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The Ralstonia solanacearum species complex (RSSC)
can be divided into four phylotypes, and includes phe-
notypically diverse bacterial strains that cause bacterial
wilt on various host plants. This study used 93 RSSC
isolates responsible for potato bacterial wilt in Korea,
and investigated their phylogenetic relatedness based
on the analysis of phylotype, biovar, and host range.
Of the 93 isolates, twenty-two were identified as biovar
2, eight as biovar 3, and sixty-three as biovar 4. Ap-
plied to the phylotype scheme, biovar 3 and 4 isolates
belonged to phylotype I, and biovar 2 isolates belonged
to phylotype IV. This classification was consistent with
phylogenetic trees based on 16S rRNA and egl/ gene
sequences, in which biovar 3 and 4 isolates clustered to
phylotype I, and biovar 2 isolates clustered to phylotype
IV. Korean biovar 2 isolates were distinct from biovar
3 and 4 isolates pathologically as well as genetically -
all biovar 2 isolates were nonpathogenic to peppers.
Additionally, in host-determining assays, we found un-
common strains among biovar 2 of phylotype IV, which
were the tomato-nonpathogenic strains. Since tomatoes
are known to be highly susceptible to RSSC, to the
best of our knowledge this is the first report of tomato-
nonpathogenic potato strains. These results imply the
potential prevalence of greater RSSC diversity in terms
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of host range than would be predicted based on phylo-
genetic analysis.
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Ralstonia solanacearum is a causal agent of bacterial wilt
disease, and is one of the most destructive phytopathogenic
bacteria worldwide (Hayward, 1991). A soil-borne patho-
gen, R. solanacearum infects host plants through wounds
and natural openings, colonizes and blocks water in the xy-
lem, and finally causes wilting and death of the host plant
(Denny, 2006). When this bacterium infects potatoes, it
causes brown rot on the tubers and aboveground symptoms
including wilting, stunting, and yellowing of leaves (Kel-
man, 1954; Martin and French, 1985).

The bacteria have an unusually broad host range of over
450 plant species, encompassing monocots and dicots
(Hayward, 1991; Wicker et al., 2007). Phylogenetic analy-
sis of R. solanacearum has revealed great diversity, and this
group is known as the R. solanacearum species complex
(RSSC) (Elphinstone, 2005; Genin and Denny, 2012). Pre-
viously, R. solanacearum has been classified into “races”
based on host range (Buddenhagen et al., 1962; Hayward,
1964; He et al., 1983; Pegg and Moffett, 1971) and “bi-
ovars” based on carbohydrate utilization (Hayward, 1964,
1991). However, it has been difficult to define the correla-
tion between races and biovars, with the exception of race
3/biovar 2. Recently, the RSSC has been divided into four
phylogenetic groups (“phylotypes”) based on sequence
analysis of the internal transcribed spacer (ITS) region of
the 16S-23S rRNA gene (Poussier et al., 2000; Prior and
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Fegan, 2005). This scheme corresponds to geographic ori-
gin: phylotype I (Asia), phylotype II (America), phylotype
III (Africa), and phylotype IV (Indonesia) (Fegan and Prior,
2005; Prior and Fegan, 2005). The scheme is also broadly
consistent with various genetic typing analyses. The RSSC
has recently undergone reclassification: R. solanacearum
of phylotype Il was reclassified as true R. solanacearum,
phylotype I and 11 as R. pseudosolanacearum, R. syzygii of
phylotype 1V as R. syzygii supsp. syzygii, R. solanacearum
of phylotype IV as R. syzygii supsp. indonesiensis, and the
blood disease bacterium (BDB) of phylotype IV as R. syzy-
gii supsp. celebesensis (Safni et al., 2014).

Korean agriculture has been severely affected by bacte-
rial wilt. This disease has been observed not only in many
economically important solanaceous crops, such as potato,
tomato, and pepper plants, but also in paprika, sesame,
peanut, sunflower, etc (Jeong et al., 2007; Lee and Kang,
2013; Lim et al., 2008; Seo et al., 2007; Yun et al., 2004).
Therefore, there have been great efforts to overcome this
disease by breeding resistant varieties or detecting patho-
genic bacteria using PCR-based methods (Cho et al., 2011;
Han et al., 2009; Jung et al., 2014; Kang et al., 2007; Kim
etal., 2016; Lee et al., 2011).

In the present study, we collected bacteria from plants af-
fected by potato bacterial wilt in Korea, conducted various
genetic analyses, and determined host range. Our results
demonstrate a relationship between genetic and pathogenic
traits, and form the basis for comparative genomic analyses
of the RSSC.

Materials and Methods

Collection of isolates and culture conditions. Ralstonia
solanacearum isolates were collected by Dr. Young Kee
Lee (T-numbered strains) and Dr. Seungdon Lee (SL-
numbered strains) from 1998 to 2003 in Korea. Among
the twenty-five locations surveyed, potato bacterial wilt
was observed in twelve cities in six Korean provinces (Fig.
1). We analyzed ninety-three isolates, which are listed in
Table 1. All isolates were identified to R. solanacearum by
16S rRNA sequence analysis. These bacteria were cultured
on tetrazolium chloride (TZC) agar medium (peptone 10
g, glucose 2.5 g, casamino acid 1 g, agar 18 g, TZC 50 mg
in 1 L distilled water) at 28°C for 48 h and frozen in 40%
glycerol stock at —70°C (Kelman, 1954).

Isolation of genomic DNA. To prepare genomic DNA,
bacterial cells grown on TZC agar medium were subcul-
tured in LB broth (peptone 10 g, yeast extract 5 g, sodium
chloride 5 g in 1 1 distilled water) in a 28°C shaking incu-
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Fig. 1. Potato-growing areas and geographic locations infected
with potato bacterial wilt in Korea from 1998-2003. Potato-
growing areas are colored gray, and symbols indicate isolates: o,
phylotype I-biovar 3; O, phylotype I-biovar 4; e, phylotype IV-
biovar 2. Each symbol indicates representative locations for the
same geographical origin, phylotype, and biovar.

bator for 16 h. Genomic DNA of all isolates was extracted
using the Wizard Genomic DNA Purification Kit (Promega,
Madison, WI, USA) according to the manufacturer’s in-
structions.

Phylotype identification. The ninety-three isolates were
classified into phylotypes as previously described (Prior
and Fegan, 2005; Sagar et al., 2014). We determined
phylotype using the method of Sagar (2014) based on
phylotype-specific multiplex PCR (Pmx-PCR) using the
following primers: Nmult:21:1F, 5’-CGTTGATGAGGC-
GCGCAATTT-3’ (specific for phylotype I, amplicon size
is 144 bp when paired with Nmult22:RR); Nmult:21:2F,
5’-AAGTTATGGACGGTGGAAGTC-3’ (phylotype 11,
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372 bp); Nmult:23:AF, 5’-ATTACGAGAGCAATC-
GAAAGATT-3’ (phylotype 111, 91 bp); Nmult:22:InF,
5’-ATTGCCAAGACGAGAGAAGTA-3’ (phylotype 1V,
213 bp), and Nmult:22:RR, 5’-TCGCTTGACCCTATA-
ACGAGTA-3’ (reverse primer for all phylotypes). PCR
reactions were carried out in a total volume of 20 pul with
Profi-Premix (Bioneer) with primer sets and genomic
DNA in an automated thermocycler (model PTC-200, MJ
Research Inc., Waltham, MA, USA) as follows: initial
denaturation at 96°C for 5 min, followed by 30 cycles of
denaturation at 95°C for 15 sec, annealing at 59°C for 15
sec, and extension at 72°C for 30 sec, with a final extension
at 72°C for 10 min. Seven microliters of each PCR product
was examined by electrophoresis through 1% agarose gel,
stained with ethidium bromide, and visualized on a UV-
trans-illuminator.

Biovar determination. The ability of each isolate to oxi-
dize three disaccharides (maltose, lactose, and cellobiose)
and three hexose alcohols (mannitol, sorbitol, and dulcitol)
was evaluated by inoculating the isolates on biovar plates
following a modified Hayward method (Hayward, 1964).
Along with the isolates, 1 ml of the basal medium (NH,H-
,PO, 1 g, KC10.2 g, MgSO,7H,0 0.2 g, peptone 1 g, bro-
mothymol blue 8 mg, agar 1.5 g in distilled water 1 1, pH
7.1) containing 1% sterilized carbon sources (maltose, lac-
tose, cellobiose, mannitol, sorbitol, and dulcitol) was dis-
pensed into the wells of 24-well plates (SPL Life Sciences,
Seoul, Korea). All isolates were inoculated into individual
wells with 5 pl of the 10° cfu/ml bacterial suspensions, with
two replicates per isolate. The plates were incubated at
28°C for 14 days. The plates were observed every day and
the color change of the medium was recorded two weeks
after inoculation. The test was repeated twice.

Detection of rsal gene. We carried out PCR to validate
the presence of rsal, which has been reported to be a gene
for avirulence of R. solanacearum on pepper hosts (Jeong
et al., 2011). To eliminate errors, we prepared two rsal
gene primer pairs. One pair produced a 720-bp fragment
containing the full 7sa/ gene including the promotor region
(720-rsalF; 5’-GCCGCTCGCCGCAATGCTGCC-3’,
720-rsalR; 5’-TGGGCTGGGTGGGACTTAACC-3’),
and the other produced a 315-bp fragment containing a
partial rsal open reading frame (ORF) region (315-rsalF;
5’-ATCACCAAGATTACCGGAAAG-3’, 315-rsalR
5’-TGGGCTGGGTGGGACTTAACC-3’). The reactions
were carried out as described previously for phylotype
determination with a primer set of 720-rsalF/720-rsalR at
an annealing temperature of 70°C, and with a primer set of

315-rsalF/315-rsalR at an annealing temperature of 59°C.

Phylogenetic analysis of 16S rRNA and partial endo-
glucanase (egl/) gene sequences. The 16S rRNA genes of
the 93 isolates were amplified by PCR in 25 pl reaction
volumes containing 1.25 U of Pfu Turbo DNA Polymerase
(Stratagene), 2.5 ul of 10x Pfu polymerase buffer, 0.25
mM of each dNTP, 1 ul of 10 pmoles of each primer (9F,
5'-GAGTTTGATCCTGGCTCAG-3"; 1512R, 5'-ACG-
GCTACCTTGTTACGACTT-3’), and 50 ng of genomic
DNA. The reaction was performed in an automated ther-
mocycler (model PTC-200, MJ Research Inc.) with initial
denaturation at 95°C for 5 min, followed by 30 cycles of
denaturation at 95°C for 45 sec, annealing at 55°C for 45
sec, and extension at 72°C for 1 min, with a final exten-
sion at 72°C for 10 min. The 750-bp partial endoglucanase
gene was amplified by PCR in the same reaction as the 16S
rRNA gene with primer pairs of Endo-F (5'-ATGCATGC-
CGCTGGTCGCCGC-3') and Endo-R (5'-GCGTTGCCC-
GGCACGAACACC-3') (Poussier et al., 2000). After the
PCR amplicons of 16S rRNA and endoglucanase genes
were confirmed by electrophoresis, the sequences of the
two genes were determined using an ABI BigDye Termi-
nator v3.1 Cycle Sequencing Kit and an ABI3730XL au-
tomated DNA sequencer (Applied Biosystems Inc., Foster
City, CA, USA) according to the manufacturer’s instruc-
tions. The 16S rRNA and endoglucanase gene sequences
were confirmed and edited with BioEdit 7.2.5 software and
trimmed with EditSeq software (DNASTAR Lasergene§,
DNASTAR Inc., Madison, WI, USA). The analyzed 16S
rRNA and partial endoglucanase gene sequences were de-
posited in the GenBank database, and the accession num-
bers are listed in Table 1. Reference sequences for the 16S
rRNA gene and endoglucanase gene were obtained from
the NCBI website with the following GenBank accession
numbers: AL646052.1 (GMI1000), FP885891.2 (PSI07),
FP885896.1 (CMR15), FP885897.1 (CFBP2957), and
CP002820.1 (Po82). The ClustalW method was used for
sequence alignment and the construction of phylogenetic
trees using 1,000 bootstrap replicates in the MegAlign pro-
gram (DNASTAR Lasergene8, DNASTAR Inc.).

Host range determination. For the pathogenicity test,
tomato (Lycopersicon esculentum cv. Seokwang) (Lee and
Kang, 2013), eggplant (Solanum melongena cv. Heukma-
jang) (Lee, 1999), and pepper (Capsicum annuum cv. Nok-
kwang) (Jeong et al., 2007) were grown in a greenhouse
at 25-35°C under natural light conditions. For the posi-
tive control, potatoes (Solanum tuberosum cv. Sumi) (the
original cultivar name: Superior) (Park et al., 2016) were
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grown in a greenhouse at 20-25°C. Two-week-old seed-
lings of eggplant and pepper, and 10-day-old seedlings of
tomato were transplanted into plastic pots 7 cm in diameter
containing commercial soil (Baroker, Seoul Agriculture
Materials Co.,Seoul, Korea) and grown in a greenhouse
for 2-3 weeks. To prepare the inoculum, all isolates were
grown on TZC plates for 48 h at 28°C. Bacterial cells were
suspended in sterile distilled water and the concentration
was adjusted to ODy, 0.1. After wounding the root of each
plant by stabbing with a 3-cm-wide scoop, 50 ml of bacte-
rial suspension of the 93 isolates was poured into each pot.
Three plants from each crop were inoculated with each
isolate, and pathogenicity assays were repeated two or
three times in a greenhouse under natural light conditions.
Symptom development was observed every 3 days and
recorded at 28 days post-inoculation using the following
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scale: —, no symptoms; +, one to three leaves wilted; ++,
four to six leaves wilted; and +++, seven or more leaves or
whole plant wilted.

The tomato plants were photographed at 12 days post-
inoculation, and the eggplants and pepper plants were
photographed at 19 days post-inoculation.

Results

Determination of biovar, phylotype, and rsal gene. The
Korean potato bacterial wilt isolates were analyzed for
biovar, phylotype, and presence of the rsal gene. Of the
93 isolates analyzed, twenty-two were of biovar 2 (about
24%), eight were of biovar 3 (less than 8%), and sixty-three
were of biovar 4 (68%) (Table 1). The isolates of biovar 3
and biovar 4 were classified as phylotype I, and biovar 2
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Fig. 2. Phylogenetic trees of 16S rRNA (A) and partial endoglucanase (eg/) gene sequences (B) analyzed by Clustal W with 1,000 boot-
strap replicates using MegAlign of DNASTAR Lasergene 8 (DNASTAR Inc.). Roman numerals indicate phylotypes and symbols (%)
indicate the representative biovar 4 strain.
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was classified as phylotype IV.

It has been reported that the Rsal protein, which is an
aspartic protease secreted through the type II secretion sys-
tems (T2SSs), is responsible for the loss of bacterial viru-
lence to pepper (Jeong et al., 2011). To validate the pres-
ence of this gene, we carried out rsa/ detection PCR. For
greater certainty, we used two sets of rsal gene primers.
One pair was for the full rsal gene including the promotor
(720-rsalF/720-rsalR), while the other was for a partial
rsal ORF (315-rsalF/315-rsalR). From the ninety-three
isolates of potato bacterial wilt, all phylotype IV-biovar 2
isolates produced a full 720-bp rsal gene fragment at an
annealing temperature of 70°C. On the other hand, biovar
3 and biovar 4 isolates of phylotype I did not produce this
fragment under these annealing conditions. Partial rsa/
gene PCR was carried out with a 315-rsalF/315-rsalR
primer set at an annealing temperature of 59°C, and the
results were the same as for the PCR of the full rsal gene,
which was detected in all isolates of phylotype IV and not
detected in any isolates of phylotype 1.

Geographical distribution. Fig. 1 shows the geographi-
cal distribution of the potato bacterial wilt isolates in
Korea from 1998 to 2003. Ralstonia solanacearum was
first isolated in southern provinces (Gyeongsangnam-do,
Jeollanam-do, and Jeju-do, Korea) with biovar 2 and biovar
4 isolates in 1998. The biovar 3 bacterium, which infects
potato, was first identified in Gyeongsangnam-do in 1999,

Table 2. Host range of Korean R. solanacearum isolates

Cho et al.

and was subsequently found in Jeollanam-do, Jeollabuk-
do, and Jeju-do. Biovar 4 bacteria that infect potatoes have
been isolated in all locations where potato bacterial wilt has
been observed. R. solanacearum of biovar 2 has been iso-
lated in seven locations, which are the same as the regions
where biovar 3 bacteria have been isolated.

Phylogenetic analysis of 16S rRNA and partial endo-
glucanase (eg/) gene sequences. To evaluate the genetic
relationship of Korean potato isolates, we sequenced the
16S rRNA gene (about 1,453 nucleotides) and partial en-
doglucanase gene (760 and 766 nucleotides) of 93 isolates
(Table 1) and compared the sequences using the ClustalW
program (Fig. 2).

The 16S rRNA sequences of biovar 2 isolates were
identical with each other, and the sequences of biovar 3
and biovar 4 isolates were also identical. To downsize the
phylogenetic tree, SL2729 was chosen to represent the
biovar 4 strains (Fig. 2-A). In the 16S rRNA phylogenetic
tree, Korean R. solanacearum isolates were separated into
two groups following GMI1000 (phylotype I) and PSI07
(phylotype 1V). Korean biovar 2 isolates, which were
identified as phylotype IV, were clustered with PSI07 of a
representative phylotype IV strain. The isolates of biovar 3
and 4, which were identified as phylotype I, were not only
clustered with GMI1000, but also identical with GMI1000
in the sequenced 1,453 nucleotides.

Since the partial endoglucanase gene (eg/) sequences

Pathogenici .
Pathotype O Phy}otype .NO' of List of isolates
Potato Tomato Eggplant Pepper ~Biovar isolates
SL2312, SL2313, SL3303, SL3867, T12, T17, T24, T82, T96,
P + - - - v-2 11
T101, T104
PT + + - - V-2 4 SL3022,SL3175, SL3827, T98
v-2 7 SL2029, SL2064, SL2268, T11, T51, T93, T95
PTE + + + - I-3 1 T77
1-4 4 SL2264,SL3103, T56, T58
I-3 7 SL2330, SL2664, SL3112, SL3755, T25,T99, T110
SL1870, SL2230, SL2543, SL2610, SL2729, SL3055, SL3079,
SL3085, SL3100, SL3150, SL3166, SL3177, SL3282, SL3283,
PTEP 4 n i I SL3300, SL3705, SL3730, SL3747, SL3760, SL3762, SL3774,
I-4 59  SL3781, SL3796, SL3809, SL3822, SL3835, SL3869, SL3873,
SL3879, SL3882, T2, TS, T14, T15, T16, T18, T34, T42, T46,
T50, T57, T59, T60, T61, T67, T70, T73, T78, T80, T8S5, T87,
T92, T100, T105, T109, T111, T112, T115, T117
Total 93
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were identical among biovar 4 isolates, we analyzed the egl/
sequence of SL.2729 as the representative strain of biovar
4 (Fig. 2B). While the sequences of biovar 4 isolates were
identical, the eg/ sequences of biovar 3 isolates showed
subtle differences in nucleotides. In a phylogenetic tree
based on the eg/ gene, biovar 3 and biovar 4 isolates were
grouped to phylotype I without GMI1000, which was
placed as the outgroup to Korean phylotype I.

Host range determination. To determine the host range of
the bacteria that cause potato bacterial wilt, we assessed the
pathogenicity of isolates on several solanaceous plants-po-
tato, tomato, eggplant, and pepper. The patterns of patho-
genicity were divided into four types: first, pathogenic only
to potato, but nonpathogenic to tomato, eggplant, and pep-
per (P); second, pathogenic to potato and tomato, but non-
pathogenic to eggplant and pepper (PT); third, pathogenic
to potato, tomato, and eggplant, but nonpathogenic to pep-
per (PTE); and finally, pathogenic on all four tested crops
(potato, tomato, eggplant, and pepper, PTEP) (Table 2).
The isolates of phylotype IV-biovar 2 showed various
patterns of host pathogenicity, including P, PT, and PTE.
Of the twenty-two biovar 2 isolates, eleven infected only
potato (P), four infected only potato and tomato (PT), and
seven infected potato, tomato, and eggplant (PTE). These
results showed that none of the biovar 2 isolates could in-

fect pepper. The isolates of phylotype I (including biovar
3 and 4) could be divided into two groups: pathogenic to
potato, tomato, and eggplant, but nonpathogenic on pepper
(PTE); and pathogenic to all test plants (PTEP). For phylo-
type I, one biovar 3 isolate and four biovar 4 isolates were
classified as PTE (7% of phylotype I), and seven biovar
3 and fifty-nine biovar 4 isolates were classified as PTEP
(93% of phylotype I). Fig. 3 shows the host range of repre-
sentative pathotype strains.

Discussion

When potato bacterial wilt was first reported in Korea, we
surveyed potato-growing regions from 1998 to 2003, iso-
lated bacteria, and characterized them using various genetic
and pathogenic tests. During this period, among the twenty-
five potato cultivation areas, potato bacterial wilt was ob-
served in twelve locations in southern region of Korea. By
16S rRNA sequence analysis and BLAST search, ninety-
three bacteria were identified as R. solancearum. These
isolates were analyzed to determine their phylotype, biovar,
phylogenetic relationship of 16S rRNA and eg/ gene, pres-
ence of an rsal gene, and host range on major solanaceous
crops-potato, tomato, eggplant, and pepper.

In Korea, the potato bacterial wilt isolates were classi-
fied into biovars 2, 3, and 4. When applied to the phylotype

Pathotype P PT PTE PTEP
Iv-2 V-2 V-2 14 -4
Inoculum DW SL2312 Ti2 SL3175 SL2729

SL3103

Fig. 3. Host range determination of Ralstonia solanacearum on tomato, eggplant, and pepper. SL2312 and T12 were not pathogenic to
tomato, eggplant, and pepper (pathotype P); SL3175 was pathogenic to tomato, and not pathogenic to eggplant or pepper (PT); SL3103
was pathogenic to tomato and eggplant, and not pathogenic to pepper (PTE); and SL2729 was pathogenic to all tested plants (PTEP). IV-
2, phylotype IV-biovar 2; I-4, phylotype I-biovar 4. Pictures of tomato were taken at 12 DPI, and pictures of eggplant and pepper were

taken at 19 DPI.
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scheme, biovar 3 and 4 isolates belonged to phylotype I
(Asian origin). All biovar 2 isolates belonged to phylotype
IV (Indonesian origin), and none belonged to phylotype II
(American origin).

The sequence variation of isolates from biovars 3 and 4
differed between the 16S rRNA and eg/ gene sequences.
For 16S rRNA gene sequences, biovar 3 and 4 isolates
were identical and built a phylotype I cluster with the rep-
resentative strain GMI1000. For eg/ gene sequences, while
all biovar 4 isolates were identical, biovar 3 isolates had
variations in some nucleotides. Surprisingly, the represen-
tative phylotype I strain GMI1000 was distinguished from
Korean biovar 3 and 4 isolates and was placed outside of
the Korean phylotype I clade. On the other hand, Korean
biovar 2 isolates were consistently located in the phylotype
IV clade with the representative strain PSI07, either in the
16S rRNA tree or in the egl/ tree. These results may suggest
that Korean biovar 2 strains were introduced from a for-
eign country relatively recently, and that Korean biovar 3
and 4 strains represent the Asian-origin phylotype I, which
evolved differentially from GMI1000.

The egl/ gene was used for “sequevar” determination
of the phylotype-sequevar classification, as discussed by
Fegan and Prior (2005). The evolutionary dynamics of
RSSC have previously been revealed by phylogenetic and
statistical analysis of housekeeping and virulence-related
genes by Castillo and Greenberg (2007). Among virulence-
related genes, ArpB and fIiC, which are essential for species
survival, have undergone purifying selection, like essential
housekeeping genes. On the other hand, eg/, which is di-
rectly related to pathogenicity, has undergone diversifying
selection with a high level of recombination. The diver-
gence of egl between Korean phylotype I and GMI1000
was attributed by Castillo and Greenberg (2007) to geo-
graphic isolation.

Regarding the recent introduction of Korean phylotype
1V, Jeong et al. (2007) discussed the possibility of the im-
port of phylotype IV strains from Japan. In phylogenetic
analysis of 16S tDNA, egl, and hrpB, Korean phylotype IV
isolate (SL2029) clustered with Japanese (MAFF301558,
MAFF301559) and Indonesian (R142) phylotype IV
strains. However, Korean SL.2029 was closer to Japanese
MAFF301558 and MAFF301559 than to Indonesian R142,
which suggests that the Korean and Japanese lineages have
diverged more recently than the Japanese and Indonesian
lineages. Korean phylotype IV strains appeared after im-
port of the potato cultivar Daeji (Japanese variety name:
Dejima) from Japan in the 1990s. It is reasonable to infer
that phylotype IV ingressed with the import of Daeji, since
the timing of Daeji cultivation in southern region of Korea

is consistent with the emergence of R. solanacearum phy-
lotype IV.

Among biovars 2, 3, and 4, biovar 4 is the most common
in Korea and was found in all regions of potato bacterial
wilt. Most biovar 4 isolates (93.6%) were pathogenic to all
of the tested solanaceous plants (potato, tomato, eggplant,
and pepper). The distribution and pathogenicity results are
consistent with a previous report that biovar 4 was predom-
inant in other crops in Korea (Jeong et al., 2007). It seems
that the high humidity and temperatures of the Korean
summer are suitable for biovar 4 outbreaks, and the cultiva-
tion season of susceptible crops permits the spread of the
pathogens. In light of these results, biovar 4 is considered
the main and most destructive pathovar; hence, we should
monitor biovar 4 to predict and prevent the spread of bacte-
rial wilt from potato to other crops, or vice versa.

Korean biovar 2 isolates were genetically and pathologi-
cally distinct from biovar 3 and 4. All biovar 2 isolates
were classified as phylotype 1V, and clustered with phy-
lotype IV reference strain PSI07 in 16S rRNA and in eg/
phylogenetic trees. Furthermore, only biovar 2 isolates con-
tained the rsal gene, which confers avirulence to pepper-
infecting strains (Jeong et al., 2011). This result is consis-
tent with our host-determining pathogenicity assays, which
showed that all biovar 2 isolates were nonpathogenic to
pepper. We also identified tomato-nonpathogenic biovar 2
isolates. In the course of pathogenicity assays, we observed
that tomato plants were the most susceptible among all
hosts, which is consistent with previous reports (Ramesh et
al., 2014; Sakthivel et al., 2016). However, some biovar 2
isolates could not infect all tested plants (tomato, eggplant,
and pepper), but only potato, which was the original host
plant. The nonpathogenic strains on tomato, eggplant, and
pepper were reported previously: R288 (phylotype I) isolat-
ed from Morus alba in China and MAFF211266 (phylotype
I) and MAFF301558 (phylotype IV) isolated from Solanum
lycopersicum in Japan (Lebeau et al., 2011). However, the
tested cultivars (tomato L.390, eggplant Florida Market, and
pepper Yolo Wonder) in these earlier reports differed from
those in the present study (tomato Seokwang, eggplant
Heukmajang, and pepper Nokkwang), and did not include
potato. Therefore, the tomato-nonpathogenic isolates used
in the present study are important as a genetic resource.

From this study, we also obtained the groups of eggplant-
pathogenic and nonpathogenic isolates and pepper-
pathogenic and nonpathogenic isolates. These groups could
be the materials for investigating of eggplant-specific (or
pepper-specific) infection factors. The genomic difference
between the tomato-pathogenic and tomato-nonpathogenic
biovar 2 groups may provide a clue to host specificity on
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tomato. Therefore we aim to conduct further comparative
analyses of the tomato pathogenic and nonpathogenic ge-
nomes.
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