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INTRODUCTION

Epilepsy leads to the functional and neuropathological al-
teration in some brain regions. Especially, among the brain 
regions, the hippocampus is known as one of the most vul-
nerable brain region in epilepsy. Pyramidal cell loss and glial 
activation in the hippocampus are distinctive neuropathologi-
cal changes in various animal models of epilepsy (Matsuoka 
et al., 1999; Sun et al., 2008; Yu et al., 2008; Hong et al., 
2012; Hong et al., 2013). In addition, it has been widely ac-
cepted that neuroinflammatory reaction occurs in epilepsy. 
Pro-inflammatory cytokines, such as interleukin-1β and tumor 
necrosis factor-α, are increased in rodent brain in epilepsy, 
and the increase of pro-inflammatory cytokines is closely as-
sociated with the neuropathological changes and epileptogen-
esis (Ravizza et al., 2005; Vezzani and Granata, 2005; Sun et 
al., 2008; Vezzani et al., 2013). 

Peroxisome proliferator-activated receptor (PPAR), which 
is a member of nuclear hormone receptor superfamily, has 
been well known to be ligand-activated transcriptional factors 
regulating lipid metabolism and glucose homeostasis (Va-
mecq and Latruffe, 1999). Among PPAR subtypes, PPARγ has 

been found to have multiple actions, including the promotion 
of lipogenesis, increase of insulin sensitivity and down-regula-
tion of inflammatory processes (Chinetti et al., 2000; Berger et 
al., 2005). Pioglitazone (PGZ), a synthetic agonist of PPARγ, 
has been widely used as an anti-diabetic drug for treatment 
of type 2 diabetes mellitus. Recently, it has been suggested 
that PPARγ agonists, including PGZ and rosiglitazone, have 
an anti-inflammatory and anti-oxidant effects and have neuro-
protective effects against neurological and neurodegenerative 
disorders (Breidert et al., 2002; Inestrosa et al., 2005; Zhao et 
al., 2006; Lee et al., 2011). 

Although some studies showed the neuroprotective effect 
of rosiglitazone in animal models of epilepsy (Sun et al., 2008; 
Yu et al., 2008; Hong et al., 2013), the underlying mechanisms 
of the neuroprotective effect of PPARγ agonists are not fully 
elucidated yet. In addition, there is no study on the neuropro-
tective effect of PGZ in epilepsy. In the present study, there-
fore, we examined the effects of PGZ on excitotoxic neuronal 
damage and glial activation in the mouse hippocampus follow-
ing intracerebroventricular injection of kainic acid (KA), which 
is an excitatory glutamate receptor agonist and causes severe 
status epilepticus with neuronal death and glial activation in 
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the hippocampus, especially in the hippocampal CA3 region.

MATERIALS AND METHODS
   

Experimental animals
Male ICR mice (B.W., 23-25 g) were purchased from Sam-

tako Bio Korea Co. (Osan, South Korea). The animals were 
housed in a conventional state under adequate temperature 
(23 ± 3oC) and relative humidity (55 ± 5%) control with a 12-h 
light/12-h dark cycle, and provided with free access to food 
and water. The procedures for animal handling and care were 
conducted in accordance with the guidelines of the Institu-
tional Animal Care and Use Committee of Chungnam National 
University (CNU-00151). All of the experiments were conduct-
ed to minimize the number of animals used and the suffering 
caused by the procedures used in the present study.

Pioglitazone treatment and KA injection
To elucidate the effects of PGZ (Actos, Takeda Pharmaceu-

ticals, Osaka, Japan) against excitotoxic neuronal damage, 
the animals were divided into 3 groups (n=8 at each groups); 
1) vehicle (0.1% (w/v) methyl cellulose)-treated control group 
(control-group), 2) vehicle-treated KA-treated group (KA-
group), 3) 30 mg/kg PGZ-treated KA-treated group (PGZ-
KA-group). Vehicle and PGZ were administered orally using 
feeding needle for 3 days before KA injection: The last admin-
istration was performed at 1 h before KA injection. Dose of 
PGZ was selected based on the previous studies (Okada et 
al., 2006; Abdallah, 2010). 

KA injection was performed by the method of our previous 
studies (Yi et al., 2012; Yi et al., 2013). In brief, KA (Sigma, 
MO, USA) was prepared as a stock solution at 5 mg/ml in 
sterile 0.1 M PBS; aliquots were stored at -20oC until required. 
KA was injected at right lateral ventricle (anteroposterior, 
-0.4 mm; mediolateral, 1 mm; dorsoventral, -2.3 mm relative 
to bregma) using a 50-ml Hamilton microsyringe fitted with a 
26-gauge needle inserted to a depth of 2.4 mm (0.1 mg/5 ml in 
PBS, i.c.v.). Control mice received an equal volume of sterile 
0.1 M PBS.

KA-induced seizure activity
KA-induced seizure-like behaviors were examined ac-

cording to the method and the criteria of the previous stud-
ies (McLin and Steward, 2006; Jeong et al., 2011). The mo-
tor and behavioral characteristics, as well as the severity of 
the seizures, were classified according to the Racine scale: 
stage 1, immobility; stage 2, forelimb and or tail extension, 
rigid posture; stage 3, repetitive movements, head bobbing; 
stage 4, rearing and falling; stage 5, continuous rearing and 
falling; and stage 6, severe tonic-clonic seizures. Mice of the 
KA-group and PGZ-KA-group were observed for 2 h after KA 
injection. The number of times reaching at least stage 4 was 
counted to examine whether PGZ had an effect on the KA-
induced seizure-like behaviors.

Tissue processing for histology
At 3 days after KA injection, mice were anesthetized with 

sodium pentobarbital (30 mg/kg, i.p.) and perfused transcardi-
ally with 0.1 M phosphate-buffered saline (PBS, pH 7.4) fol-
lowed by 4% paraformaldehyde in 0.1 M phosphate-buffer 
(PB, pH 7.4). The brains were removed and postfixed in the 

same fixative for 4 h. The brain tissues were cryoprotected 
by infiltration with 30% sucrose overnight. Thereafter, frozen 
tissues were serially sectioned on a cryostat (Leica, Wetzlar, 
Germany) into 30-μm coronal sections.

   
Cresyl violet staining

To examine neuronal damage in the CA3 at 3 days after KA 
injection, cresyl violet (CV) staining was done according to the 
method of the previous study (Lee et al., 2010). In brief, the 
sections were mounted on gelatin-coated microscopy slides. 
Cresyl violet acetate (Sigma, MO, USA) was dissolved at 
1.0% (w/v) in distilled water, and glacial acetic acid was added 
to this solution. The sections were stained and dehydrated by 
immersing in serial ethanol baths, and they were then mount-
ed with Poly-Mount (Polysciences, USA).

To evaluate the neuroprotective effect of PGZ, CV-positive 
cells in pyramidal layer of hippocampal CA3 region were co
unted using an image analyzing system (software: Optimas 
6.5, CyberMetrics, Scottsdale, AZ, USA). The studied tissue 
sections were selected with 240-μm interval, and cell counts 
were obtained by averaging the counts from each animal.

Immunohistochemistry 
Immunohistochemical staining of the tissue sections were 

performed using the avidin-biotin peroxidase complex (ABC) 
method described previously (Yi et al., 2012; Yi et al., 2013). 
Briefly, Parallel free-floating sections were subjected to en-
dogenous peroxidase blocking with 1% H2O2 in PBS, followed 
by treatment with blocking buffer (1% fetal bovine serum in 
PBS and 0.3% Triton X-100 for 30 min) and incubation with 
primary antibodies. Rabbit anti-glial fibrillary acidic protein 
(GFAP, 1:200, Chemicon International, Temecula, CA, USA), 
rabbit anti-ionized calcium-binding adapter molecule 1 (Iba-1, 
1:200, Wako, Osaka, Japan), Myeloperoxidase (MPO, 1:500, 
Dako), NFκB (p65, Rel A, 1:200, Thermo Fischer Scientific 
Inc. IL, USA) were used as primary antibodies. After washing 
with PBS, tissues were exposed to biotinylated anti-rabbit or 
mouse IgG and streptavidin peroxidase complex. Immunos-
taining was visualized with diaminobenzidine, and tissues 
were mounted using Poly-Mount (Polysciences, USA).

To quantitatively analyze immunoreactivity, digital images 
of the hippocampal CA3 region were captured with an AxioM2 
light microscope (Carl Zeiss, Germany) equipped with a digi-
tal camera (Axiocam, Carl Zeiss) connected to a PC monitor. 
The density of immunoreactivity in CA3 region was evaluated 
on the basis of optical density (OD). The OD of background 
was taken from areas adjacent to the measured area. After 
the background density was subtracted, a ratio of the OD of 
image file was calibrated as % (relative optical density, ROD) 
using Adobe Photoshop version 8.0 and NIH ImageJ software 
(National Institutes of Health, Bethesda, MD, USA). A ratio of 
the ROD was calibrated as %, with the control-group desig-
nated as 100%.

Statistical analysis
The data shown here represent the means ± SEM. Differenc-

es among the means were statistically analyzed by two-tailed 
Student t-test in order to elucidate the neuroprotective effects 
of PGZ after KA injection. In addition, differences of the mean 
ROD among the groups were statistically analyzed by analy-
sis of variance (ANOVA) followed by Tukey’s multiple range 
method. Statistical significance was considered at p<0.05.
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RESULTS

KA-induced seizure activity
To evaluate whether PGZ had an anti-convulsive effect in 

KA-induced seizures, we observed behavioral seizure activity 
after KA injection. KA- and PGZ-KA-treated mice demonstrat-
ed the increased repetitive head bobbing movements within 
14 and 18 min (p=0.013), respectively. In addition to retard-
ing seizure latency, the frequency of behavioral seizure activ-
ity corresponding to seizure stage 4 above was significantly 
attenuated in PGZ-KA-treated mice compared to KA-treated 
mice (Fig. 1).

Neuronal damage
Neuronal death in the CA3 region at 3 days after KA injec-

tion was examined using CV staining. In the control-groups, 

CV-positive cells were observed abundantly (Fig. 2A and 2D). 
In the KA-group, marked neuronal damage was detected in 
the stratum pyramidale (SP) of the CA3 region at 3 days after 
KA injection; in this group, CV-positive cells were significantly 
decreased, compared to that in the control-group (Fig. 2B 
and 2D). However, in the PGZ-KA-group, the numbers of CV-
positive cells in the SP of the CA3 region were much higher 
than those of the KA-group; the numbers of CV-positive cells 
in the PGZ-KA-group were lower than those in the control-
group (Fig. 2C and 2D).

Glial activation
In the control-group, GFAP-immunoreactive astrocytes with 

thread-like processes and small cytoplasm, and Iba-1-im-
munoreactive microglia with small cytoplasm were observed 
through the CA3 region (Fig. 3A and 3D). In the CA3 region 
of the KA-group, GFAP immunoreactivity was significantly 
increased and GFAP-immunoreactive astrocytes were ob-
served as activated form with hypertrophied cytoplasm and 
thickened processes (Fig. 3B and 3G). Iba-1-immunoreactive 
microglia in the KA-group were increased and hypertrophied; 
in addition, Iba-1-immunoreactive microglia with dense cyto-
plasm were aggregated in the SP, where neuronal damage 
had occurred (Fig. 3E and 3G). In the PGZ-KA-group, acti-
vated astrocytes and microglia were also found in the CA3 re-
gion at 3 days after KA injection; however, their activation was 
much lower than that in the KA-group (Fig. 3C, 3F and 3G).

Immunoreactivities for MPO and NFκB
In the control-group, MPO-immunoreactive cells were hard-

ly detected in the CA3 region (Fig. 4A). MPO immunoreactivity 
was increased markedly in the CA3 region, especially in the 
strata oriens and radiatum, of the KA group at 3 days after 
KA injection; in addition, MPO immunoreactivity was primarily 
detected in the glial cells of the CA3 region (Fig. 4B and 4G). 

Fig. 1. Effect of PGZ on the number of seizure activity in KA- and 
PGZ-KA-groups. A. The frequency of seizure activity correspond-
ing to seizure scale 4 above was significantly reduced in the PGZ-
KA-group compare to the KA-group (n=8 per group; *p<0.05, sig-
nificantly different from the KA-group). The bars indicate the means 
± SEM.
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Fig. 2. CV staining in the hippocampal CA3 region of the control- (A), KA- (B) and PGZ-KA-(C) groups at 3 days after KA injection. In the 
KA-group, CV-positive cells are decreased in the stratum pyramidale (SP) of the hippocampal CA3 region (asterisk). However, in the PGZ-
KA-group, many CV-positive cells are found compared to those in the KA-group. SO; stratum oriens, SP; stratum pyramidale, SR; stratum 
radiatum. Scale bar=100 μm. (D) Relative analysis in the number of CV-positive cells in the SP of hippocampal CA3 region (*p<0.05, signifi-
cantly different from the control-group, #p<0.05, significantly different from the KA-group). The bars indicate the means ± SEM.
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In the PGZ-KA-group, MPO immunoreactivity was much lower 
than that in the KA-group (Fig. 4C and 4G).

Weak NFκB immunoreactivity was found in the CA3 region 
of the control group (Fig. 4D). In the KA-group, NFκB immu-
noreactivity was significantly increased compared to that in 
the control-group; in addition, NFκB-immunoreactive cells 
resembled astrocytes and microglia morphologically (Fig. 4E 
and 4G). NFκB immunoreactivity in the PGZ-KA-group was 
markedly decreased compared to that in the KA-group, and 
there is no significant difference in NFκB immunoreaction be-
tween the PGZ-KA-group and control-group (Fig. 4F and 4G).

DISCUSSION

In this study, we examined the anticonvulsant effect of PGZ 
against KA-induced seizure, and we found that PGZ treatment 
significantly reduced seizure-like behavior. Our present result 
is in a line with results of the previous studies, which showed 
the anticonvulsant effect of PPARγ agonists in animal models 
of epilepsy. It was reported that PGZ protected against pentyl-
enetetrazole-induced seizure and delayed seizure latency on-
set (Abdallah, 2010). PGZ has been also known to delay the 
development of seizure responses and to shorten the duration 
of convulsion in the genetically epilepsy-susceptible EL mice 
(Okada et al., 2006). 

It has been well known that pyramidal neurons in hippo-
campal CA3 region are very vulnerable to KA-induced acute 

excitotoxic neuronal death (Beal, 1992; Penkowa et al., 2005; 
Kim et al., 2010). Some studies reported the neuroprotective 
effect of rosiglitazone in animal models of epilepsy. It was re-
ported that rosiglitazone could protect the hippocampal neu-
rons against lithium-pilocarpine induced status epilepticus 
injury (Sun et al., 2008; Yu et al., 2008; Hong et al., 2013). In 
the present study, we found that PGZ had the neuroprotective 
effect against KA-induced neuronal damage in the hippocam-
pal CA3 region. To the best of our knowledge, this is the first 
study to show the neuroprotective effect of PGZ in KA-induced 
animal model of epilepsy. In addition, it was suggested that the 
anticonvulsive effect of PGZ might be associated with attenu-
ating neuroinflammation and preventing apoptosis in brain. 
Therefore, it can be postulated that the neuroprotective effect 
of PGZ may be related to the anticonvulsive effect of PGZ.

Astrocytes play important roles in the central nervous sys-
tem, such as regulation of ion homeostasis and neuronal 
functions (Horner and Palmer, 2003). Astrocytes have been 
known to be associated with the increased neuronal excit-
ability in epilepsy (Ricci et al., 2009). In addition, It was sug-
gested that activation of astrocytes and reactive astrogliosis, 
which are induced by seizure, contributes to epileptogenesis, 
spread of seizure activity and cognitive impairment, and that 
rosiglitazone could attenuated the astrocyte activation after 
status epilepticus (Hong et al., 2012). Microglia are known 
as the principal immune cells and resident macrophages of 
the brain. In various brain insults including seizure, microglia 
undergo the reactive changes with altered morphology, pro-

Fig. 3. GFAP (A-C) and Iba-1 (D-F) immunohistochemistry in the hippocampal CA3 region of the control- (A, D), KA- (B, E) and PGZ-KA-
(C, F) groups at 3 days after KA injection. GFAP and Iba-1 immunoreactivity is markedly increased in the KA-group. However, in the PGZ-
KA-group, GFAP and Iba-1 immunoreactivity are lower than those in the KA-group. SO; stratum oriens, SP; stratum pyramidale, SR; stra-
tum radiatum. Scale bar=100 μm. (G) Relative optical density as % of GFAP- and Iba-1-immunoreactive structures in the CA3 region of the 
control-, KA- and PGZ-KA-groups (*p<0.05, significantly different from the control-group, #p<0.05, significantly different from the KA-group). 
The bars indicate the means ± SEM.
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liferation and production of pro-inflammatory cytokines and 
reactive oxygen species (Minghetti and Levi, 1998; Tooyama 
et al., 2002). It has been known that inhibition of microglia 
activation could decrease the status epilepticus-induced early 
brain injury and neuronal death (Chung and Han, 2003). It 
was also reported that microglia were notably increased and 
highly activated in the hippocampus after status epilepticus, 
and that neuroprotective effect of rosiglitazone against status 
epilepticus-induced hippocampal neuronal death was closely 
related to the suppression of microglia activation (Sun et al., 
2008; Yu et al., 2008). In addition, PPARγ agonists have been 
known to decrease the induction of pro-inflammatory genes, 
such as TNF-α and IL-1, in glia (Bernardo et al., 2000; Luo et 
al., 2006). In the present study, we found that PGZ attenuated 
the KA-induced activations of astrocytes and microglia in the 
hippocampal CA3 region. Therefore, based on the previous 
studies, it is likely that decreases of astrocytes and microglia 
activation by PGZ may be a possible mechanism with the neu-
roprotective effect of PGZ against excitotoxic neuronal dam-
age by KA.

MPO is known to be involved in the developments of Par-
kinson disease, and blockade of MPO activity can ameliorate 
decrease neuropathological conditions (Choi et al., 2005). It 
has been well known that MPO has properties of cytokine and 
regulates inflammatory signaling cascades, and that MPO trig-
gers pro-inflammatory response in rotenone-exposed microg-
lia (Kumar et al., 2005; Lau et al., 2005; Chang et al., 2011). 
Recently, it was reported that MPO could increase its own ex-
pression and activity in rat primary astrocytes and microglia 

(Chang et al., 2013). NFκB has been known to be expressed 
highly in many neuropathological conditions, and plays roles 
in inflammatory responses (Miyamoto and Verma, 1995). In 
addition, NFκB in glial cells, not in neuronal cells, is thought 
to be related to the induction of pro-inflammatory cytokines 
(Bales et al., 1998). It has been well known that NFκB is acti-
vated in glial cells of the hippocampus in a few days after KA 
treatment (Matsuoka et al., 1999; Lerner-Natoli et al., 2000). 
In this study, we observed that NFκB immunoreactivity in glia 
of the KA-group was significantly increased compared to that 
in the control-group. This result was consistent with a previous 
study which showed that NFκB immunoreactivity was strong 
in glial cells 3 and 7 days after KA injection (Matsuoka et al., 
1999). In addition, it was reported that reduction of glial NFκB 
was related to the down-regulation of microglial and astroglial 
response and the drastic reduction in lesion volume against 
excitotoxic injury in postnatal brain (Acarin et al., 2001). In this 
study, we also found that both MPO and NFκB immunoreac-
tivities in the glial cells of the PGZ-KA-group were significantly 
decreased compared to that in the KA-group. Therefore it can 
be postulated that decreases in MPO and NFκB immunoreac-
tivities by PGZ treatment may be closely associated with the 
reduction in activations of astrocytes and microglia by PGZ.

In summary, PGZ had anticonvulsant and neuroprotective 
effects against KA-induced excitotoxic injury. In addition, neu-
roprotective effect of PGZ might be due to the attenuation of 
KA-induced activation in astrocytes and microglia as well as 
KA-induced increases in MPO and NFκB expressions.

Fig. 4. MPO (A-C) and NFκB (D-F) immunohistochemistry in the hippocampal CA3 region of the control- (A, D), KA- (B, E) and PGZ-KA-
(C, F) groups at 3 days after KA injection. MPO and NFκB immunoreactivity in the PGZ-KA-group is much than those in the KA-group. SO; 
stratum oriens, SP; stratum pyramidale, SR; stratum radiatum. Scale bar=100 μm. (G) Relative optical density as % of MPO- and NFκB-
immunoreactive structures in the CA3 region of the control-, KA- and PGZ-KA-groups (*p<0.05, significantly different from the control-group, 
#p<0.05, significantly different from the KA-group). The bars indicate the means ± SEM.
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