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Big data in visual field testing for 
glaucoma
Alex T. Pham1, Annabelle A. Pan1, Jithin Yohannan1,2,*

Abstract:
Recent technological advancements and the advent of ever-growing databases in health care have 
fueled the emergence of “big data” analytics. Big data has the potential to revolutionize health 
care, particularly ophthalmology, given the data-intensive nature of the medical specialty. As one 
of the leading causes of irreversible blindness worldwide, glaucoma is an ocular disease that 
receives significant interest for developing innovations in eye care. Among the most vital sources 
of data in glaucoma is visual field (VF) testing, which stands as a cornerstone for diagnosing and 
managing the disease. The expanding accessibility of large VF databases has led to a surge in 
studies investigating various applications of big data analytics in glaucoma. In this study, we review 
the use of big data for evaluating the reliability of VF tests, gaining insights into real-world clinical 
practices and outcomes, understanding new disease associations and risk factors, characterizing 
the patterns of VF loss, defining the structure–function relationship of glaucoma, enhancing early 
diagnosis or earlier detection of progression, informing clinical decisions, and improving clinical 
trials. Equally important, we discuss current challenges in big data analytics and future directions 
for improvement.
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Introduction

The emergence of “big data” analytics 
has transformed health care, enabling a 

paradigm shift toward precision medicine, 
predictive analytics, and data‑driven 
d e c i s i o n ‑ m a k i n g .  A l t h o u g h  t h e r e 
is no universal definition of big data, 
it is generally accepted as a large data 
aggregation that cannot be analyzed with 
traditional methods. However, the concept 
of big data encompasses more than the 
sheer size of the data (volume). It is also 
characterized by the diversity of data types 
and sources (variety), the speed at which 
data is generated (velocity), the quality 
or accuracy of the data (veracity), and the 
potential insights or benefits derived from 
analyzing the data (value). For a dataset to 
be considered “big data”, it should exhibit 
these key attributes.

Ophthalmology is particularly well suited 
to leverage big data analytics, given the 
wealth of diagnostic data generated from 
the advanced technologies used during 
clinical assessments. Specifically, the 
development of information technologies 
has led to the wide adoption of electronic 
health records, enabling the development 
of robust clinical registries such as the 
“IRIS” registry, “Fight Retinal Blindness!” 
registry, and “Sight Outcomes Research 
Collaborative” (SOURCE) repository. 
Other methods of obtaining big data in 
ophthalmology include genomic databases, 
large‑scale clinical trials, biobanks, 
administrative and health insurance 
databases, crowd‑source data (social media, 
mobile applications, wearable devices), and 
imaging technologies.[1] In glaucoma, sources 
of big data include clinical examination 
notes, optical coherence tomography 
imaging (OCT), visual field (VF) testing, 
and fundus photography. Among the 
most important sources of information in 
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glaucoma is VF testing through automated perimetry. 
VF testing is a functional assessment of a patient’s 
central or peripheral vision. Tracing its roots to the 
19th century, VF testing has been a cornerstone in 
diagnosing and tracking glaucoma for the past several 
decades.[2] Recent technological advancements have 
significantly enhanced the growing accessibility of VF 
data from standard automated perimetry machines such 
as the Humphrey field analyzer (HFA), leading to an 
influx of glaucoma studies seeking to uncover disease 
patterns, enhance early diagnosis, improve progression 
detection, and personalize treatment strategies. In this 
study, we seek to provide a comprehensive review 
of the various utilizations of big data from VF testing 
obtained through standard automated perimetry. We 
focus on how researchers have used big data to evaluate 
the reliability and accuracy of VF tests, gain insights into 
management practices, assess outcomes of real‑world 
interventions, identify disease associations and risk 
factors, characterize patterns of glaucomatous vision loss, 
improve our understanding of glaucoma’s structure–
function relationship, enhance disease detection, monitor 
progression, provide decision support, and improve 
clinical trials. Finally, we discuss the advantages and 
challenges of big data analytics in the setting of VF testing 
and its potential future directions. A summary of articles 
referenced is seen in Supplementary Table 1.

Evaluating Reliability and Accuracy of 
Visual Field Testing

The determination of a “reliable” VF test from an 
HFA is traditionally based on false positives or false 
negatives <33% and fixation losses <20%. However, 
there are limitations to these cutoffs. The cutoffs were 
based solely on the number of patients who exceeded 
these thresholds rather than how unlikely VFs above 
the cutoffs represented the true degree of VF damage. 
Second, using cutoffs for this approach does not quantify 
the degree of unreliability. Using large VF datasets, 
Yohannan et al., Tan et al., and Aboobakar et al. determined 
the quantitative impact of VF reliability indices on 
the global VF measurements in large populations of 
glaucomatous and nonglaucomatous eyes.[3‑5] They 
found that false positives, false negatives, and test 
duration significantly impacted mean deviation (MD), 
whereas fixation losses had a minimal or no effect.[3,4] 
Yohannan et al. and Aboobakar et al. found that the 
impact of the reliability indices on MD varied with 
disease severity in glaucomatous eyes.[3,5] Tan et al. found 
a nonlinear relationship between reliability indices’ 
impact on MD and pattern standard deviation (PSD) in 
nonglaucomatous eyes.[4] These studies have highlighted 
the importance of quantitatively considering the 
systemic effects of VF reliability indices on the degree 
of VF loss used to detect glaucoma or its progression, 

even if the VF is considered “reliable” by traditional 
HFA standards.

Investigators have also used large VF datasets to 
examine the accuracy of various VF testing strategies. 
Specifically, multiple studies have evaluated the accuracy 
of SITA Faster in comparison to its predecessors, SITA 
Standard, or SITA Fast.[6‑12] SITA Faster demonstrates 
good agreement with SITA Standard or SITA Fast.[6‑12] 
However, SITA Faster tends to underestimate the degree 
of VF loss compared to its predecessors, especially in the 
advanced stages of the disease.[6‑12] Hence, SITA Faster’s 
time‑saving benefits must be weighed against the potential 
to underestimate VF loss, especially in severe glaucoma.

In addition, researchers have used large databases of 
VF tests to understand the frequency of testing needed 
to detect glaucoma worsening accurately. Bradley et al. 
evaluated the accuracy of detecting glaucoma worsening 
using different numbers of OCT scans or VF tests.[13] They 
found that the accuracy for OCTs or VFs alone was < 50% 
when monitoring progression over 2 years.[13] Combining 
OCT and VF obtained the best accuracy, but at least 12 
tests (6 VF and 6 OCT) per year were needed to get an 
accuracy above 80%.[13]

Insights into Real‑world Management 
Practices

By combining VF databases with large‑scale, 
diverse datasets from electronic health records and 
insurance claims, big data analytics has given a deeper 
understanding of glaucoma care in various real‑world 
settings. Sun et al. used a nationwide health insurance 
claims database to investigate whether a temporal 
association exists between VF testing and management 
changes.[14] They found that glaucoma patients who 
received VF testing had increased odds of management 
change.[14] Specifically, VF testing alone was associated 
with higher odds of subsequent surgery within 90 days 
or laser therapy within 30 days.[14] VF and/or OCT were 
associated with higher odds of medication changes 
within 30 days.[14] In a large Israel population‑based 
retrospective study, Ben‑Artsi et al. identified trends in 
VF testing conducted over 15 years between 2000 and 
2014.[15] They discovered a growing trend of VF testing 
being overused such that nearly 3 out of 4 new VF tests 
were taken from patients without a glaucoma‑related 
condition (International Classification of Disease [ICD‑9] 
codes for glaucoma or suspect glaucoma diagnosis, 
or registered glaucoma medication prescription) by 
2014.[15] Meanwhile, there was suboptimal adherence to 
glaucoma monitoring guidelines indicated by underuse 
of VF testing in patients that did have a glaucoma‑related 
condition. A third of glaucoma‑related patients did not 
perform a single VF test throughout the entire study 
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period[15] despite good evidence that more frequent 
testing is needed to detect a change in glaucoma 
accurately.[13] Moreover, the average time between the 
first glaucoma‑related diagnosis and the first VF test 
was 2 years.[15] However, once a patient underwent 
their first VF test, they had VF tests taken annually on 
average.[15] Similarly, Stagg et al. found that VF testing 
was underused in a United States population of patients 
diagnosed with open‑angle glaucoma (based on ICD‑9 
or ICD‑10 codes).[16] More than 75% of patients with a 
glaucoma diagnosis in their study population received 
less than one VF test annually.[16] In a multicenter analysis, 
Fu et al. used electronic health records from 2013 to 2018 
in the United Kingdom to evaluate glaucoma‑associated 
health‑care resource utilization.[17] They found that 
over 12 months, patients received an average of 2.0 
glaucoma clinic visits and 1.5 VF tests. An important 
limitation of the studies above is the veracity of the 
ICD codes obtained from the electronic health records, 
introducing the potential for misclassification bias.

Assessing Real‑world Outcomes

Researchers have analyzed large VF datasets to identify 
the trends in disease outcomes, factors affecting VF 
outcomes, and patient responses to therapy across a large, 
diverse clinical population. Chauhan et al. found that in 
a large treated Canadian population, most patients with 
a glaucoma‑related diagnosis experienced slow rates of 
VF progression (median MD rate = −0.05 dB/year) and 
that MD rates of change were worse with increasing 
age.[18] A minority of patients, 4.3% and 1.5%, experienced 
fast (MD rate <−1 dB/year) and catastrophic rates of 
VF progression (MD rate <−2 dB/year), respectively. 
Similarly, Jammal et al. and Kirwan et al. found slow rates 
of VF progression (average MD rate = −0.09 dB/year 
and = −0.10 dB/year, respectively) in a large treated 
clinical population in the United States and Portsmouth, 
respectively.[19,20] Using the same cutoff for the MD rate of 
change, Jammal et al. noted a similar proportion (4.2%) 
of eyes demonstrating fast progression, leading to 
significant visual disabilities if sustained over time.[19] 
Kirwan et al. noted that older patients and those with 
initial VF damage were more likely to have faster rates 
of VF loss.[20] In contrast to the studies above, Aptel et al. 
found slightly faster rates of VF progression (average 
MD rate = −0.40 dB/year) in a large French population 
despite clinical treatment, and rates varied significantly 
among their subjects.[21] In addition, they found that 
nearly half of glaucoma patients had significant 
trend‑based or event‑based disease progression at the 
beginning of the follow‑up period.[21]

Investigators have also examined the specific factors 
that affect the rates of glaucomatous VF progression. 
Shu et al. used pharmacy refill data from 2001 to 2014 to 

quantify the impact of adherence to topical intraocular 
pressure (IOP) lowering medication, defined by the 
proportion of days covered, on rates of VF progression in 
open‑angle glaucoma or pseudoexfoliation glaucoma.[22] 
They found that the average treatment adherence during 
follow‑up was 73%.[22] Using a conditional growth 
model and controlling confounding variables, they 
estimated the effect of adherence level on the rates of MD 
change.[22] Each 10% absolute increase in adherence led to 
a 0.006 dB/year slower rate of MD change.[22] Concerning 
IOP control, Villasana et al. found that patients who 
achieved the target IOP set by their clinicians had 
significantly slower rates than eyes that did not achieve 
the target.[23] Each 1 mmHg above the target pressure led 
to a 0.031 dB/year faster rate of MD change.[23] García 
Caride et al. assessed the rates of VF progression in six 
different glaucoma subtypes (open‑angle glaucoma, 
angle‑closure glaucoma, congenital glaucoma, ocular 
hypertension, pseudoexfoliation glaucoma, and 
pigmentary glaucoma) in a large Spanish population.[24] 
They affirmed that most patients with treated glaucoma 
had slow rates of MD progression regardless of glaucoma 
subtype.[24] However, they noted that congenital 
glaucoma had the highest proportions of fast VF 
progressors.[24] In another study involving a multicenter 
analysis of glaucoma clinics in the United Kingdom, Liu 
et al. found that rates of MD loss were faster in uveitic 
glaucoma than in primary open‑angle glaucoma, and 
uveitic glaucoma had nearly double the relative risk 
of rapid progression.[25] De Moraes et al. compared the 
rates of VF change in ocular hypotensive eyes with and 
without optic disc hemorrhage and found eyes with disc 
hemorrhage had more rapid VF deterioration than eyes 
without disc hemorrhage (average MD rate = −0.17 vs. 
−0.07 dB/year).[26] Eyes with multiple disc hemorrhages 
experienced similar rates of global VF loss but more rapid 
pointwise VF changes when compared to eyes with a 
single disc hemorrhage.[26]

Disease Associations and Risk Factors

Big data analytics has identified multiple behavioral 
and socioeconomic risk factors for VF loss in glaucoma. 
Mahmoudinezhad et al. demonstrated that smoking 
intensity was significantly associated with faster rates 
of MD loss (−0.05 dB/year per 10 pack‑years).[27] Heavy 
smokers (≥20 pack‑years) were more than two times 
as likely to develop VF progression than patients 
without a smoking history.[27] Hanyuda assessed the 
long‑term association between low‑carbohydrate diets 
and primary open‑angle glaucoma, defined by various 
VF loss patterns.[28] Although there was no significant 
association between low‑carbohydrate diets and the 
risk of glaucoma, their data suggested an inverse 
association between plant‑based low‑carbohydrate 
intake and a lower risk of early paracentral VF loss.[28] 
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Racial and ethnic factors have also been associated with 
specific patterns of VF loss. Kang et al. examined racial 
differences in VF loss patterns.[29] Compared with 
non‑Hispanic whites, black patients had a higher risk 
of early central (hazard ratio = 1.98; 95% CI, 1.48–2.66) 
and advanced VF loss (hazard ratio = 6.17; 95% CI, 
3.69–10.32).[29] In addition to racial and ethnic factors, 
socioeconomic status, Household characteristics, and 
transportation are associated with functional VF loss. 
Almidani et al. found that the social vulnerability index, 
a measure that reflects the abovementioned factors, is 
significantly associated with worse baseline MD and 
greater VF variability.[30]

Researchers have also identified a variety of health‑related 
risk factors. Diabetes mellitus is a well‑known risk factor 
for many ocular complications. Nonetheless, there is no 
clear causal relationship between diabetes and glaucoma. 
Multiple mechanisms have been proposed for how 
diabetes may increase the risk of glaucoma progression, 
but the evidence in the literature remains mixed.[31‑35] 
Johnson et al. improved on previous studies using 
the Duke Eye Registry to investigate the relationship 
between diabetes control, measured by HbA1c levels, 
and rates of VF loss.[36] They found that HbA1c levels 
were not significantly associated with rates of MD change 
over time.[36] In another study, Marshall et al. evaluated 
the relationship between body mass index (BMI) and 
multiple cross‑sectional and longitudinal glaucoma 
outcomes, including VF progression.[37] They found 
that lower BMIs were associated with fast rates of VF 
progression (MD rate >−1.0 dB/year ).[37] However, they 
noted that a limitation of this finding is that due to the 
study’s retrospective nature, it was uncertain whether 
the recorded BMIs were accurate.[37] Concerning genetic 
risk factors, Qassim et al. used polygenic risk score 
stratification to examine the effects of common genetic 
variants linked to IOP on various glaucoma outcomes, 
including VF measures.[38] No significant difference 
was found between MD and the IOP‑related polygenic 
risk score groups.[38] Similarly, Kang et al. investigated 
the relationship between vascular‑tone regulator 
genes and primary open‑angle glaucoma, defined by 
early paracentral or peripheral VF loss, and found no 
significant association.[39] Another genetic risk factor that 
has been investigated is the Myocilin gene. Souzeau et al. 
reported that Myocilin mutation was three times more 
prevalent in glaucoma patients with advanced VF loss 
than in those with less advanced disease in an Australian 
population.[40]

Characterizing Patterns of Glaucomatous 
Visual Field Loss

Unsupervised machine learning methods such as 
archetypal analysis have helped characterize patterns 

of VF loss. An advantage of archetypal analysis is that it 
provides regional stratification of VFs with coefficients 
that weigh each possible VF loss pattern. In the Ocular 
Hypertension Treatment Study, Keltner et al. offered a VF 
classification system based on manual inspection of VFs 
but did not attempt to quantify these patterns.[41] More 
recently, Elze et al. used archetypal analysis to identify 
and quantify 17 prototypical VF loss patterns without the 
potential of clinician bias. Their archetypes corresponded 
well with the previous manual classification scheme 
from the ocular hypertension study.[42] Wang et al. also 
applied archetypal analysis to identify central 10‑2 VF 
loss patterns.[43] Longitudinal analysis of central VF loss 
patterns revealed that initial central VF loss was most 
likely to be from nasal loss, and one of the nasal loss 
patterns had a substantial chance of shifting to total loss 
after 2 years.[44] Compared to global indices, archetypal 
analysis of central VF patterns improved the prediction 
of central glaucomatous VF loss.[43]

The Structure–Function Relationship in 
Glaucoma

The structure–function relationship in glaucoma is 
crucial for understanding the disease’s pathophysiology 
and improving clinical management. This relationship 
generally refers to the correlation between structural 
changes in the optic nerve head (often captured as 
a change in the retinal nerve fiber layer (RNFL) on 
peripapillary OCT) and functional changes in the 
patient’s field of vision. Deciphering the relationship 
between structural changes in RNFL and functional VF 
loss has been challenging due to its nonlinear nature[45] 
and high interindividual variability.[46] Recent big 
data analytic studies have attempted to use artificial 
intelligence (AI) to improve the correlation between 
structural and functional data. Using AI to predict 
VF measures from OCT input data is an active area 
of research as machine learning methods can better 
model complex, nonlinear relationships than traditional 
statistical methods.[47‑49] Specifically, there has been a 
growing trend of developing deep learning models using 
structural data inputs to predict 24‑2 or central 10‑2 VF 
measurements.[50‑59] VF measurements that investigators 
have attempted to estimate include global metrics (MD, 
VF index [VFI]) and focal metrics (individual pointwise 
thresholds and total deviation values).[47,53‑57,60‑65] The 
estimates from these models have modest accuracy 
with absolute error ranging from 1.5 to 5 dB for global 
metrics[53,54,57,60,61,63‑65] and 3–5 dB for focal metrics.[47,53,55,60,62]

As opposed to mapping structural measurements 
directly with functional measurements (converting 
measurements), additional applications of big data 
analytics in the structure–function relationship involve 
utilizing large OCT datasets paired with large VF 
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datasets to gain insights into the concordance between 
OCT findings and VF findings as it relates to detecting 
the presence of glaucoma and/or progression. In a large 
population‑based study, Springelkamp et al. evaluated 
the ability of OCT thickness measurements in the 
peripapillary and macular regions to screen for glaucoma 
as diagnosed by perimetry.[66] They found that macular 
abnormalities were as common as RNFL abnormalities 
in glaucoma cases and that OCT measurements could 
identify approximately half of the glaucoma cases 
with evidence of VF loss.[66] Singh et al. used a large 
longitudinal database containing OCT and VFs to 
challenge the assumption that normative percentiles of 
RNFL from OCT machines can improve the prediction 
of glaucomatous VF loss.[67] They found that raw RNFL 
measurements from OCT predicted current and future 
VF loss with similar accuracy to normative percentiles 
of RNFL.[67] Swaminathan et al. found that rapid rates 
of RNFL loss during the initial follow‑up period of 
glaucoma patients were predictive of concurrent or 
future rapid VF loss.[68] Montesano et al. developed a 
combined Structure Function Index (SFI), and they 
evaluated the diagnostic ability of SFI to discriminate 
between glaucomatous eyes (determined from expert 
evaluation of fundus photographs) and healthy eyes.[69] 
They found that SFI did not have better discriminative 
power than RNFL alone but did perform better than MD 
alone.[69] Given that VF testing requires a patient to fixate 
on a central target, another critical aspect of their study 
was assessing the impact of fundus tracking perimetry on 
the structure–function correlations (R2 value).[69] Overall, 
the global structure–function correlations were similar 
between perimeters that used or did not use fundus 
tracking.[69]

Improving Glaucoma Diagnosis

Big data analytics involving machine learning holds 
promising applications for diagnosing glaucoma. As 
described above, machine learning algorithms can 
identify the subtle patterns of VF loss and can be 
clinically valuable in the early detection of glaucoma. 
Thakur et al. demonstrated that convex representations of 
VF loss through archetypal analysis could better predict 
glaucoma approximately 4 years before disease onset 
when compared to the original VF representation.[70] 
Researchers have built on this by exploring the use of 
large VF databases to develop deep learning models for 
glaucoma diagnosis. Li et al. conducted a clinical trial that 
involved developing a deep learning model trained on 
3,712 VFs to differentiate glaucoma from non‑glaucoma 
VFs. They demonstrated a convolutional neural 
network achieves higher accuracy compared to human 
ophthalmologists and traditional guidelines (Advanced 
Glaucoma Intervention Study and Glaucoma Staging 
System 2 of Brusini). Using 300 VFs for validation, their 

CNN model achieved an accuracy of 0.876. Meanwhile, 
human ophthalmologists achieved accuracies ranging 
from 0.585 to 0.626. AGIS and GSS2 criteria achieved 
accuracies of 0.459 and 0.523, respectively.[71] Compared 
to conventional statistical analysis methods such as 
the Glaucoma Hemifield Test, PSD Index, and cluster 
recognition, Bizios et al. demonstrated that deep learning 
models using VF inputs could diagnose glaucoma 
with slightly to considerably better accuracy.[72] More 
recent studies have improved the performance of these 
machine learning models by incorporating VF data with 
additional data from OCT scans or fundus images.[73‑76]

Improving Detection of Visual Field 
Progression

Researchers have used big data analytics to explore 
alternative approaches to detecting glaucoma progression. 
In a large retrospective longitudinal study of 1,658 eyes 
with ≥8 reliable VF tests, Leshno et al. evaluated the 
ability of rates of progression in each hemifield of the 
24‑2 VF to detect rapidly progressing eyes.[77] Hemifield 
progression rates were more sensitive to focal or faster 
progression than global progression rates.[77]

Similar to glaucoma diagnosis, there is much interest 
in utilizing AI approaches to improve the detection of 
disease progression. Saeedi et al. described substantial 
variation and limited agreement between the existing 
methods of defining VF progression (MD slope, 
VFI slope, Advanced Glaucoma Intervention Study, 
Collaborative Initial Glaucoma Treatment Study, 
pointwise linear regression, and permutation of 
pointwise linear regression).[78] To address this issue, 
Wang et al. introduced another method of monitoring 
VF progression by tracking the changes between 
archetype weights of longitudinal VF tests; archetypal 
analysis could be used to detect VF progression and 
quantify progression patterns.[79] Progression based on 
archetypal analysis compared well with existing methods 
of identifying progression such as MD slope, pointwise 
linear regression, and Collaborative Initial Glaucoma 
Treatment Study scoring.[79] In a different study, Yousefi 
et al. used archetypal analysis to identify the patterns of 
VF loss and identified one pattern that predicted future 
rapid VF progression.[80] Deep learning models have 
also been effective in predicting progression. Park et al. 
and Kim et al. showed that deep learning models such 
as recurrent neural networks and bidirectional gated 
recurrent unit algorithms significantly outperformed 
conventional linear regression when using an initial 
set of five VFs to predict worsening in the sixth VF.[81,82] 
Sabharwal et al. demonstrated that deep learning models 
can accurately predict VF progression (area under 
the curve [AUC] =0.94) when a consensus approach, 
involving both trend and event‑based methods, was used 
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to define VF progression.[83] Even when the most recent 
six VFs in the series were removed, the deep learning 
model had an AUC of 0.78. In contrast, the clinician 
assessment of worsening (based on electronic health 
record documentation) had an AUC of 0.64.[83] Moreover, 
researchers have been able to further improve the 
predictive accuracy models by incorporating multimodal 
data.[84,85]

Decision Support Tools

The growing accessibility of large datasets and advances 
in AI over the past several years have provided researchers 
with opportunities to build clinical decision support tools 
to improve glaucoma care. Many studies have focused on 
forecasting the risk of surgical intervention. Prior work 
has tried predicting the need for glaucoma surgery using 
data found in electronic health records, such as clinical 
progress notes, demographic information, prescribed 
medications, comorbid diagnoses, vital signs, BMI, and 
smoking status.[86,87] AI has also been used to aid in risk 
stratification by forecasting future VF loss.[84,88,89] Since a 
large number of VFs are needed to accurately determine 
the rate of VF loss and treatment decisions frequently 
need to be made after just a few visits, early identification 
of those at risk for rapid VF loss is difficult. Shuldiner 
et al. demonstrated that machine learning models could 
predict eyes that underwent fast progression (MD rate 
<–1 dB/year) using only initial VF data with modest 
accuracy (AUC ≈ 0.70).[88] More recently, there has 
been increasing interest in building multimodal models 
incorporating multiple data sources, such as VF tests, into 
a single predictive model, and many show significantly 
improved performance.[84,90,91] Other decision support 
tools researchers are investigating include classification 
models for managing glaucoma and referral in primary 
care settings.[92,93]

Improving Clinical Trials Enrollment

Glaucoma neuroprotection trials require demonstrating 
a significant treatment effect on VF endpoints. Due to 
the slow rate of progression observed in the majority of 
treated glaucoma patients and the inherent variability of 
VF testing, investigators running such clinical trials are 
burdened by large sample size requirements. Researchers 
have used computer simulations with large VF datasets 
to investigate approaches for improving the feasibility 
of clinical trials and reducing the burden of enrollment. 
Wu and Mederios demonstrated that different VF testing 
paradigms, such as clustered VF testing, as opposed 
to evenly spaced VF testing, can significantly reduce 
the sample size requirement for glaucoma clinical 
trials.[94] Moreover, combining OCT and VF endpoints 
can also help reduce sample size requirements.[95] Recent 
studies have validated using trend‑based VF outcomes 

over event‑based VF outcomes for clinical trials, as 
trend‑based evaluation tends to significantly reduce 
sample size.[96,97] In addition, Montesano et al. found 
that selecting reliable VF test‑takers with low intertest 
variability can significantly improve the statistical power 
of glaucoma clinical trials.[98] In a related study, Wang 
et al. demonstrated that clinical trial enrollment could 
be enhanced by using deep learning models that can 
identify patients likely to have lower VF variability.[99]

Advantages and Limitations of Big Data in 
Visual Field Testing

Big data analytics of VF tests offers several advantages 
for clinical decision‑making and research in glaucoma. 
By analyzing large‑scale VF datasets with machine 
learning and other advanced statistical techniques, 
researchers can identify the subtle patterns of vision 
loss, predict disease progression more accurately, and 
detect glaucoma earlier than conventional methods. 
The comprehensive analysis of VF data may enable the 
stratification of glaucoma subtypes and help inform 
clinicians, so they can develop personalized treatment 
plans. Analyzing real‑world clinical data provides 
insights into current management practices and can help 
improve resource allocation.

However, big data analytics also comes with notable 
limitations. Variability in test administration and patient 
compliance can lead to noisy and inconsistent VF 
measurements, complicating analysis. The requirement 
for large, well‑annotated datasets often limits the 
generalizability of predictive models, as many datasets 
from the large institutions from which many of these 
studies were drawn may lack diversity in patient 
demographics and clinical settings. Ethical and privacy 
concerns also arise due to the sensitive nature of health 
data. Implementing these analytics into routine clinical 
practice often requires significant computational 
infrastructure and clinician training, posing logistical 
challenges. Moreover, due to the “black box” nature 
of some analytic methods, specifically deep learning, 
the lack of interpretability and resulting ambiguity in 
clinical accountability are considerable hurdles. Despite 
these limitations, big data analytics remains a promising 
approach for enhancing glaucoma care.

Potential Future Directions

Big data analytics in VF testing has the potential to 
transform glaucoma care. One promising avenue lies in 
the continued development of multimodal predictive 
models that integrate VF data with OCT, electronic 
health records, and genetic information, offering 
clinicians a comprehensive view of each patient’s 
glaucoma progression risk. Advanced machine learning 



Taiwan J Ophthalmol - Volume 14, Issue 3, July-September 2024 295

techniques, particularly deep learning models, will 
become increasingly adept at identifying complex 
patterns in heterogeneous data, leading to more precise 
early detection and subtype stratification. The advent 
of home‑based VF testing devices and wearable health 
technology may generate ever‑increasing amounts of 
continuous patient data streams, enabling personalized 
treatment adjustments and real‑time monitoring of 
disease progression. Furthermore, using federated 
learning, where models are trained across decentralized 
data without data sharing, may facilitate collaborations 
between institutions when addressing privacy concerns, 
leading to more generalizable predictive models. 
Developing interpretable models that clinicians can 
easily understand and trust will be crucial, ensuring that 
the insights provided by these predictive tools can be 
seamlessly incorporated into clinical practice. Integrating 
these analytics into clinical decision support systems will 
empower clinicians with actionable insights, bridging the 
gap between data analysis and patient care, ultimately 
improving outcomes and reducing the global burden 
of glaucoma.
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Supplementary Table 1: Summary of articles reviewed
Topic Author Sample size Data source Study method Key finding
Evaluating 
reliability and 
accuracy of VF 
testing

Yohannan et al., 
2017

10,262 VFs from 
1538 eyes (909 
subjects)

Institutional 
database

Mixed-effect 
modeling

FPs, FNs, and TD significantly impact VF 
test reliability, and the effect of FPs and 
FNs varies with disease severity
FL has minimal impact on test reliability

Tan et al., 2017 1828 VFs from 
1235 eyes (830 
subjects)

Large prospective 
population-based 
cohort database

Multivariable 
regression 
modeling

Quantified the effects of FP, FN, FL on MD 
and PSD
Clinicians may estimate the impact of 
varying degrees of unreliability on VF results

Aboobakar et al., 
2020

10,262 VFs from 
1538 eyes (909 
subjects)

Institutional 
database

Mixed-effects 
modeling

FPs, FNs, and TD are the primary 
measures for predicting VF reliability but 
VFs with normal reliability indices may still 
be unreliable

Le et al., 2022 766 eyes (421 
patients)

Institutional 
database

Unsupervised 
machine learning 
(archetypal 
analysis)

Switching from SITA standard to SITA 
faster is associated with higher tendency 
to preserve normal VFs but lower tendency 
to preserve abnormal VFs compared to 
consecutive SITA standard examinations

Pham et al., 2021 766 eyes (421 
patients)

Institutional 
database

Mixed-effects 
modeling

SITA Faster resulted in similar VF 
measurements as SITA standard in mild 
glaucoma. Meanwhile, SITA faster resulted 
in improved VF measurements in moderate 
and advanced disease

Bradley et al., 
2023

20,583 eyes 
(10,958 subjects)

Institutional 
database

Simulation OCT and VF each have>50% accuracy for 
detecting VF worsening
Combining OCT and VF results greatly 
increases the accuracy for detecting VF 
worsening

Insights into 
real-world 
management 
practices

Sun et al., 2021 12,669,324 
outpatient 
encounters 
from 1,863,748 
subjects

National 
health-care 
insurance claims 
database

Logistic 
regression

Changes in glaucoma management 
occurred in a small proportion of outpatient 
encounters
Surgery and laser therapy are more likely 
to occur following encounters involving VF 
compared to OCT, but either has higher 
odds of medication changes

Ben-Artsi et al., 
2019

198,843 VFs from 
93,617 subjects

Health-care 
organization 
database

Descriptive 
statistics

Identified a growing trend of VF tests 
being overused for indications other than 
glaucoma
Observed suboptimal adherence to 
glaucoma monitoring guidelines

Stagg et al., 2022 380,029 subjects National 
health-care 
insurance claims 
database

Negative binomial 
regression

Observed suboptimal adherence to 
glaucoma monitoring guidelines>75% of 
open-angle glaucoma patients received<1 
VF annually

Fu et al., 2023 43,742 subjects Health-care 
organization 
database

Descriptive 
statistics

Observed patients received an average of 
2.0 glaucoma clinic visits and 1.5 VF tests 
annually

Assessing 
real-world 
Outcomes

Chauhan et al., 
2014

2324 patients Institutional 
database

Robust regression Most patients under routine glaucoma 
care have slow rates of VF progression. 
Meanwhile, a minority of patients 
experience rapid rates of VF progression

Jammal et al., 
2020

19,812 VFs from 
6138 eyes (3669 
subjects)

Institutional 
Database

Mixed-effects 
modeling

Most patients under routine glaucoma care 
experience slow rates of VF progression. 
VF and OCT should be used together for 
monitoring glaucoma

Kirwan et al., 
2013

4177 eyes (2208 
subjects)

Institutional 
database

Descriptive 
statistics

The majority of glaucoma VF progressors 
experience slow or moderate rates of 
progression while fast progression is rare. 
Older patients or those with initial VF 
damage are more likely to have faster rates 
of VF progression
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Aptel et al., 2015 441 eyes (228 
subjects)

Multicenter 
database

Descriptive 
statistics

Observed large variability in rates of VF 
progression in a sample of the French 
population

Shu et al., 2021 6343 subjects Institutional 
database

Conditional 
growth model

Greater adherence to topical glaucoma 
medication may result in slower rates of VF 
progression

Villasana et al., 
2022

2852 eyes (1688 
subjects)

Institutional 
database

Mixed-effects 
modeling

Failing to achieve target IOP is associated 
with faster rates of VF progression and 
this is especially pronounced in eyes with 
moderate glaucoma

Sara Garcia 
Caride et al., 
2023

1036 eyes Institutional 
database

Mixed-effects 
modeling

Most patients undergoing routine 
glaucoma care experience slow rates of 
VF progression regardless of glaucoma 
subtype
Congenital glaucoma is more likely to 
experience faster rates of VF progression

Liu et al., 2018 792,083 VFs from 
122,500 subjects

National 
multicenter 
database

Descriptive 
statistics

Uveitic glaucoma has faster rates of VF 
progression than primary open-angle 
glaucoma and has nearly double the 
relative risk of fast progression

Gustavo De 
Moraes et al., 
2012

2607 eyes (1378 
subjects)

Clinical trial 
database

Case-control Eyes with disc hemorrhage experience 
more rapid trend-based global and local VF 
worsening compared to eyes without disc 
hemorrhage

Disease 
associations 
and risk factors

Mahmoudinezhad 
et al., 2022

511 eyes (354 
subjects)

Multicenter 
database

Logistic 
regression, 
Kaplan–Meier 
survival analysis

Heavy smoking (≥20 pack-years) is 
associated with a higher likelihood of VF 
loss

Hanyuda et al., 
2020

185,638 subjects Large prospective 
population-based 
cohort database

Cox proportional 
hazard modeling

Low-carbohydrate diets were not 
associated with a risk of primary 
open-angle glaucoma
Observed an inverse associated between 
plant-based low-carbohydrate diet and 
lower risk of early paracentral VF loss

Kang et al., 2022 209,036 subjects Large prospective 
population-based 
database from 
multiple sources

Unsupervised 
machine learning 
(archetypal 
analysis)

Black patients have a higher risk of 
primary-open angle glaucoma associated 
with early central and advanced VF loss 
compared to nonHispanic white patients

Almidani et al., 
2024

7897 eyes (4482 
subjects)

Institutional 
database

Mixed-effects 
modeling

Increased social vulnerability index scores 
are associated with worse VF loss at 
baseline and higher VF variability

Johnson et al., 
2021

351 eyes (222 
subjects)

Institutional 
database

Mixed-effects 
modeling

There is no significant association between 
diabetes control, as measured by HbA1c, 
and rates of VF loss

Marshall et al., 
2022

471 subjects Large prospective 
population-based 
cohort databases 
and biobank

Multivariate linear 
regression

BMI is correlated with longitudinal and 
cross-sectional VF outcomes

Qassim et al., 
2020

2154 subjects National registries Logistic 
regression, linear 
regression

IOP polygenic risk scores were positively 
correlated with maximum IOP, disease 
severity, need for surgery, and number of 
affects members but not VF outcomes

Kang et al., 2014 6548 subjects Large prospective 
population-based 
cohort database 
from multiple 
sources

“Pathway analysis 
by randomization 
incorporating 
structure” analysis 
software

There is no significant association between 
vascular-tone regulator genes with primary 
open-angle glaucoma defined by early 
paracentral or peripheral VF loss

Souzeau et al., 
2013

1380 subjects National registries Cross-sectional The prevalence of myocilin mutations 
in glaucoma associated with advanced 
VF loss is significantly greater than in 
nonadvanced glaucoma

Contd...
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Characterizing 
patterns of 
glaucomatous 
VF loss

Elze et al., 2015 13,231 VFs Institutional 
database

Unsupervised 
machine learning 
(archetypal 
analysis)

Identified 17 prototypical patterns of VF 
loss without clinician bias

Wang et al., 2019 13,951 VFs from 
13,951 eyes 
(8712 subjects)

Multicenter 
database

Unsupervised 
machine learning 
(archetypal 
analysis)

Quantified central VF loss patterns that 
may help improve prediction of central 
VF worsening when compared to global 
indices

Wang et al., 2020 2912 VFs from 
1103 eyes (1010 
subjects)

Multicenter 
database

Unsupervised 
machine learning 
(archetypal 
analysis)

Central VF loss patterns found to exhibit 
characteristic patterns, specifically initial 
central VF loss is likely to be nasal, and 
1 specific pattern of nasal loss is likely to 
result in complete total loss

The structure–
function 
relationship in 
glaucoma

Mariottoni et al., 
2020

26,499 VF/OCT 
pairs from 15,173 
eyes (8878 
subjects)

Institutional 
database

Supervised 
machine learning 
(CNN)

A convolutional neural network predicted 
VF sensitivity thresholds using OCT 
measures (MAE=4.25 dB) and generated a 
structure–function map

Zhu et al., 2010 535 subjects Multicenter 
database

Supervised 
machine learning 
(RBF)

Bayesian radial basis functions can 
be used to predict VF sensitivity from 
structural measurements
Bayesian radial basis functions predicted 
the structure–function relationship better 
than linear regression (MAE=2.9 dB vs. 
4.9 dB)

Kim et al., 2017 499 subjects Multicenter 
database

Supervised 
machine learning 
(RF, SVM, KNN)

Random forest, support vector machine, 
and k-nearest neighbors can predict 
glaucoma diagnosis based on OCT and VF 
inputs with high accuracy (0.98), sensitivity 
(0.983), and specificity (0.975)

Hashimoto et al., 
2021

597 eyes (367 
subjects)

Multicenter 
database

Supervised 
machine learning 
(CNN)

Deep learning models can be used to 
predict 10-2 VF sensitivities from macular 
OCT and further corrected using 24-2 or 
30-2 VFs (MAE=5.3 dB when using OCT 
only and MAE=4.3 dB when corrected)

Xu et al., 2020 591 eyes (345 
subjects)

Multicenter 
database

Supervised 
machine learning 
(CNN)

Deep learning and tensor regression can 
be used to predict 10-2 VF sensitivities 
from OCT thickness measurements 
(RSME=6.32±3.76 dB)

Asano et al., 2021 753 eyes (430 
subjects)

Multicenter 
database

Supervised 
machine learning 
(CNN)

Deep learning can be used to predict 10-2 
VF total deviation values from OCT images 
and further corrected using 24-2 VF 
(MAE=9.4–9.5 dB when using OCT images 
only and MAE=~5.5 dB when corrected)

Hashimoto et al., 
2021

591 eyes (347 
subjects)

Multicenter 
database

Supervised 
machine learning 
(CNN)

Deep learning can be used to predict 
10-2 VF sensitivities from SD-OCT 
measurements (MAE=2.84 dB)

Huang et al., 
2021

1796 VF/OCT 
pairs from 1796 
eyes (1796 
subjects)

Multicenter 
database

Supervised 
machine learning 
(RF, SVM, CNN)

Artificial neural networks can be used to 
estimate MD from RNFL measurements 
(MAE=3.3–5.9 dB) better than multivariable 
linear regression, random forest, support 
vector regressor, and 1-D convolutional 
neural networks

Park et al., 2020 3101 eyes (1819 
subjects)

Institutional 
database

Supervised 
machine learning 
(DNN, RF 
XGBoost, SVM, 
RBF)

Deep learning can be used to predict 
global 24-2 VF measurements using optic 
nerve head (RSME=4.29 dB) and macula 
(RSME=4.40 dB) OCT images

Wang et al., 2020 691 eyes (691 
subjects)

Institutional 
database

Unsupervised 
machine learning 
(NMF)

Nonnegative matrix factorization using 
RNFL thickness patterns correlated with 
24-2 VF total deviation values better than 
sectoral RNFL thickness
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Maetschke et al., 
2019

4155 eyes Institutional 
database

Supervised 
machine learning 
(CNN)

A deep learning model trained on raw optic 
nerve head OCT volumes can predict 24-2 
VF VFI (RMSE=12.2±1.55%) and MD 
(RSME=4.1±0.35 dB) measurements. This 
approach outperformed classical machine 
learning models trained on classical OCT 
features

Shin et al., 2021 4634 eyes (2593 
subjects)

Institutional 
database

Supervised 
machine learning 
(CNN)

A deep learning model using a wide field 
SS-OCT image can predict global 24-2 
VF measurements better than either optic 
nerve head or macular SD-OCT images 
alone (RMSE=4.51±2.54 dB vs. 5.29±2.68 
dB)

Park et al., 2020 2525 eyes (1425 
subjects)

Institutional 
database

Supervised 
machine learning 
(CNN)

Deep learning can be used to predict global 
24-2 VF using SS-OCT images of the optic 
nerve head and macula (RSME=4.44±2.09 
dB–4.85±2.66 dB)

Hemelings et al., 
2022

1643 VF/OCT 
pairs from 
998 eyes (542 
subjects)

Institutional 
database

Supervised 
machine learning 
(CNN)

A deep learning approach can use 
raw OCT scans to estimate global and 
pointwise VF sensitivities (MAE=2.89 dB) 
that fall almost entirely within the 90% 
test-retest confidence interval of the 24-2 
SITA standard test

Kamalipour et al., 
2023

3990 VF/OCTA 
pairs from 
842 eyes (465 
subjects)

Clinical trial 
database

Supervised 
machine learning 
(CNN)

A deep learning approach can use en-face 
optic nerve head and macular OCTA 
images to predict pointwise VF sensitivities 
(MAE=2.23 dB)

Chen et al., 2024 12,915 VF/
OCT pairs from 
2151 eyes (1129 
subjecs)

Institutional 
database

Supervised 
machine learning 
(CNN)

A deep learning approach can be used to 
generate t-statistic maps for VF sensitivities 
using raw 3D OCT scans
Deep learning successfully visualized 
global trend of pointwise spatial 
relationships between OCT and VF that 
aligns well with existing knowledge of 
structure–function relationship

Christopher et al., 
2020

9765 VF/OCT 
pairs from 1909 
eyes (1194 
subjects)

Clinical trial 
databases

Supervised 
machine learning 
(CNN)

Deep learning identify eyes with 
glaucomatous VF damage and predict the 
severity of VF loss from SD-OCT images 
(MD MAE=2.5–3.7 dB)

Tan et al., 2019 954 subjects Clinical trial 
database

Quadratic 
regression 
using weighted 
logarithmic 
averages

MD estimated from RNFL thickness had 
better correlation and diagnostic sensitivity 
with VF MD measurements than average 
RNFL thickness

Yu et al., 2021 10,370 VF/
OCT pairs from 
3014 eyes (1678 
subjects)

Multicenter 
database

Supervised 
machine learning 
(CNN)

A deep learning approach can use optic 
nerve head OCT, macular OCT, or both 
to predict global VF measurements 
(MAE=2.7% for VFI and 1.57 dB for MD)

Springelkamp 
et al., 2014

1224 subjects Large prospective, 
population-based 
cohort

Case–control 
study

Macular retinal ganglion cell loss 
is at least as common as peripapillary 
RNFL abnormalities in glaucomatous VF 
loss

Singh et al., 2023 3016 VF/OCT 
pairs from 1427 
subjects

Institutional 
database

Machine learning 
(KNN, SVM, RF, 
gradient-boosted 
trees, decision 
trees, XGBoost)

Normative percentiles of RNFL thickness 
did not improve glaucomatous VF loss 
predictions from raw RNFL thickness alone

Swaminathan 
et al., 2021

1150 eyes (839 
subjects)

Institutional 
database

Mixed-effects 
modeling

Rapid RNFL thinning during the initial 
follow-up period was predictive of 
concurrent and subsequent rates of VF 
loss
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Montesano et al., 
2019

1407 eyes (794 
subjects)

Multicenter 
database

Mixed-effects 
modeling

VF perimeter with fundus tracking did 
not have better diagnostic ability using a 
structure–function index than VF perimeter 
without fundus tracking

Improving 
glaucoma 
diagnosis

Thakur et al., 
2020

3272 eyes (1636 
subjects)

Clinical trial 
database

Supervised 
machine learning 
(CNN)

Deep learning can predict glaucomatous 
development before disease onset with 
reasonable accuracy (AUC=0.88)

Fei et al., 2018 4,012 VF Multicenter 
database

Supervised 
machine learning 
(CNN)

A deep model trained on pattern 
deviation plots differentiated normal from 
glaucomatous VF with higher accuracy 
than human ophthalmologists or traditional 
guidelines

Bizios et al., 2007 216 subjects Institutional 
database

Supervised 
machine learning 
(MLP)

Deep learning models using VF inputs 
can be a useful clinical tool for diagnosing 
glaucoma (AUC=0.984)

Yi et al., 2022 502 VF/fundus 
image pairs from 
274 subjects

Institutional 
database

Supervised 
machine learning 
(CNN)

Deep learning models using multimodal 
inputs can be a useful clinical tool 
for glaucoma severity diagnosis 
(AUC=0.992)

Xiong et al., 2022 2463 VF/OCT 
pairs from 1083 
subjects

Clinical trial 
database

Supervised 
machine learning 
(CNN)

A deep learning model using paired 
VF/OCT inputs demonstrated better 
diagnostic ability for detecting glaucoma 
(AUC=0.950) than VF (AUC=0.868) or 
OCT (AUC=0.809) alone

Lim et al., 2022 1155 eyes Institutional 
database

Supervised 
machine learning 
(RF, SVM, 
AdaBoost, 
decision tree, 
naives bayes, 
KNN, DNN)

A multimodal deep learning model could 
differentiate glaucoma, preperimetric 
glaucoma, and healthy eyes using 
fundus images with reasonable accuracy 
(AUC>0.96)

Song et al., 2022 1395 VF/OCT 
pairs from 641 
subjects

Institutional 
database

Supervised 
machine learning 
(CNN)

A deep learning model using paired VF/
OCT inputs demonstrated better diagnostic 
ability for detecting glaucoma (AUC=0.92) 
than OCT (AUC=0.87) alone

Improving 
detection of VF 
progression

Leshno et al., 
2024

1658 eyes (1658 
subjects)

Multicenter 
database

Linear regression VF hemifield progression rates are more 
sensitive to focal or faster VF progression 
than global progression rates

Saeedi et al., 
2019

90,713 VFs rom 
13,156 eyes 
(8499 subjects)

Multicenter 
database

Cohen’s K 
coefficient, 
bivariate and 
multivariate 
analysis

Existing tend-based and event-based have 
limited agreements with each other and 
vary considerably across clinical institutions 
(kappa range: 0.12–0.52)

Wang et al., 2019 12,217 eyes 
(7360 subjects)

Multicenter 
database

Unsupervised 
machine learning 
(archetypal 
analysis)

Quantified VF progression patterns
Archetypal methods compared well with 
existing methods of defining progression

Yousefi et al., 
2022

2231 VFs from 
205 eyes

Clinical trial 
database

Unsupervised 
machine learning 
(archetypal 
analysis)

Archetypal analysis can identify VF loss 
patterns objectively with reproducible 
nomenclature for characterizing early VF 
defects and rapid VF progression

Kim et al., 2023 5413 eyes (3321 
patients)

Multicenter 
database

Supervised 
machine learning 
(Bi-GRU, LSTM)

Bidirectional gated recurrent unit 
algorithm outperformed conventional 
linear regression and long short-term 
memory algorithms when predicting 
glaucoma progression from 5 consecutive 
VF tests

Park et al., 2019 1689 eyes Institutional 
database

Supervised 
machine learning 
(RNN)

Recurrent neural network algorithm 
outperformed conventional linear 
regression when predicting glaucoma 
progression from 5 consecutive VF tests
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Sabharwal et al., 
2023

8705 eyes (5099 
subjects)

Institutional 
database

Supervised 
machine learning 
(LSTM)

A deep learning model trained on a 
consensus method of VF worsening 
successfully identified VF worsening 
(AUC=0.94) compared to clinicians 
assessment of worsening (AUC=0.74)

Herbert et al., 
2023

4536 eyes (2962 
subjects)

Institutional 
database

Supervised 
machine 
learning (vision 
transformer, MLP)

A deep learning model could forecast 
future rapid VF loss when trained on 
early baseline multimodal data inputs 
(AUC=0.87)

Decision 
support tools

Wang et al., 2022 4512 subjects Institutional 
database

Supervised 
machine learning 
(CNN)

A deep learning model trained on 
unstructured electronic health record 
text could successfully predict glaucoma 
patients who will need surgery (AUC=0.73)

Baxter et al., 2019 385 subjects Institutional 
database

Supervised 
machine learning 
(RF, ANN)

Machine learning models trained on 
structured electronic health records 
discriminated glaucoma patients requiring 
surgery with similar performance to 
multivariate logistic regression (AUC=0.65 
vs. 0.67)

Shuldiner et al., 
2021

175,686 VFs from 
14,217 subjects

Multicenter 
database

Supervised 
machine learning 
(RF, SVM)

Machine learning algorithms can predict 
eyes at risk for future rapid VF worsening 
based on an initial VF test (AUC=0.68–
0.72)

Berchuck et al., 
2019

29,161 VFs from 
3832 subjects

Institutional 
database

Unsupervised 
machine learning 
(variational 
auto-encoder)

A deep learning approach can be used for 
assessing the rate of VF progression and 
predict future patterns of VF damage

Wang et al., 2024 4898 eyes (4038 
subjects)

Institutional 
database

Supervised 
machine 
learning (vision 
transformer)

A deep learning model trained on 
multimodal baseline VF, OCT, and clinical 
measurements can successfully predict 
eyes that will require future glaucoma 
surgery (AUC=0.92)

Christopher et al., 
2024

961 subjects Clinical trial 
databases

Supervised 
machine 
learning (RF, 
gradient-boosting 
machines, 
XGBoost, DNN)

Machine learning models trained on VF, 
OCT, and clinical measurements could 
successfully predict glaucoma patients 
requiring future surgical intervention at 1, 
2, and 3 years (AUC=0.93, 0.92, and 0.93, 
respectively)

Kaskar et al., 
2022

3015 subjects Clinical trial 
database

Supervised 
machine learning 
(SVM, AdaBoost)

Machine learning models trained 
on baseline clinical features (IOP, 
demographic, and medical history) could 
successfully predict eyes that subsequently 
developed a glaucoma diagnosis in the 
span of 1–12 years
Predictive machine learning classifiers may 
be a useful screening tool for glaucoma 
referrals in primary care settings

Improving 
clinical trial 
enrollment

Wu et al., 2018 353 eyes (247 
subjects)

Institutional 
database

Simulation Different VF testing paradigms (clustered 
VF testing vs. evenly spaced VF testing) 
can significantly reduce sample size 
required for glaucoma clinical trials by 
17–40%

Wu et al., 2019 192 eyes (121 
subjects)

Institutional 
database

Simulation Combining VF and OCT endpoints can 
reduce the sample size required for 
glaucoma clinical trials by 31–33%

Montesano et al., 
2023

3352 eyes (3352 
subjects)

National 
multicenter 
database

Simulation Trend-based VF outcomes can reduce the 
sample size required for glaucoma clinical 
trials when compared to event-based VF 
outcomes

Wu et al., 2019 321 eyes (240 
subjects)

Clinical trial 
database

Simulation Evaluating differences in rate of VF change 
can reduce the sample size required for 
glaucoma clinical trials
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Montesano et al., 
2021

2804 subjects National 
multicenter 
database

Simulation Selecting patients with lower intertest VF 
variability can significantly reduce the 
sample size needed for glaucoma clinical 
trials

Wang et al., 2024 2817 eyes (2817 
subjects)

Institutional 
database

Simulation Deep learning models can reduce the 
burden of glaucoma clinical trials by 
predicting eyes with low interest VF 
variability based on a single baseline clinic 
visit

“Machine learning” study methods are those without a closed-form solution. FP: False positive, FN: False negative, TD: Test duration, VF: Visual field, MD: 
Mean deviation, PSD: Pattern standard deviation, VFI: VF index, SITA: Swedish interactive testing algorithm, OCT: Optical coherence tomography, BMI: Body 
mass index, IOP: Intraocular pressure, MAE: Mean absolute error, RSME: Root mean squared error, AUC: Area under the curve, RF: Random forest, SVM: 
Support vector machine, KNN: K-nearest neighbors, RBF: Radial basis function, CNN: Convolutional neural network, DNN: Deep neural network, ANN: Artificial 
neural network, LSTM: Long short-term memory, RNN: Recurrent neural network, MLP: Multilayer perceptron, bi-GRU: Bidirectional gated recurrent unit, 
NMF: Nonnegative matrix factorization, RNFL: Retinal nerve fiber layer, HbA1c: Glycated hemoglobin, 1-D: One dimensional, SD-OCT: Spectral domain OCT, 
SS-OCT: Swept-source OCT, FL: Fixation losses


