objective function depends on how

specific decision-makers value each objective relative to the
others. If the primary goal of any program targeting a reduction
of lead exposure is a reduction in health risks, then data
beyond lead exposures must be considered.15,18,19 Given that
there is little alignment among county rankings and county
demographics across objectives, an integrated model is critical
to evaluate the implications of all objectives together. For both
the additive and multiplicative composite models shown in
Figure 4, counties in southern Michigan (see Figure 4A,C) and
the southwest and southeast corners of Pennsylvania (see
Figure 4B,D) would be prioritized for LSLR. Both composite
functions have the highest correlation with the lead exposure
measures lead in water and other sources of lead (corr = 0.7−
0.9, p < 0.05 for PA and corr = 0.6−0.9, p < 0.05 for MI). This
is likely due to the higher median objective function value (see
Table S2) and higher weights applied, and to some extent, this
is intentional since LSLR by definition must occur in locations
where lead exposures exist. However, despite similar regional
trends, the scenario that awards funding to only the top 10
counties selects a different set of counties among the two
composite metrics when compared to using the lead in water
objective alone (Figures 3 and 4). For Michigan, there was an
overlap of six counties between the overall additive composite
model and the lead in water objective; for Pennsylvania, there
was an overlap of five. Michigan had an overlap of four
counties between the overall multiplicative composite model

Figure 5. Sensitivity analysis varying objective function weights: fraction of iterations for which a county was ranked in the top quartile. Counties
outlined in black were ranked top 10 using selected weights shown in Figure 3. Results from (A and B) the additive function and (C and D) the
multiplicative function.
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and the lead in water objective; for Pennsylvania, three
counties overlapped.
Three counties in Michigan and two in Pennsylvania,

identified by both cumulative models, were also listed in the
current PPLs. Oakland County, MI, where the highest
proportion of Black residents is located, was identified in
each model and the current PPL. Across the top 10 counties in
Michigan, the average proportion of Black residents is 5.4%
and the average proportion of the population below the
poverty threshold is 10.8%, lower than the PPL demographic
statistics (8.9 and 11.5%, respectively, see Table 1). In
Pennsylvania, the top 10 counties selected have an average
of 3.4% Black residents and 7.5% of the population are below
the poverty threshold, below current PPL averages of 2.8 and
12%, respectively. The availability of water-system-specific data
in Pennsylvania allows us to consider how demographics
change with improved spatial granularity. In both cumulative
models, communities with higher proportions of Black
residents (17%) and communities in poverty (14%) are
identified, which emphasize the value of more accurate spatial
data when making infrastructure investment decisions (see
Section 4.5 for a more detailed PA water system scale analysis).
To put these results in context, composite indices that
combine environmental and community attributes are gaining
in popularity (e.g., the Social Vulnerability Index);24 thus, this

work is a critical step to translating these concepts into water
system decisions. Finally, if equity is a key objective, it should
be defined explicitly and included in the model.
4.4. What Is the Effect of Weight Selection on LSLR

Allocation Decisions? We have compared the prioritized
regions based on two functional forms of composite models
(additive and multiplicative). While Figure 4 shows that some
variation exists between functional forms, the selection of
weights introduces a high level of uncertainty. Figure 5 shows
the sensitivity of results to changing objective function
weighting: the additive and multiplicative functional forms
for Michigan in Figure 5A,C and for Pennsylvania in Figure
5B,D. When selecting weights, the numerical range of each
attribute and overall objectives must also be considered. Table
S2 shows the range, median, and average statistics for each
attribute and objective function. The lead exposure objectives
(i.e., lead in water and other sources of lead) cover the largest
range and have average values up to six times higher than the
average negative health effect objective value: 2.75 vs 0.64 for
Michigan counties, 3.4 vs 0.55 for Pennsylvania counties, and
1.22 vs 1.6 for Pennsylvania water systems. This difference in
range exacerbates the effect of the higher weights selected for
the lead exposure objectives. The sensitivity analysis conducted
is designed to quantify the effect of objective function weights
on overall compositive model rankings. To accurately assess

Figure 6. Water system level results calculated for Pennsylvania. The top row (A and B) shows the results of the lead exposure objectives. The
middle row (C and D) shows the community susceptibility objectives. The additive overall objective function is shown in the bottom left (E), and
the multiplicative form is in the bottom right (F). The top 10 counties for each are indicated with black dots in each panel. County boundaries are
shown to illustrate how water system level objective function values can vary within county boundaries.

ACS ES&T Engineering pubs.acs.org/estengg Article

https://doi.org/10.1021/acsestengg.2c00008
ACS EST Engg. 2022, 2, 1475−1490

1485

https://pubs.acs.org/doi/suppl/10.1021/acsestengg.2c00008/suppl_file/ee2c00008_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestengg.2c00008/suppl_file/ee2c00008_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsestengg.2c00008?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.2c00008?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.2c00008?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.2c00008?fig=fig6&ref=pdf
pubs.acs.org/estengg?ref=pdf
https://doi.org/10.1021/acsestengg.2c00008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the effect of weight on prioritization separate from the effects
of numerical range, objective values were normalized such that
they all have the same range (from 0 to 10) in the sensitivity
analysis.
Across all simulated weighting schemes, most counties are

ranked in the top quartile in at least 25% of simulations,
indicating the importance of weight selection. If results did not
vary with weight selection, we would expect to see most
counties never ranked in the top quartile and a consistent
subset of counties ranked in the top quartile under the vast
majority of weighting schemes. Of the top 10 list of counties
from the original weighting (see Figure 4), only Montgomery
County in southeastern Pennsylvania was ranked in the top
quartile in greater than 50% of the simulated weighting
schemes, indicating that a different weighting would likely
change the counties selected for LSLR funding. Weight
selection is a critical step in a decision-making process, yet
many metrics combine diverse data including indices and
weight data equally. As shown here, weight selection can have
an effect on the decision outcome; here, the allocation of
limited resources differs depending on weight.
4.5. How Will LSLR Allocation Decisions Change with

Spatial Scale? Many counties in Michigan and Pennsylvania
have multiple water systems; however, in Michigan, the
smallest geography at which water systems are matched is
the county. Therefore, the county is the smallest scale at which
community attributes can be matched to water systems and
subsequent analyses can be conducted. However, making
LSLR decisions at the county scale ignores the physical reality
that water systems do not follow county boundaries. Many
water systems can exist within a single county, and many
people within a county may not be served by public water
systems but rather by private wells. The effect is that
communities with the most to gain from LSLR may not be
identified, particularly if the system is small or if water systems
that do not have increased lead exposures are proximate to
others with elevated lead exposures.
A high regional variability requires a more resolved spatial

resolution to be used in data analysis.94 We test the effect of
using higher resolution data from Pennsylvania, where water
system boundaries are published, on our data analysis method
by comparing objective function results at the county scale
(Figures 3 and 4) and the water system scale (Figure 6). The
results indicate that refining the spatial scale would allow for a
more targeted allocation of funds. In other words, specific
water systems with an increased number of LCR violations or
lead in water objective values are surrounded by systems with
no violations and lead in water objectives values of zero within
the same county (Figure 6A). Similarly, there is variability
within counties for the other sources of lead, population
susceptibility, and coping objectives (Figure 6B−D). These
findings carry through to the combined objective functions
(Figure 6E,F) and demonstrate that county-level resolution is
not sufficient for the efficient allocation of DWSRF resources
within LSLR programs. In fact, it is likely that improved
allocation could be further achieved by resolution at the
neighborhood scale, as lead service lines, elevated water lead
levels, and community attributes associated with the negative
health effects of lead are not uniform within water system
boundaries either. However, insufficient data existed to test
this hypothesis.
4.6. Implications for Decision-Makers. Decision-makers

are the stakeholders who are responsible for allocating funds to

water systems and identifying the types of projects to fund. In
this case, the primacy agency, which is responsible for selecting
the water systems and projects to award state revolving loan
funds, is the decision-maker.
Consequently, to prioritize societal benefits, decision-makers

must consider locations where exposures and populations
susceptible to negative health outcomes or less able to cope
with those exposures exist. Key findings for Michigan and
Pennsylvania indicate that communities at an increased
likelihood of lead in drinking water are not necessarily
experiencing an increased likelihood of other compounding
stressors. This analysis found that these locations will not likely
be identified without explicit consideration of water quality
data and additional relevant community attribute data. As a
result, decision-making processes need to be altered to
incorporate relevant community information.
Work by social epidemiologists39,40,95 has demonstrated how

to integrate water-system-specific data, such as infrastructure
status, with other community attributes. We found lead
exposure objectives to be uncorrelated or negatively correlated
with community susceptibility to lead exposure objectives and
demonstrated the value of considering community character-
istics and why such techniques should be applied to water
system decision-making. Studies that have extensively collected
household-level data51,63 have demonstrated the importance of
characterizing the relationships between people, housing, and
environmental pollution, such as drinking water contamina-
tion. However, when comparing across hundreds or thousands
of water systems within a state, household-specific data
collection is not feasible, and such household-level studies do
not always explore ways to use proxy variables to resolve a lack
of household attributes in other communities. For example,
can census tract-level data be used where household data are
not attainable? Two examples of the use of census tract-level
data are the social vulnerability index24 and the municipal
vulnerability index.54 While imperfect, these metrics as well as
the index introduced in this study allow for the inclusion of
critical community characteristics in comparison across states.
Yet, additional work is needed to better describe how proxy
variables should be used in place of community-specific data.
For example, previous work has shown that the commonly
used method of evaluating household water affordability as a
percentage of median household income is flawed.96,97

However, as was done here, the percent of the population in
poverty is used as a measure of community affordability or
ability to cope financially may be a reasonable proxy.
A major contribution of this work is the explicit

quantification of the effect of weight selection on decision
outcomes. A limitation of the existing environmental health
and vulnerability indices reviewed includes equal weighting of
all attributes and the singular focus on use of an additive
model.24,54,63 While many discuss the importance of weight
selection, the effects of the equal weighting selected are not
tested. Our results (1) demonstrated the significant effect of
attribute weighting on location-based priority rankings, raising
concerns about the equal weighting used in most water risk
indices, and (2) identified weight selection as a critical step in
the decision-making process. However, in this paper, weights
were only applied when combining objectives and were not
applied to individual attributes. Future work should include
evaluating the effect of weighting individual attributes through
additional sensitivity analysis.
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We have shown that a utility-theory-based framework
provides flexibility, transparency, and adaptability to new
stakeholders, and identifies new water system priorities,
reducing the likelihood of non-optimal resource allocation.
Within this framework, decision-makers should first determine
the key objectives that need to be considered based on
discussions with key local stakeholders (e.g., residents,
community development groups, public health experts, water
utility operators, etc.). Based on the objectives selected, the
required attributes, model forms, and weight are then
considered. Weighting may be complex depending on the
decision objectives, stakeholders, and decision-makers in-
volved, and this complexity should be considered when
selecting an elicitation method. Guidance for selecting
attributes and weights, structuring, and combining objectives
is provided in Keeney’s work (Value-Focused Thinking).88 We
consider two models, additive and multiplicative, to combine
exposure and community attributes. Comparing the results and
changes in locations ranked top 10 for each functional form
highlighted the importance of function form on decision-
making. Selecting the correct functional form can be difficult
even for experts, and comparison of results across multiple
forms is one approach to analyzing the importance and the
effects of this assumption. With these models, we conducted a
sensitivity analysis to quantify the effect of objective weighting
on the rankings of counties or water systems selected for
limited LSLR program funds and provide a template for
decision-makers to follow. However, we do not consider the
effect of weight on individual attributes. While this can be
onerous when many attributes are used, the effect of this
assumption should be assessed in future work. Additionally,
future work should include an analysis of how this method
supports drinking water stakeholders who are assessing the
tradeoffs of allocating resources to address different contam-
inants beyond lead. Further, this method can also be applied
within a single utility’s service area to assess the neighborhoods
for prioritized LSLR projects or improved monitoring.
A drawback of this type of utility theory approach is that

validating results can be difficult, and decision-makers should
consider how to validate their results. We recommend that
decision-makers should, when possible, choose attributes from
indices or studies that have already validated the attributes’
relationship to or correlation with the outcome of interest. A
sensitivity analysis should be completed to check the
outcome’s robustness to spatial scale and weight. Lastly,
decision-makers should check their results against empirical
evidence when available. Evidence used in prior works to
validate index results includes expert opinion,30 prior studies
relating an attribute to an outcome,54 and post-event
statistics,49 if attempting to reconcile an index projection
with an actual event.
4.7. Implications for Policy Makers. Policy makers are

stakeholders who are responsible for setting drinking water
regulatory requirements and funding guidelines. The U.S.
government has recognized the need for local water systems to
remove lead service lines with the recent allocation of $15
billion toward this end under the Infrastructure Investment
and Jobs Act.41 While significant, the cost to remove all lead
service lines in the United States is estimated to cost between
$28 and $47 billion.44 In this case, policy makers (primarily the
federal EPA) have the mandate for setting requirements and
priorities for the Infrastructure Investment and Jobs Act.

At the state level, state regulatory agencies will be
responsible for prioritizing the distribution of available funds
to water systems across their states with federal guidelines. For
lead, which has many exposure routes, determining where to
allocate LSLR program funds is a complex decision. Decision
tools such as the one we have introduced can help policy
makers identify the implications and tradeoffs among different
regulations or funding guidelines ahead of rulemaking by
clarifying where the greatest benefits can be realized.
Furthermore, this method allows policy writers to better
understand the sensitivity of funding allocation decisions
around community attributes beyond drinking water lead
levels and the weighting (i.e., prioritization) of both attributes
and objectives within an overall composite model.
Proactive analysis of the equity and public health

implications of rulemaking is critical, particularly with lead.
Examples from Flint, MI, and Washington, DC, highlight the
importance of such proactivity because, while significant
funding for LSLR programs has been allocated, this occurred
only after the communities suffered significant exposure to
lead.98,99 In these examples, the approach to LSLR was
reactionary and is unacceptable for contaminants such as lead,
which has irreversible health outcomes.100,101 A benefit of the
method developed here is that it allows policy makers to
identify communities that have an increased likelihood of lead
exposure and that are at the greatest risk of negative health
effects or have a reduced ability to cope as a consequence of
exposure. Yet, these results are not exact, and future work
should include a quantification of the sources of uncertainty
and the effects of both sampling and model uncertainty on
prioritization recommendations for LSLR. For example, the
lead in water exposure objective used here was created based
on the best available data, LCR violations, and the median and
90th percentile of lead concentrations in water samples
collected for each water system. However, the LCR requires
only 100 samples for community water systems serving greater
than 100,000 people70 or 0.1% of houses served. This is
insufficient for proper characterization of lead exposure in
drinking water across an entire service area, and as a result,
lead in drinking water exposure is uncertain.46 Further, most
water systems lack the resources to consistently sample a
representative number of locations, and therefore, a policy
change is required to allow for a more accurate characterization
of drinking water lead exposure across all public water systems.
Future work should include a comparison of how prioritization
changes if policy changes are made that require improved data
collection of lead exposures.
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