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ABSTRACT

Vascular complications from uncontrolled hyperglycemia are the leading cause of death in 
patients with diabetes mellitus. Previous reports have shown a strong correlation between 
hyperglycemia and vascular calcification, which increases mortality and morbidity in individuals 
with diabetes. However, the precise underlying molecular mechanisms of hyperglycemia-induced 
vascular calcification remain largely unknown. Transdifferentiation of vascular smooth muscle 
cells (VSMC) into osteoblast-like cells is a known culprit underlying the development of vascular 
calcification in the diabetic vasculature. Pathological conditions such as high glucose levels and 
oxidative stress are linked to enhanced osteogenic differentiation of VSMC both in vivo and in vitro. 
It has been demonstrated that increased expression of runt-related transcription factor 2 (Runx2), 
a bone-related transcription factor, in VSMC is necessary and sufficient for the induction of VSMC 
calcification. Addition of a single O-linked β-N-acetylglucosamine (O-GlcNAc) moiety to the 
serine/threonine residues of target proteins (O-GlcNAcylation) has been observed in the arteries 
of diabetic patients, as well as in animal models in association with the enhanced expression of 
Runx2 and aggravated vascular calcification. O-GlcNAcylation is a dynamic and tightly regulated 
process, that is mediated by 2 enzymes, O-GlcNAc transferase and O-GlcNAcase. Glucose is 
metabolized into UDP-β-D-N-acetylglucosamine, an active sugar donor of O-GlcNAcylation 
via the hexosamine biosynthetic pathway. Overall increases in the O-GlcNAcylation of cellular 
proteins have been closely associated with cardiovascular complications of diabetes. In this 
review, the authors provide molecular insights into cardiovascular complications, including 
diabetic vasculopathy, that feature increased O-GlcNAcylation in people with diabetes.
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INTRODUCTION

According to the International Diabetes Federation, approximately 463 million adults aged 
20–79 years are living with diabetes, and the number of people with diabetes will rise to 700 
million by 2045.1 People with diabetes are at an elevated risk of multiple complications, such 
as cardiovascular disease (CVD), diabetic retinopathy, diabetic nephropathy, and diabetic 
neuropathy. In all Westernized countries, CVD is the most common cause of death in people 
with diabetes. Therefore, the therapeutic and prognostic value of diabetic complications, 
such as vascular calcification, in patients with diabetes cannot be underestimated.
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As epidemiological evidence of the prevalence of vascular calcification in patients with 
diabetes mellitus and resulting cardiovascular complications, reports have repeatedly 
described an increased incidence of arterial stiffness and thrombosis, which lead to elevated 
rates of morbidity and mortality.2,3 Vascular calcification, previously considered to be a 
passive deposition of calcium phosphate crystals in the vasculature, has now been recognized 
as an active process regulated by multiple relevant cell types, similar to bone mineralization.4 
A key cell type involved in the development of vascular calcification, vascular smooth muscle 
cells (VSMC) undergo transdifferentiation into osteoblast-like cells and deposit calcium as 
hydroxyapatite crystals in the arteries of patients with diabetes.5,6

Hyperglycemia in individuals with diabetes and animal models of diabetes is closely linked to 
increased vascular calcification.6,7 According to previous studies, a high rate of modification 
of target proteins by the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) was 
observed in the vasculature of patients with diabetes and in diabetic mouse models.8-10 
Through the hexosamine biosynthetic pathway, extracellular glucose is metabolized into 
UDP-β-D-N-acetylglucosamine (UDP-GlcNAc), an active sugar donor for O-GlcNAcylation 
of cellular proteins.11 Hence, hyperglycemia—defined as excessive blood levels of glucose, a 
substrate for the production of UDP-GlcNAc—may result in enhanced O-GlcNAcylation in 
patients with diabetes, as well as cardiovascular events.6,8,12

More recently, it was shown that aggravated vascular calcification is accompanied by 
increased O-GlcNAcylation in a low-dose streptozotocin (STZ)-induced diabetes model via 
O-GlcNAc-mediated activation of the AKT signaling pathway.10 Since vascular calcification is 
a major contributor to increased morbidity and mortality in patients with diabetes, we review 
the molecular mechanisms underlying O-GlcNAcylation-mediated vascular calcification and, 
most importantly, provide crucial molecular insights into the function of O-GlcNAcylation in 
regulating diabetic vasculopathy.

ROLE OF O-GLCNACYLATION IN DIABETIC 
VASCULOPATHY
1. O-GlcNAcylation: a double-edged sword in cardiovascular pathologies
It has been reported that acute increments of O-GlcNAcylation confer protection from 
oxidative stress—induced calcium overload and structural damage in ischemia-reperfusion 
models of heart failure.13-15 The cardioprotective effects of O-GlcNAcylation have been 
attributed to improved tolerance of mitochondrial oxidative damage through enhanced 
O-GlcNAc modifications of voltage-dependent anion channels, thereby attenuating the loss of 
mitochondrial membrane potential and ultimately leading to the survival of cardiomyocytes.16,17 
In an in vitro model of ischemia-reperfusion injury, upregulated protein O-GlcNAcylation and 
subsequent increases in the expression and translocation of members of the Bcl-2 protein 
family ameliorated the mitochondrial dysfunction and apoptotic cell death induced by ischemic 
injuries.18 More directly, cardiomyocyte-specific deletion of O-GlcNAc transferase (OGT) 
aggravated heart failure by reducing the heart's compensatory capacity in mice with myocardial 
infarction, clearly demonstrating the necessity of cardiac OGT expression in the failing heart.13

Chronic hyperglycemia exerts devastating impact on vascular function, thereby leading to 
cardiovascular complications including diabetic cardiomyopathy, nephropathy, retinopathy, 
neuropathy, and atherosclerosis secondary to diabetes mellitus.19 Diabetic vascular dysfunction 
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manifests in the early stages of this complex disease and continuously accompanies the 
progression of pathology in diabetes, ultimately leading to morbidity and mortality from 
cardiovascular complications.20 In this process, chronic elevation of O-GlcNAcylation—
possibly through chronic hyperglycemia, as occurs in diabetes—exerts adverse effects on the 
cardiovascular system.21 Hyperglycemia led to significant increases in both OGT expression 
and O-GlcNAcylation of cellular proteins, reducing insulin secretion in the pancreas of diabetic 
Goto-Kakizaki rats and in isolated islets through enhanced O-GlcNAcylation of pancreatic and 
duodenal homeobox-1 (PDX-1), the pancreatic/duodenal homeobox-1 protein, a critical regulator 
of β-cell survival and a transcription factor for insulin production in the pancreas.22,23 It was 
also demonstrated that enhanced O-GlcNAcylation of insulin signaling machinery resulted 
in impaired insulin signal transduction, leading to insulin resistance and dyslipidemia in the 
hepatic system.24

In patients with diabetes, traditionally defined as metabolic vascular syndrome, the increased 
incidence of cardiovascular complications has been linked to the adverse effect of hyperglycemic 
milieu on macrovascular and microvascular beds.25 The cardiovascular complications caused 
by diabetes mellitus can be largely characterized as endothelial dysfunction, which involves 
functional impairment of the vascular endothelium via reduced nitric oxide (NO) bioavailability.26 
In the vasculature, NO is mainly synthesized by endothelial NO synthase (eNOS) through a series 
of redox reactions in the endothelium.27 As it diffuses into VSMC, NO activates guanylate cyclase, 
yielding a concomitant increase in cyclic guanosine monophosphate. Through this mechanism, 
it induces relaxation of VSMC, and the resulting vasodilation by basal NO has a major impact 
on the regulation of blood pressure.28 Impairment of NO signaling may, therefore, be linked to 
several pathological states in the vasculature, including impaired fibrinolytic activity,29 over-
expressed inflammatory molecules,30 and increased oxidative stress,31 resulting in the aggravation 
of cardiovascular risk. The vascular endothelium constitutes a single layer of cells encompassing 
the vascular lumen and is involved in modulating vascular tone and structure. Until recently, the 
endothelial layer has been regarded as a benign barrier between the circulating blood and the 
underlying vascular tissues. Endothelial cells, however, are now recognized as critical regulators 
of vascular homeostasis through the secretion of a wide range of factors affecting endocrine, 
paracrine, and autocrine functions of blood vessels under normal conditions.32 Hence, the 
endothelial layer performs a variety of functions that are closely involved in the maintenance of 
homeostasis; for instance, it controls immune cell adhesion, smooth muscle cell proliferation, 
angiogenic migration, vascular integrity, and vessel wall inflammation. Endothelial dysfunction 
is closely associated with multiple pathological conditions such as diabetes, atherosclerosis, and 
hypertension.33 Therefore, in early works demonstrating the role of O-GlcNAcylation in vascular 
function, many studies focused on the identification of molecular mechanisms underlying 
hyperglycemia-induced endothelial dysfunction; in one of these mechanisms, hyperglycemia 
in diabetes leads to the chronic impairment of eNOS activity in bovine aortic endothelial 
cells through O-GlcNAcylation of the activation domain within the enzyme.34 Hyperglycemic 
conditions in diabetes result in the downregulation and inactivation of eNOS, with a concomitant 
increase in the O-GlcNAcylation of the protein.34,35 Hyperglycemia-induced O-GlcNAcylation of 
eNOS at Ser1177, a primary phosphorylation-dependent activation site, contributes to erectile 
dysfunction in diabetes patients through reduced NO generation.35 Moreover, reduced NO 
production due to enhanced O-GlcNAcylation of eNOS results in endothelial cell dysfunction via 
the regulatory role of NO in vasodilation and the inhibitory effect of the diffusible gas on platelet 
aggregation,36 thereby promoting the development of cardiovascular complications in patients 
with diabetes. Beleznai and Bagi37 also reported that hyperglycemia-induced O-GlcNAcylation 
contributed to the impaired NO-mediated vasodilation of skeletal muscle arterioles isolated 
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from male Wistar rats, further confirming the role of O-GlcNAcylation as a contributor to 
microvascular complications in patients with diabetes. In rats chronically fed a high-sugar 
diet in an animal model of metabolic syndrome, interference with the vasorelaxant function of 
perivascular adipose tissue (PVAT) was closely linked to decreased generation of NO, reduced 
expression of eNOS, and increased O-GlcNAcylation of eNOS,38 implying that O-GlcNAcylation 
of eNOS contributes to hyperglycemia-induced PVAT dysfunction and suggesting a therapeutic 
target for diabetes-associated vascular dysfunction (Fig. 1).

2. Vascular calcification: implications for diabetic vasculopathy
In the patients with diabetes, cardiovascular complications are the leading cause of increased 
mortality and morbidity.39 Efforts have been made to reduce the high death rate among 
adults with diabetes; however, mortality still remains high in people with CVDs caused by the 
diabetic milieu. Since early detection of CVD is highly valuable from a diagnostic standpoint, 
strategies for developing reliable and non-invasive medical tests are urgently necessary 
to reduce the need for intensive therapies and to minimize the economic burden faced by 
people with diabetes. Since all major risk factors for CVD, including diabetes, have shown 
close associations with the development of vascular calcification, the medical assessment of 
arterial calcification in individuals with diabetes might be highly useful as a marker for risk 
stratification of patients with cardiovascular complications.40

Vascular calcification can be classified into 2 distinct but overlapping types, intimal and 
medial calcification, which correspond to different etiologies.41 Calcifications of the intimal 
layer are mainly dependent upon the classic risk factors for CVD such as high blood pressure, 
high cholesterol, and smoking, and are evoked by oxidative stress or inflammatory responses 
in atherosclerosis, which could result from lipid accumulation, inflammation, fibrosis, 
and development of focal plaques.42,43 In contrast, medial vascular calcification involves the 
nucleation and deposition of calcium hydroxyapatite nanocrystals along the elastic lamina and 
extracellular matrix, in close association with diabetes and chronic kidney disease.44 However, 
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Fig. 1. Protective and adverse effects of O-GlcNAcylation on cardiovascular diseases. 
NO, nitric oxide; eNOS, endothelial nitric oxide synthase; O-GlcNAc, O-linked β-N-acetylglucosamine.



both forms of vascular calcification often coincide and frequently overlap with each other.

There is ample evidence that patients with diabetes have a higher propensity for developing 
vascular calcification than people without diabetes, as highlighted by elevated expression 
of osteogenic markers such as osteopontin, osteocalcin, and alkaline phosphatase in the 
medial layer of the vasculature.5 In an 18-year longitudinal study of 833 individuals with 
type 2 diabetes and 1,292 individuals without diabetes, arterial calcification was shown to 
be a strong predictor of cardiovascular and all-cause mortality in patients with diabetes, 
establishing the prognostic value of aortic calcification in symptomatic subjects.45

Aortic stiffness, a hallmark of the aging process, can be described as elastic resistance to 
deformation, culminating in reduced vascular compliance.46 Expressed as aortic pulse wave 
velocity (PWV), arterial wall stiffening represents a strong predictor of cardiovascular and 
all-cause mortality.47 In a meta-analysis of 17 longitudinal studies evaluating the aortic PWV 
with 15,877 participants and a mean follow-up of 7.7 years, it was shown that adjusted rates of 
cardiovascular events, cardiovascular mortality, and all-cause mortality increased by 14%, 15%, 
and 15%, respectively, for every 1 m/s increment in the aortic PWV.47 Arterial wall stiffening occurs 
in arteries frayed by mechanical stress caused by several disrupting factors, including vascular 
calcification. A well-established marker of bone metabolism, osteoprotegerin (OPG), was linked 
to the incidence of aortic stiffness and the extent of coronary artery disease.48 In a 15-year follow-
up study of cardiovascular complications in patients with type 1 diabetes, the authors observed 
that OPG was closely associated with arterial calcification, leading to the onset of aortic stiffness 
and accompanying cardiovascular events.49 Therefore, diabetic medial calcification could be 
directly linked to the onset of arterial stiffening, which is a prelude to multiple CVDs, such as 
elevated blood pressure, increased cardiac afterload, and impaired vascular reactivity.46,49,50

3. O-GlcNAcylation: a strong inducer of vascular calcification
It has been shown that an overall increase in O-GlcNAcylation promoted osteoblastic 
differentiation of MC3T3-E1 cells with enhanced expression of bone-related markers 
such as alkaline phosphatase, osteocalcin, and bone sialoprotein via transcriptional 
activation of runt-related transcription factor 2 (Runx2), an osteogenic transcription 
factor.51 Moreover, high glucose levels and PUGNAC, an inhibitor of O-GlcNAcase, induced 
osteogenic differentiation of human cartilage endplate stem cells and MC3T3-E1 cells via 
O-GlcNAcylation of Runx2, demonstrating the ability of O-GlcNAcylation to stimulate 
mineralization of extracellular matrix.52,53

In a diabetic mouse model, STZ treatment combined with an atherogenic diet induced 
accelerated atherosclerosis in response to hyperglycemia, as shown by exaggerated fatty streaks 
and atherosclerotic plaques resembling those of human type II lesions.54 Recently, Heath et 
al.10 demonstrated that STZ-induced hyperglycemia was associated with elevated vascular 
O-GlcNAcylation and aortic calcification in a murine diabetic model involving multiple low-dose 
STZ injections, suggesting a positive correlation between O-GlcNAcylation and calcification in 
diabetes. With impaired vascular compliance, as found in mice, increased O-GlcNAcylation in 
diabetic arteries is directly associated with AKT activation and upregulated expression of Runx2. 
O-GlcNAcylation of AKT at T430 and T479 promotes AKT phosphorylation and activation, 
which in turn enhances the expression of Runx2 and calcification of VSMC in vitro.10 In summary, 
O-GlcNAcylation, which is enhanced by hyperglycemia in diabetic vasculature, may promote the 
osteogenic differentiation of VSMC, thereby leading to increased aortic calcification and reduced 
vascular compliance in patients with diabetes.
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4. Mechanistic perspectives on O-GlcNAcylation in VSMC
Dysfunction of VSMC in the vasculature significantly contributes to the development of vascular 
pathologies such as atherosclerosis, hypertension, and restenosis, which are commonly 
associated with diabetes, via phenotypic switching of VSMC from the contractile state to the 
synthetic state.55-57 Diabetes-mediated VSMC dysfunction, broadly defined as a transition into pro-
inflammatory phenotype or dedifferentiated status, is accelerated by multiple pathological factors 
associated with diabetes such as high glucose levels, heightened oxidative stress, and altered lipid 
metabolism.58-61 Therefore, the pathophysiological manifestations of VSMC dysfunction could 
involve enhanced inflammatory responses, migration, proliferation, and dedifferentiation via 
multiple downstream signaling pathways and transcriptional activators.59,61-63

In rat aortic smooth muscle cells cultured in high-glucose media, increased expression and 
activity of OGT were mainly observed in the nucleus, and altered patterns of O-GlcNAc-
modified nuclear proteins were clearly demonstrated compared to control rats.64 It was 
also found that the elevated production of matrix hyaluronan (HA) observed in diabetic 
arteries was triggered by O-GlcNAcylation of HA synthase 2, the main HA synthase in 
aortic smooth muscle cells, through stabilization of the enzyme.65 This finding provides 
further confirmation that increased HA synthesis through this process could mediate VSMC 
dedifferentiation, which is critical for vascular pathologies in diabetes.66

It was previously shown that O-GlcNAcylation of transcription factor specificity protein 1 
(Sp1) in VSMC confers protection against proteasomal degradation, providing a causative 
link between this versatile transcriptional regulator and a nutritional checkpoint.67 The 
hyperglycemic milieu often enhances the migration, proliferation, and inflammation of VSMC 
by modulating the signaling molecules and growth factors involved in each process, thereby 
providing putative therapeutic targets to protect the vascular system in people with diabetes.68-70 
In rat aortic smooth muscle cells, plasminogen activator inhibitor-1 (PAI-1), a well-known 
stimulator of VSMC migration (especially in the setting of chronic transforming growth factor 
[TGF]-β1 activation), is upregulated via Sp1-binding to the PAI-1 promoter region through the 
release of a transcriptional repressor from Sp1 complexes under high-glucose conditions.71 
Barnes et al.72 demonstrated that higher O-GlcNAcylation of Sp1 in pulmonary arterial smooth 
muscle cells from idiopathic pulmonary arterial hypertension facilitated cell migration via 
increased expression of vascular endothelial growth factor. It was also shown that the increased 
expression of TGF-β1 in endothelial cells cultured under high-glucose conditions was mediated 
by elevated O-GlcNAcylation of Sp1,73 which may be implicated in VSMC proliferation through 
the synthesis of proteoglycans and extracellular matrix proteins.74

Chen et al.75 observed that increased expression of PAI-1 promoted apoptotic resistance of 
VSMC in association with enhanced FLIP activity in the vascular wall through a signaling 
pathway mediated by nuclear factor (NF)-κB and extracellular signal-regulated kinases 
(ERK), demonstrating a causative link between PAI-1-induced VSMC proliferation and 
cardiovascular pathologies, including restenosis after coronary intervention. It has been 
reported that upregulation of vascular cell adhesion molecule-1 (VCAM-1) in rat glomerulus 
cells is prompted by enhanced NF-κB binding to the VCAM-1 promoter in hyperglycemia.76 
Furthermore, high glucose-mediated augmentation of the O-GlcNAcylation of NF-κB has 
been found to result in production of tumor necrosis factor alpha and interleukin-6 in rat 
placenta.77 This data led to the hypothesis that O-GlcNAcylation of NF-κB may participate 
in inflammatory responses of VSMC. Under hyperglycemic conditions, increased expression 
of VCAM-1 is induced by the O-GlcNAcylation of NF-κB through the elevated translocation 
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of NF-κB to the nucleus via the separation of NF-κB and IκB, an inhibitor of NF-κB in rat 
vascular smooth muscle tissue. This indicates that O-GlcNAcylation of NF-κB may contribute 
to exaggerated inflammatory responses in VSMC during the progression of diabetes.78 
Recently, aldose reductase, a well-known obligatory mediator of the inflammatory changes in 
diabetic hyperglycemia, was shown to be essential for protein kinase C and NF-κB–induced 
expression of intercellular adhesion molecule-1 and VCAM-1, further suggesting that under 
high-glucose conditions, NF-κB could be a critical determinant of the inflammatory response 
of injured diabetic vasculature.79

As mentioned earlier, Runx2 is a master regulator of vascular calcification in both physiological 
and pathological conditions. Post-translational modifications of Runx2 by phosphorylation, 
ubiquitination, and acetylation exert a variety of significant influences on its activity, stability, 
and interactions with other signaling co-factors downstream of key osteogenic cues.80 In 
a previous report, O-GlcNAcylation of Runx2 at multiple sites was reported to be closely 
linked to increased activation of the transcription factor in MC3T3-E1 pre-osteoblasts.81 More 
interestingly, overall increases in O-GlcNAcylation of cellular proteins, including Runx2, were 
detected in bone marrow-derived mesenchymal stem cells cultured in an osteogenic medium 
in the presence of bone morphogenetic protein 2/7 (BMP2/7), further confirming a strong 
correlation between O-GlcNAc cycling and the Runx2-dependent regulation of osteogenic 
differentiation (Fig. 2).81
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Fig. 2. Pathological effects of O-GlcNAcylation in VSMC under diabetic conditions. The hexosamine biosynthetic pathway in VSMC. After its entry into VSMC, 
glucose is phosphorylated to glucose-6-P by HK and further metabolized into fructose-6-p. Conversion of fructose-6-p to glucosamine-6-p is carried out by 
the rate-limiting enzyme, GFAT. The end-product of the hexosamine biosynthetic pathway, UDP-GlcNAc serves as an obligatory substrate for OGT, generating 
O-GlcNAc-modified proteins, while OGA catalyzes the removal of O-GlcNAc from the targets. O-GlcNAc modification of transcription factors such as Sp1, NFκB, 
and Runx2 mediates hyperglycemia-induced pathological responses in VSMC. 
VSMC, vascular smooth muscle cell; O-GlcNAc, O-linked β-N-acetylglucosamine; GLUT, glucose transporter; HK, hexokinase; GFAT, glutamine:fructose 
6-phosphate amidotransferase; UDP-GlcNAc, UDP-β-D-N-acetylglucosamine; OGT, O-GlcNAc transferase; OGA, O-GlcNAcase; NF-κB, nuclear factor κB; Runx2, 
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CONCLUSION

In conclusion, we reviewed the role of O-GlcNAcylation in vascular pathology associated 
with diabetes mellitus. Although the spatial and temporal regulation of protein O-GlcNAc 
modification during the development of cardiovascular pathologies should be carefully 
considered in future studies, we found strong evidences of associations between the 
O-GlcNAcylation of cellular proteins such as Sp1, NF-κB, and Runx2 and diabetic 
vasculopathy. We speculate that modulation of O-GlcNAcylation of target proteins could be 
an attractive therapeutic target to alleviate vascular pathologies in patients with diabetes.
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