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Abstract: Silybum marianum (L.) Gaertn, viz. milk thistle, has been the focus of research efforts in the
past few years, albeit almost exclusively restricted to the medicinal properties of its fruits (achenes).
Given that other milk thistle plant organs and tissues have been scarcely investigated for the pres-
ence of bioactive compounds, in this study, we present a phytochemical analysis of the extracts of
S. marianum capitula during the flowering phenological stage (stage 67). Gas chromatography–mass
spectroscopy results evidenced the presence of high contents of coniferyl alcohol (47.4%), and sec-
ondarily of ferulic acid ester, opening a new valorization strategy of this plant based on the former
high-added-value component. Moreover, the application of the hydro-methanolic extracts as an
antifungal agent has been also explored. Specifically, their activity against three fungal species respon-
sible for the so-called Botryosphaeria dieback of grapevine (Neofusicoccum parvum, Dothiorella viticola
and Diplodia seriata) has been assayed both in vitro and in vivo. From the mycelial growth inhibition
assays, the best results (EC90 values of 303, 366, and 355 µg·mL−1 for N. parvum, D. viticola, and D. se-
riata, respectively) were not obtained for the hydroalcoholic extract alone, but after its conjugation
with stevioside, which resulted in a strong synergistic behavior. Greenhouse experiments confirmed
the efficacy of the conjugated complexes, pointing to the potential of the combination of milk thistle
extracts with stevioside as a promising plant protection product in organic Viticulture.

Keywords: coniferyl alcohol; ferulic acid; grapevine trunk diseases; milk thistle; stevioside

1. Introduction

Silybum marianum (L.) Gaertn (syn. Carduus marianus L.), commonly known as milk
thistle, St. Mary’s Thistle, or wild artichoke, is an herbaceous plant of the Asteraceae family.
Native to the Mediterranean area, it is nowadays grown in many countries as a medicinal
plant, due to the variety of biological activities—mostly linked to the hepatoprotective
properties and anti-carcinogenic capacity—associated with the main pharmacological
active ingredient extracted from its achenes (fruits): silymarin [1,2].

The standardized extract obtained from the dried fruits of S. marianum contains
70–80% of silymarin and 20–30% of polymeric and oxidized polyphenolic compounds [3].
Silymarin is a flavonolignan complex of polyphenolic molecules, which includes diaster-
ereoisomers silybin A and silybin B (whose mixture in a 1:1 ratio is named silibinin),
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silydianin, silychristin, isosilychristin, isosilybin A and isosilybin B, and the taxifolin fla-
vanonol [4]. Biosynthesis of silybins from taxifolin and coniferyl alcohol is schematized in
Figure S1 [5].

Most research has been focused on the study of silymarin, or its major compound
silybin, instead of the plant as a whole. The concentration of silymarin is organ-dependent,
and it is only localized in the outer portion of the fruit, which includes all the cell layers
from the pericarp epidermis to the albumen, and embryos [6], accounting for 1.5–4.3% of
the fruit weight [7]. Silymarin is not present in flowers, stems, or leaves, and it is not found
in steps before the development of fruit [8,9], which explains why other milk thistle plant
organs have been scarcely investigated for bioactive compounds: total polyphenol and
flavonoid contents in leaves’ extracts were studied by Saidi, et al. [10]; a phytochemical
screening and gas chromatography–mass spectrometry (GC–MS) analysis of bioactive
compounds present in ethanolic leaves extract was conducted by Mani, et al. [11]; and
Sulas, et al. [12] studied the concentrations of crude protein, fat, total phenolics, and total
flavonoids in leaves, heads, and stems.

A thorough search of the relevant literature yielded no analyses of the phytochemicals
present in the capitula in the flowering stage, prior to seed maturation. Nonetheless,
the existence of some precursors proposed in the bibliography, such as coniferyl alcohol
or ferulic acid, may be expected (Figure S2) [5]. Coniferyl alcohol is one of the main
monolignols of angiosperm dicotyledons [13], and it is distributed throughout the milk
thistle plant [8]. It is associated with the defense mechanisms of trees and is known
to have inhibitory activity against the growth of fungi [14,15]. Ferulic acid (4-hydroxy-3-
methoxycinnamic acid) and its precursors, p-coumaric acid, and caffeic acid, are metabolites
in the biosynthesis of lignins. These compounds are intermediates in the biosynthesis of
some important natural products very often found in plants, such as p-coumaryl alcohol,
curcumin, chlorogenic acid, diferulic acids, sinapic acid, synapyl alcohol, coniferyl alcohol,
vanillin, etc. [16].

Regarding the antifungal activity of the above-cited compounds, the literature indi-
cates that silymarin is effective against yeasts like Candida spp. (C. albicans (C.P. Robin)
Berkhout, C. krusei (Castellani) Berkhout, and C. glabrata (H.W. Anderson) S.A. Mey. &
Yarrow) [17,18], and that coniferyl derivatives are effective against Cladosporium cucumer-
inum Ellis & Arthur and C. albicans [19]. Ferulic acid has been reported as an inhibitor of
the fungal growth of, for instance, Pythium spp. [20], Fusarium spp. [21,22], and Aspergillus
spp. [23,24]. Esters of ferulic acid were found to be more potent antimicrobial agents than
amides and anilides, according to Khatkar, et al. [25], and their high antimicrobial activity
was evidenced by the results of Mahiwal, et al. [26].

Concerning the control of Botryosphaeriaceous fungi—which are recognized as ag-
gressive plant pathogens on different types of hosts, from agricultural crops to ornamental
and forest species—[27], ferulic acid has been assayed against taxa like Diplodia seriata and
Neofusicoccum parvum, and against other grapevine trunk pathogens such as Eutypa lata
(Pers.) Tul. & C.Tul., Phaeomoniella chlamydospora (W. Gams, Crous, M.J. Wingf. & Mugnai)
Crous & W. Gams and Phaeoacremonium minimum (Tul. & C. Tul.) Gramaje, L. Mostert &
Crous [28–30], but the activity of S. marianum extracts or coniferyl alcohol has not been as-
sayed to date, in spite of the importance of these phytopathogens in economically important
crops like Viticulture [31].

In this study, a phytochemical analysis of the extracts of S. marianum capitula during
the flowering phenological stage (stage 67, when the head disk is covered by open florets
(i.e., during the flowering stage and before the development of fruit)) is presented, with
the aim of exploring the presence of high-added-value components and the potential appli-
cation the hydro-methanolic extracts as antifungal agents against three Botryosphaeriaceae
species that play a major role in the so-called grapevine trunk diseases (GTDs). To circum-
vent the bioavailability problems associated with the very low solubility in water of ferulic
acid [32], coniferyl alcohol, and other constituents, inclusion compounds or conjugate
complexes with terpene glycosides may be formed [33]. In this study, stevioside (the major



Plants 2021, 10, 1363 3 of 15

constituent of Stevia rebaudiana (Bertoni) Bertoni extract), which has antifungal properties,
has been chosen to form such conjugate complexes, aiming at an enhancement of activity
through synergism.

2. Material and Methods
2.1. Plant Material, Reagents, and Fungal Isolates

The specimens of S. marianum under study were collected in the banks of Carrión river
as it passes through the town of Palencia (Spain) during stage 67 (or 6N7) according to the
extended BBCH scale [34]. This stage was chosen because silybins precursors (Figure S1)
should not have yet been consumed. The capitula of S. marianum were shade-dried and
pulverized to fine powder in a mechanical grinder. Different specimens (n = 25) were
thoroughly mixed to obtain a composite sample.

Chitosan (CAS 9012-76-4; high MW: 310,000–375,000 Da) was supplied by Hangzhou
Simit Chem. and Tech. Co. (Hangzhou, China). NeutraseTM 0.8 L enzyme was supplied by
Novozymes A/S (Bagsværd, Denmark). Stevioside (CAS 57817-89-7, 99%) was purchased
from Wako Chemicals GmbH (Neuss, Germany). Coniferyl alcohol (CAS 458-35-5, 98%),
ferulic acid (CAS 537-98-4, European Pharmacopoeia Reference Standard), sodium alginate
(CAS 9005-38-3), calcium carbonate (CAS 471-34-1, ≥99.0%), and methanol (CAS 67-56-
1, UHPLC, suitable for mass spectrometry) were acquired from Sigma-Aldrich Química
(Madrid, Spain). PDA (potato dextrose agar) was supplied by Becton Dickinson (Bergen
County, NJ, USA).

The three fungal pathogens (Table 1) were supplied as lyophilized vials (later recon-
stituted and refreshed as PDA subcultures) by the Agricultural Technological Institute of
Castilla and Leon (ITACYL, Valladolid, Spain) [35].

Table 1. Fungal isolates used in the study.

Code Isolate Binomial Nomenclature Geographical Origin Host/Date

ITACYL_F111 Y-091-03-01c
Neofusicoccum parvum (Pennycook

& Samuels) Crous, Slippers &
A.J.L.Phillips

Spain
(Navarra, nursery)

Grapevine (‘Verdejo’)
2006

ITACYL_F118 Y-103-08-01 Dothiorella viticola A.J.L.Phillips &
J.Luque

Spain
(Extremadura)

Grapevine
2004

ITACYL_F098 Y-084-01-01a Diplodia seriata De Not. Spain
(DO Toro)

Grapevine (‘Tempranillo’)
2004

2.2. Preparation of Plant Extracts

Silybum marianum capitula samples were mixed (1:20, w/v) with a methanol/water
solution (1:1 v/v) and heated in a water bath at 50 ◦C for 30 min, followed by sonication for
5 min in pulse mode with a 1 min stop for each 2.5 min, using a probe-type ultrasonicator
model UIP1000hdT (Hielscher Ultrasonics, Teltow, Germany; 1000 W, 20 kHz). The solution
was then centrifuged at 9000 rpm for 15 min and the supernatant was filtered through
Whatman No. 1 paper. Finally, aliquots of the extract were lyophilized for infrared
spectroscopy analyses.

2.3. Physicochemical Characterization of S. marianum Extracts

The infrared vibrational spectra were registered using a Thermo Scientific (Waltham,
MA, USA) Nicolet iS50 Fourier-transform infrared spectrometer, equipped with an in-
built diamond attenuated total reflection (ATR) system. The spectra were collected with a
1 cm−1 spectral resolution over the 400–4000 cm−1 range, taking the interferograms that
resulted from co-adding 64 scans. The spectra were then corrected using the advanced
ATR correction algorithm [36] available in OMNICTM software suite.

The hydroalcoholic plant extracts were studied by gas chromatography–mass spec-
trometry (GC–MS) at the Research Support Services (STI) at Universidad de Alicante
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(Alicante, Spain), using a gas chromatograph model 7890A coupled to a quadrupole mass
spectrometer model 5975C (both from Agilent Technologies). The chromatographic condi-
tions were: injection volume = 1 µL; injector temperature = 280 ◦C, in splitless mode; initial
oven temperature = 60 ◦C, 2 min, followed by ramp of 10 ◦C/min up to a final temperature
of 300 ◦C, 15 min. The chromatographic column used for the separation of the compounds
was an Agilent Technologies HP-5MS UI of 30 m length, 0.250 mm diameter and 0.25 µm
film. The mass spectrometer conditions were: temperature of the electron impact source of
the mass spectrometer = 230 ◦C and of the quadrupole = 150 ◦C; ionization energy = 70 eV.
NIST11 library and Adams [37] were used for compound identification.

2.4. Preparation of Bioactive Formulations

The stevioside–S. marianum, stevioside–coniferyl alcohol, and stevioside–ferulic acid
conjugate complexes were obtained by mixing of the respective solutions in a 1:1 (v/v) ratio.
The mixture was then sonicated for 15 min in five 3-min periods (so that the temperature
did not exceed 60 ◦C) using a probe-type ultrasonicator [38].

2.5. Antifungal Activity Assessment
2.5.1. In Vitro Tests of Mycelial Growth Inhibition

The antifungal activity of the different treatments was determined using the agar
dilution method according to EUCAST standard antifungal susceptibility testing proce-
dures [39], by incorporating aliquots of stock solutions onto the PDA medium to obtain
concentrations in the 62.5–1500 µg·mL−1 range. The solutions were added to the PDA after
being sterilized in an autoclave, when the temperature of the medium was close to that
of polymerization (over 60 ◦C), in the same way that antibiotics are usually incorporated
into these synthetic media. Mycelial plugs (∅ = 5 mm), from the margin of 1-week-old
PDA cultures of N. parvum, D. viticola or D. seriata, were transferred to the center of plates
incorporating the above-mentioned concentrations for each treatment (3 plates per treat-
ment/concentration, with 2 replicates). Plates were then incubated at 25 ◦C in the dark
for a week. PDA medium without any amendment was used as control. Mycelial growth
inhibition was estimated according to the formula: ((dc − dt)/dc) × 100, where dc and
dt represent the average diameters of the fungal colony of the control and of the treated
fungal colony, respectively. Effective concentrations (EC50 and EC90) were estimated using
PROBIT analysis in IBM SPSS Statistics v.25 (IBM; Armonk, NY, USA) software. The level
of interaction, i.e., synergy factors, were determined according to Wadley’s method [40].

2.5.2. Greenhouse Bioassays on Grafted Plants

Together with the experiments of mycelial growth inhibition in vitro, bioassays with
stevioside–S. marianum conjugate complexes were performed in living grapevine plants
in order to scale the protective capabilities of these compounds against certain selected
Botryosphaeriaceae species usually associated with GTD symptoms on young grapevine
plants. Especially, N. parvum, D. viticola, and D. seriata were selected for the in vivo assay
due to their significant presence as part of the contingent of fungi associated with decay
problems in young vine plants [41] in Spain and other viticultural areas internationally.
Plant material consisted of 30 plants each of cultivars ‘Tempranillo’ (CL. 32 clone) (2-years
old) and ‘Garnacha’ (VCR3 clone) (one year old) grafted on 775P and 110R rootstocks,
respectively (60 plants in total). Each grapevine plant was grown on a 3.5 L plastic pot
containing a mixed substrate of moss peat and sterilized natural soil (75:25), incorporating
slow release fertilizer when needed. Plants were kept in the greenhouse with drip irrigation
and anti-weed ground cover for six months (June–December 2020). One week after placing
them in the pots, grapevine plants were artificially inoculated with the mentioned three
Botryosphaeriaceae taxa along with the stevioside–S. marianum treatment. Five repetitions
were arranged for each pathogen/control product combination and variety (‘Tempranillo’
and ‘Garnacha’), together with 8 positive controls (4 per grapevine variety) inoculated only
with the pathogens, plus 6 negative controls (incorporating only the bioactive product), 3
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for each variety (Table S1). Artificial inoculations of the pathogens and the control product
were carried out directly on the trunk of the living plants at two sites per plant stand
(separated a minimum of 5 cm among them) below the grafting point and not reaching
the root crown. For the pathogens, agar plugs coming from 5-days-old fresh PDA cultures
of each species were used as fungal inoculum. In the mentioned two inoculation points
of each grapevine plant, slits (made up with a scalpel) of approx. 15 mm in diameter
and 5 mm deep were done. After this, 5 mm diameter agar plugs were inoculated in
contact with vascular tissues in the stem. Calcium alginate beads served as a dispersal
matrix for the different control products and conjugates assayed, and were placed at both
sides of the agar plug. For this, beads were prepared as follows: the control product was
added to a 3% sodium alginate solution in a 2:8 ratio (20 mL compound/80 mL sodium
alginate). Then, this solution was dispensed drop by drop onto a 3% calcium carbonate
solution resulting in beads of 4–6 mm diameter containing the different control treatments.
Finally, both agar plugs and beads were covered with cotton soaked in sterile bi-distilled
water and sealed with ParafilmTM tape. During the assay period, application of copper
to control powdery mildew outbreaks was performed in mid-July, together with a first
sprouting (followed by periodic sprouting). Grapevine plants were visually examined
weekly during the whole assay period, and the presence of foliar symptoms—including
both internerval and nerval necroses—was scored to establish correlations between these
and vascular symptoms at the end of bioassay. After six months in the greenhouse, plants
were removed and two sections of the inoculated stems between the grafting point and the
root crown were prepared, sectioned longitudinally, and the length of the vascular necroses
caused by the different pathogens evaluated. Thus, the length of the vascular necroses was
measured longitudinally on upper and lower directions from the inoculation point for both
halves of the longitudinal cut, and the averages were statistically analyzed and compared
depending on the type of pathogen and product formulation employed. All the data were
compared with controls. Finally, grapevine plants removed and measured at the end of
the assay were also processed (after taking measures) to re-isolate the different pathogens
previously inoculated. Then, wood chips (0.5 cm long) exhibiting vascular necroses (1–2 cm
around the wounds) were washed, surface sterilized, placed on PDA plates amended with
streptomycin sulphate (to prevent bacterial contamination) and incubated at 26 ◦C in the
dark in a culture chamber for 2–3 days to fulfil Koch’s postulates.

2.6. Statistical Analyses

The results of the in vitro inhibition of mycelial growth of the three phytopathogens
by the different concentrations of the treatments were statistically analyzed using one-
way analysis of variance (ANOVA), followed by post hoc comparison of means through
Tukey’s test at p < 0.05 (provided that the homogeneity and homoscedasticity requirements
were satisfied, according to the Shapiro–Wilk and Levene tests). In the case of the green-
house assay results, since the normality and homoscedasticity requirements were not met,
Kruskal–Wallis non-parametric test was used instead, with Conover–Iman test for post hoc
multiple pairwise comparisons. R statistical software was used [42].

3. Results
3.1. Vibrational Characterization

The assignments of the major absorption IR bands in S. marianum extract spectrum
(Figure S3) are presented in Table 2. The most prominent bands occurred at 3335, 1651–1602,
1457, 1313, 1242, and 1029 cm−1. The band at 3335 cm−1 is attributed to phenolic (OH)
vibrations; the multi-peak band at 1651 cm−1 to mixed (C=O) amide and (C=C) vibra-
tions; the peak at 1515 cm−1 (typical of ferulic acid and vanillin) to >C=C< aromatic;
the peak at 1457 cm−1 to symmetric aromatic ring stretching vibration (C=C ring); and
the peaks at 1030 cm−1 and 779 cm−1 to C-O stretching and C=C, respectively (both
vanillin-related peaks).
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Table 2. Main bands in the FTIR spectra of S. marianum lyophilized hydromethanolic extract, silymarin and ferulic acid.
Band positions are expressed in cm−1.

Silybum marianum Silymarin Ferulic Acid Assignments

3335 3331 OH group in phenolic compounds
3279

3069
2918 2932 2926 O–H stretching

1651
1634 x

1649

skeletal vibration due to aromatic C=C ring stretching and C=O
stretching

1602 1605 aromatic C=C stretching
1558 >C=C< aromatic
1515
1457 x

1458

1510
x

symmetric aromatic ring stretching vibration (C=C ring)

1429 1434 olefinic C–H
1313 1329 C–H vibration of the methyl group

1275 Carboxylic acid C=O stretching
1242 1257

1126 in plane =C–H bending/C=C stretching
1030 1076 C–O stretching/O-H out plane bending

941

779
x x

721
x

693

C=C on the aromatic ring
methylene rocking vibration

3.2. Gas Chromatography–Mass Spectrometry (GC-MS)

GC-MS analyses of the hydro-methanolic extract of S. marianum (Figure S4) allowed
for the identification of 4-((1E)-3-hydroxy-1-propenyl)-2-methoxyphenol (also named
coniferyl alcohol or γ-hydroxyisoeugenol); its analogue trans-isoeugenol; 2-propenoic
acid, 3-(4-hydroxy-3-methoxyphenyl)-, methyl ester (known as ferulic acid methyl ester);
2-methoxyphenol; and 4-hydroxy-3-methylacetophenone as the main components (Table 3,
Figure S5).

Table 3. Phytochemical compounds identified by GC-MS in the hydromethanolic extract of S. marianum capitula in
phenological stage 67.

Peak Rt (min) Area (%) Tentative Assignments

1 4.8755 2.67 methoxy-phenyl-oxime
2 6.0099 3.50 glycerin
3 7.3293 2.62 hexamethyl-cyclotrisiloxane; tris(tert-butyldimethylsilyloxy)arsane
4 7.6360 7.31 2-methoxy-phenol
5 9.4764 2.48 2,3-dihydro-benzofurane
6 9.6516 1.95 methenamine
7 10.8737 3.92 4-hydroxy-3-methylacetophenone
8 12.0275 1.64 vanillin
9 12.6653 1.51 trans-isoeugenol
10 13.0548 1.36 6-methoxy-3-methylbenzofuran

11 15.3139 1.69 4-((1E)-3-hydroxy-1-propenyl)-2-methoxyphenol
(also named coniferol or γ-hydroxyisoeugenol)

12 15.5865 0.82 2-hydroxy-4-isopropyl-7-methoxytropone
13 15.9370 1.68 4-hydroxy-3-methoxybenzeneacetic acid, -, methyl ester

14 16.0636 45.64 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol
(also named coniferol or γ-hydroxyisoeugenol)

15 17.1153 14.99 2-propenoic acid, 3-(4-hydroxy-3-methoxyphenyl)-, methyl ester
(also named ferulic acid methyl ester)
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Table 3. Cont.

Peak Rt (min) Area (%) Tentative Assignments

16 17.9234 0.49 ethyl (2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate
17 19.5447 0.67 9,15-octadecadienoic acid, methyl ester, (Z,Z)-
18 21.1027 2.93 2-(1,4,4-trimethyl-cyclohex-2-enyl)-ethanol
19 24.4377 2.13 9,12-octadecadienoic acid (Z,Z)-, 2,3-dihydroxypropyl ester

Peak = peak identification; Rt = retention time, expressed in minutes; Area = relative peak area percentage.

3.3. Antifungal Activity
3.3.1. In Vitro Growth Inhibition Tests

The results of the mycelial growth inhibition tests are summarized in Figure 1. When
tested alone, a higher efficacy of coniferyl alcohol as compared to ferulic acid could be
observed: full inhibition was only reached for the former in the case of N. parvum and
D. viticola. In the case of D. seriata, for which both treatments resulted in full inhibition,
it was attained at a lower dose for coniferyl alcohol (1000 vs. 1500 µg·mL−1). Hence, the
antifungal efficacy found for the extracts should be mostly ascribed to its main constituent.
On the other hand, upon conjugation with stevioside, a clear enhancement in terms of
efficacy was found in all cases, which was particularly evident in the case of the extracts,
for which even higher inhibition than that of the coniferyl alcohol conjugates was attained
at almost all concentrations against the three pathogens.

If effective concentrations are compared (Table 4), differences in the efficacy of the
treatments as a function of the pathogen could be observed for some of the treatments more
clearly: for instance, a slightly higher efficacy of stevioside and stevioside–S. marianum
conjugate complex was found against N. parvum, and D. seriata seemed to be particularly
sensitive to ferulic acid and its conjugate. On the other hand, the response of the three
fungi to the coniferyl alcohol-based treatments was very similar.

Table 4. Estimated EC50 and EC90 effective concentrations. Values are expressed in µg·mL−1, and are followed by the
standard errors of the fit.

Pathogen EC Stevioside S. marianum Stevioside–
S. marianum

Coniferyl
Alcohol

Stevioside–
Coniferyl Alcohol Ferulic Acid Stevioside–

Ferulic Acid

N. parvum EC50 152.2 ± 13.4 677.2 ± 47.0 89.2 ± 15.3 214.3 ± 26.2 157.8 ± 16.6 1394.5 ± 63.0 465.9 ± 27.51
EC90 824.1 ± 56.7 2938.3 ± 286.6 262.1 ± 19.2 1005.1 ± 71.3 384.9 ± 22.8 2948.6 ± 268.1 1132.7 ± 127.3

D. viticola
EC50 271.4 ± 26.6 1088.4 ± 93.8 148.3 ± 11.7 361.1 ± 38.8 156.5 ± 8.3 1387.2 ± 134.3 544.5 ± 24.4
EC90 1017.0 ± 74.3 9943.2 ± 1038.6 360.7 ± 39.0 988.5 ± 88.6 368.2 ± 26.6 3921.3 ± 438.6 1183.2 ± 111.0

D. seriata
EC50 230.1 ± 15.3 703.0 ± 26.6 127.1 ± 15.5 370.3 ± 10.4 191.6 ± 12.6 433.0 ± 31.5 209.0 ± 18.1
EC90 840.5 ± 62.3 1461.1 ± 111.8 355.4 ± 38.1 913.2 ± 65.6 360.5 ± 29.6 903.4 ± 74.4 465.9 ± 33.2

N. parvum = Neofusicoccum parvum; D. viticola = Dothiorella viticola; D. seriata = Diplodia seriata; S. marianum = Silybum marianum; EC = effective
concentration; EC50 and EC90 = 50% and 90% effective concentrations, respectively.

In concordance with the above statements, the calculation of synergy factors (Table 5)
indicated a strong synergistic behavior for the stevioside–S. marianum conjugate, with SF
values in the 2.7–5.1 range.

Table 5. Synergy factors for the stevioside–S. marianum conjugate complex against the three
Botryosphaeriaceae taxa.

Effective Concentration N. parvum D. viticola D. seriata

EC50 2.8 2.9 2.7
EC90 4.9 5.1 3.0

N. parvum = Neofusicoccum parvum; D. viticola = Dothiorella viticola; D. seriata = Diplodia seriata; S. marianum =
Silybum marianum; EC50 and EC90 = 50% and 90% effective concentrations, respectively. Synergy factors are
expressed as absolute values.
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Figure 1. Colony growth measures of (a) N. parvum, (b) D. viticola, and (c) D. seriata strains when cultured in PDA plates 

containing the various control products (viz. stevioside, S. marianum hydromethanolic extract, coniferyl alcohol, ferulic 

acid, stevioside–S. marianum, stevioside–coniferyl alcohol and stevioside–ferulic acid conjugate complexes) at 

concentrations in the 62.5–1500 μg·mL−1 range. The same letters above concentrations indicate that they are not 

significantly different at p < 0.05. Error bars represent standard deviations. 

If effective concentrations are compared (Table 4), differences in the efficacy of the 

treatments as a function of the pathogen could be observed for some of the treatments 

more clearly: for instance, a slightly higher efficacy of stevioside and stevioside–S. 

marianum conjugate complex was found against N. parvum, and D. seriata seemed to be 

particularly sensitive to ferulic acid and its conjugate. On the other hand, the response of 

the three fungi to the coniferyl alcohol-based treatments was very similar. 

  

Figure 1. Colony growth measures of (a) N. parvum, (b) D. viticola, and (c) D. seriata strains when cultured in PDA plates
containing the various control products (viz. stevioside, S. marianum hydromethanolic extract, coniferyl alcohol, ferulic acid,
stevioside–S. marianum, stevioside–coniferyl alcohol and stevioside–ferulic acid conjugate complexes) at concentrations in
the 62.5–1500 µg·mL−1 range. The same letters above concentrations indicate that they are not significantly different at
p < 0.05. Error bars represent standard deviations.

3.3.2. Greenhouse Bioassays

Protective tests conducted on grafted plants with the stevioside–milk thistle treatment
confirmed its efficacy in more realistic conditions (i.e., closer to field ones): the application
of the conjugate complex resulted in statistically significant differences as compared to the
positive (pathogen) controls in all cases (Table 6). It is worth noting that the median lengths
of the vascular necroses were higher in the case of treated plants artificially inoculated
with N. parvum than for treated plants artificially inoculated with the other two taxa (for
which the effectiveness would be similar), which may be regarded as an unexpected result,
provided that the associated EC90 value was the lowest in the in vitro tests. This point was
confirmed by including the fungus taxon in the statistical analysis as a second independent
variable (Table S2). However, no statistically significant differences were observed among
the three fungi in terms of necrosis lengths in the positive controls. Interestingly, in the
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two-factor analysis, the lengths of the necroses for the treated plants artificially inoculated
with D. viticola were not significantly different from those of the negative controls, pointing
to a particularly high inhibition of this pathogen.

Table 6. Kruskal–Wallis test and multiple pairwise comparisons using the Conover–Iman procedure for the lengths of the
vascular necroses for the three phytopathogen in greenhouse in vivo assays.

Pathogen Sample Frequency Sum of Ranks Mean of Ranks Groups

N. parvum

Stevioside–S. marianum
negative control 48 1275.500 26.573 A

Stevioside–S. marianum 64 5911.000 92.359 B

Positive control 64 8389.500 131.086 C

D. viticola

Stevioside–S. marianum
negative control 48 2174.000 45.292 A

Stevioside–S. marianum 64 4272.000 66.750 B

Positive control 64 9130.000 142.656 C

D. seriata

Stevioside–S. marianum
negative control 48 2062.500 42.969 A

Stevioside–S. marianum 72 5641.500 78.354 B

Positive control 56 7872.000 140.571 C

N. parvum = Neofusicoccum parvum; D. viticola = Dothiorella viticola; D. seriata = Diplodia seriata; S. marianum = Silybum marianum. Treat-
ments/controls labelled with the same letters are not significantly different at p < 0.05.

4. Discussion
4.1. Valorization of Coniferyl Alcohol and Ferulic Acid

As expected from the phenological stage in which the plants were collected (flowering,
before fruit ripening) and taking into consideration that the entire capitula were used for
the extraction (not only the fruits), the panel of extracted components was different from
those present in the commercially available milk thistle seed extract: instead of silybin
(A and B) and isosilybin (A and B), coniferyl alcohol and other eugenol analogues were
identified; and instead of vanillin, the quantitative presence of its precursor (ferulic acid
methyl ester) was evidenced.

Coniferyl alcohol is a valuable chemical, which reaches 350 USD·g−1 when bought
from commercial suppliers such as Sigma-Aldrich. Current approaches to obtain coniferyl
alcohol are either inefficient, harmful (Penicillium simplicissimum (Oudemans) Thom vanillyl
alcohol oxidase (PsVAO) can be used to produce it, but it intrinsically produces harmful
byproduct H2O2), or expensive (its synthesis involves expensive substrates and cata-
lyst and harsh reaction conditions) [43,44]. These limitations can be overcome with the
ultrasonic-assisted hydro-methanolic extraction of the capitula, reported in this paper,
which may allow for the obtainment of the phenylpropanoid coniferyl alcohol with a
yield of 50–80%. Alternative extractive approaches, such as the use of ionic liquid analogs
(deep eutectic solvents) as extractive solvents [45], microwave-assisted extraction, dynamic
maceration process [46], negative pressure cavitation-assisted extraction with macroporous
resin enrichment [47], etc., should nonetheless be explored in order to optimize the yield.

In the case that the production of silymarin-based drugs is desired, the biotransforma-
tion of eugenol and coniferyl alcohol to silybin and isosilybin can be efficiently attained by
the oxidation of the precursors by milk thistle ascorbate peroxidase (APX1), as shown in
Figure 2a.

In the same way, the finding of a 10:1 ratio for the ferulic acid–vanillin pair con-
firms that, for S. marianum capitula during the flowering phenological stage in a hydro-
methanolic medium, the presence of the ferulic acid precursor is enhanced. Should vanillin
be the desired chemical to obtain, the quantitative conversion of ferulic acid into vanillic
acid could be feasible in presence of Pseudomonas spp. [48] (Figure 2b). The polypore
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species Pycnoporus cinnabarinus (Jacq.) P. Karst. has also been proposed for the production
of vanillin from ferulic acid [49], although the vanillin produced is either rapidly converted
to other products or utilized by the fungus as a source of carbon and energy. Genetic
engineering has been applied to produce vanillin from ferulic acid using metabolically
engineered Escherichia coli (Migula, 1895) Castellani and Chalmers, 1919 [50,51]. Another
alternative would be the use of packed bed-stirred fermenters using Bacillus subtilis (Ehren-
berg, 1835) Cohn, 1872 [52].
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It should be noted that the extraction of coniferyl alcohol and ferulic acid would
not preclude the valorization of the rest of the biomass as a feedstock for bioenergy
production [53–55].

4.2. Efficacy of the Treatments

Stevioside, a terpene glycoside obtained from Stevia rebaudiana (Bertoni) Bertoni,
showed a high inhibitory activity, comparable to that of coniferyl alcohol. Since—to
the best of the authors’ knowledge—this is the first time that this compound is assayed
against Botryosphaeriaceae fungi, no comparisons with similar taxa in terms of MIC values
are available. However, the detected antifungal activity would be in good agreement
with the results presented by other authors, who reported an inhibitory effect against
other fungi (Alternaria solani Sorauer, Helminthosporium solani Durieu & Montagne, As-
pergillus spp., Fusarium spp., Penicillium chrysogenum Thom, or Botrytis cinerea Pers., among
others) [56–60], with MIC values varying over a wide range (from 250 to 3000 µg·mL−1).

With regard to the activity of S. marianum-derived phytochemicals, the antifungal
activity of silymarin/silibinin against Candida spp. and its underlying mechanism has
been studied by Yun and Lee [18,61] and Janeczko and Kochanowicz [62]. Fernández,
et al. [63] found significant inhibition against Fusarium graminearum Schwabe for four
flower defensins from milk thistle. Safarpoor, et al. [64] reported moderate antifungal
activities of ethanolic extracts of milk thistle against C. albicans and Aspergillus oryzae (Ahlb.)
Cohn. Some antifungal activity was also reported for leaf and flower ethanolic extracts by
Keskin, et al. [65] against C. albicans. Nonetheless, in these two latter studies no details were
provided about the phenological stage in which the plants were collected, and effective
concentrations were not reported.

Concerning the antifungal action of coniferyl alcohol, no data against GTD-related
fungi is available in the literature, but—according to Kuc [66]—it has strong antifungal
properties. For instance, coniferyl alcohol and its derivatives have been shown to be effec-
tive against Colletotrichum lagenarium (Pass.) Ellis & Halst., C. cucumerinum, Melampsora lini
Ehrenb.) Lév., and C. albicans [19,67,68].
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In relation to ferulic acid, it has been assayed against GTDs, and, according to Lambert,
et al. [28], it is the phenolic acid with the strongest activity against D. seriata, N. parvum,
E. lata, and P. chlamydospora. The same group, in a different study, found inhibition per-
centages in the 23–35% range for ferulic acid at a concentration of 500 µM (97 µg·mL−1)
against different N. parvum isolates [69]. Gómez, et al. [29] reported half maximal effective
concentrations of 3530 and 4740 µg·mL−1 against Botryosphaeriaceae sp. and P. minimum,
and Dekker, et al. [30] found an EC50 value of 15 mM (2913 µg·mL−1) against Botryosphaeria
sp. Srivastava, et al. [70] found that ferulic acid at 25 mM (4855 µg·mL−1) resulted in ca.
80% and ca. 70% mycelium growth inhibition of B. rhodina (Berk. & M.A. Curtis) Arx and
B. ribis Grossenbacher & Duggar, respectively; and 100% inhibition was attained at 20 mM
(3885 µg·mL−1) in the case of B. obtusa (Schwein.) Shoemaker. Such concentrations are
close to the EC90 values against N. parvum and D. viticola reported in this work.

Regarding the conjugate complexes with stevioside, no data is available against GTDs.
The most similar assayed product would be the stevioside:silymarin conjugate complexes
(in a 1:1 molar ratio) tested against Fusarium culmorum (Wm.G. Sm.) Sacc., for which an EC90
value of 160 µg·mL−1 and a synergy factor of 1.43 were reported [71]. No antifungal efficacy
data is available for stevioside–coniferyl alcohol conjugate complexes, but stevioside–
ferulic acid inclusion compounds (with different molar ratios to the one assayed herein, and
involving a more complex preparation procedure) have been tested against F. culmorum and
Phytophthora cinnamomi de Bary. In the former case, composites based on stevioside:ferulic
acid inclusion compounds (in a 5:1 molar ratio), combined with chitosan oligomers in
hydroalcoholic solution or in choline chloride:urea deep eutectic solvent media, led to
EC90 values in the 377–713 µg·mL−1 range against F. culmorum [72], depending on the
dispersion medium. In the case of P. cinnamomi, inclusion compounds from stevioside
and ferulic acid in 6:1 ratio, dispersed in a hydroalcoholic solution of chitosan oligomers,
resulted in EC90 values of 446–450 µg·mL−1 (depending on the presence/absence of silver
nanoparticles) [73,74].

5. Conclusions

In the hydromethanolic extract of Silybum marianum capitula, during the flowering
stage, high contents of coniferyl alcohol derivatives and ferulic acid esters were found,
instead of other chemical species such as the silymarin complex or vanillin. Given the
high price of coniferyl alcohol, this may pose an alternative valorization strategy for this
weed, compatible with a subsequent valorization for bioenergy purposes. Concerning
the antifungal activity of the hydroalcoholic extract, the EC50 and EC90 values obtained
against the three studied Botryospheriaceous grapevine pathogens (N. parvum, D. viticola
and D. seriata) were in the 557–1088 and 1461–9942 µg·mL−1 range, respectively. How-
ever, a significant efficacy enhancement (with EC50 and EC90 values in the 87–148 and
303–596 µg·mL−1, respectively) was obtained by formation of conjugate complexes of the
hydrometanolic extract of S. marianum with stevioside, evidencing a clear synergistic be-
havior (with synergy factor values of up to 5.1) as a result of the solubility and bioavailabity
improvement. The efficacy of the stevioside–milk thistle conjugate complexes was further
assessed in artificially inoculated grafted plants, obtaining significant differences in the vas-
cular necroses lengths vs. the positive controls in all cases. The presented results support
the possibility of extending the applications of milk thistle to agriculture as an antifungal
agent, in particular for the protection of grapevines against certain fungal trunk diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10071363/s1, Table S1. Repetitions for each of the plant/treatment/pathogen combina-
tions in the greenhouse bioassay; Table S2. Kruskal-Wallis test and multiple pairwise comparisons
using the Conover-Iman procedure for the lengths of the vascular necroses in greenhouse in vivo as-
says considering two independent variables (treatment and taxa); Figure S1. Biosynthesis of silybins
from taxifolin and coniferyl alcohol; Figure S2. Formation of coniferyl alcohol; Figure S3. Infrared
spectrum of S. marianum extract (after lyophilization); Figure S4. GC–MS spectrum of S. marianum

https://www.mdpi.com/article/10.3390/plants10071363/s1
https://www.mdpi.com/article/10.3390/plants10071363/s1
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hydromethanolic extract; Figure S5. Chemical structures of some of the phytochemicals identified by
GC-MS in the hydro-methanolic extract of S. marianum.
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