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Abstract

CTNNB1 mutations in craniopharyngioma patients.

guidance for clinical decision-making.

Background: Frequent somatic mutations of BRAF and CTNNB1 were identified in both histological subtypes of
craniopharyngioma (adamantinomatous and papillary) which shed light on target therapy to cure this oncogenic
disease. The aim of this study was to investigate the noninvasive MRI-based radiomics diagnosis to detect BRAF and

Methods: Forty-four patients pathologically diagnosed as adamantinomatous craniopharyngioma (ACP) or papillary
craniopharyngioma (PCP) were retrospectively studied. High-throughput features were extracted from manually
segmented tumors in MR images of each case. The modifications-robustness in region of interests and Random
Forest-based feature selection methods were adopted to select the most significant features. Random forest
classifier with 10-fold cross-validation was applied to build our radiomics model.

Results: Four features were selected to make pathological diagnosis between ACP and PCP with area under the
receiver operating characteristic curve (AUC) of 0.89, accurancy (ACC) of 0.86, sensitivity (SENS) of 0.89 and
specificity (SPEC) of 0.85. The other two features were applied to estimate BRAF V600E mutation with AUC of 0.91,
ACC of 0.93, SENS of 0.83 and SPEC of 0.97. Accurate predication of CTNNB1 mutation by three selected features
was realized with AUC of 0.93, ACC of 0.86, SENS of 0.86 and SPEC of 0.86.

Conclusions: We developed a reliable MRI-based radiomics approach to perform pathological and molecular
diagnosis in craniopharyngioma patients with considerably accurate prediction, which could offer potential
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Background

Craniopharyngioma (CP) is a rare central nervous system
tumor with incidence of 0.19/100, 000 every year in Amer-
ica and accounting for 0.8% of brain tumor [1], namely,
fifty craniopharyngiomas patients would roughly corres-
pond to six thousands brain tumors and a population of
twenty-six millions. In WHO criterion, CP is defined as a
benign tumor with two histological subtypes called ACP
and PCP [2]. Due to its anatomic proximity to vital brain
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structures like brainstem, hypothalamus, pituitary stalk
and optic nerves, devastating neurological dysfunction will
be caused with high mortality and morbidity, which makes
it so-called “behavior malignant tumor” [3, 4]. Surgical re-
section followed by radiation is the standard therapy. Even
though, in some large-sized or complex tumors, radical
eradication is hardly achieved and tends to cause severe
post-operative complications and death as well. Cranio-
pharyngioma was one of most challenging tumor for every
neurosurgeon [5], and the quite low incidence data also
presented difficulties in data collection for therapy study.
Recently, thanks to high throughput sequencing technol-
ogy, 2 activating oncogenic driver BRAF and CTNNB1 were
revealed to show highly frequent somatic mutations in CPs
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[6-8]. Further studies demonstrated strong correlation be-
tween the gene mutations and the pathological subtypes,
BRAF V600E mutation in PCP and CTNNBI mutations in
ACP which were mutual exclusive [4, 9-11]. By targeting
BRAF, BRAF/MEK inhibitor was proved to be effective in
recurrent CPs in 2 clinical case reports worldwide [12, 13].
Referring to these findings, neo-adjuvant target therapy plus
minimal-invasive microsurgery was regarded to be a new
strategy to cure large-sized or complex CPs.

However, “Neo-adjuvant Therapy” means molecular
diagnosis should be confirmed before operation. At
present, the only way to realize pre-operative molecular
diagnosis is doing genetic sequencing in peripheral
blood test, and this method is technically inconvenience
and expensive [14, 15]. Radiomics approach which refers
to revealing the deep correlation between the medical
images and the underlying information including gene,
protein, physiology and pathology by turning the med-
ical images into the minable high-throughput features,
provides potential possibility to solve this problem. Our
group has previously proposed radiomics models to pre-
dict genotypes of gliomas [16, 17]. In this study, we
intended to propose an effective noninvasive radiomics
models for the estimation of BRAF and CTNNB1 muta-
tions in craniopharyngiomas.

Methods

Patient population

The study was approved by the local ethics committee of
Huashan Hospital. We retrospectively reviewed medical re-
cords of patients who underwent surgery for craniopharyn-
gioma in single neurosurgical institution (Huashan Hospital,
Fudan University) from 2015 to 2017. Forty-four patients di-
agnosed of craniopharyngioma pathologically were enrolled
with complete pre-operation MRI data. Central review and
histological subtyping were performed by two individual
neuropathologists. In our cohort, there were 29 male and 15
female patients, with 9 pediatric patients (mean age 12.1
years, range 5-17 years) and 35 adult patients (mean age
43.9 years, range 1966 years). Among all patients, 32 cases
were primary craniopharyngiomas, and 12 cases were recur-
rent tumors or with ventriculoperitoneal shunt history.

Histological and molecular diagnosis

Adamantinomatous craniopharyngiomas or papillary
craniopharyngiomas of 44 cases were diagnosed inde-
pendently by two individual neuropathologists based on
H&E review. Immunostaining for BRAF V600E (Spring
Biosciences, USA, VE-1, 1:40) and B-Catenin (BD Biosci-
ences, USA, clone 14, 1:800) was performed by Ventana
NexES Staining System in a proportion of patients.
BRAF V600E on exon 15 and CTNNBI mutation on
exon 3 were detected and analyzed by sanger sequencing
as previously reported [18].
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Imaging data features acquisition and analysis

High resolution preoperative T1-MPRAGE MR images
were acquired using a Magnetom Trio 3T (Siemens)
scanner. The size of MR images was 512 x 448, and MR
images were stored as 16-bit unsigned integer. All images
were acquired by using following parameters: pixel spa-
cing = 0.488 mm, slice thickness = 1 mm, repetition time =
1900 ms, echo time=2.93ms, inversion time =900 ms,
flip angle = 9°. Two experienced radiologists blinded to pa-
tients’ clinical characteristics first segmented tumor le-
sions in MR images independently and then culminated in
consensus on their discrepancies. High-throughput fea-
tures extraction, feature selection and classification were
sequentially performed to build the radiomics model. The
details of each process are present below.

Location features

The location of craniopharyngioma was considered
highly correlating with its genotype [18]. Instead of visu-
ally determining whether the tumor is completely supra-
sellar as previous study [18], a more quantitative
location evaluation method was used in this study. To
reduce the anatomical variability among individual brain,
Statistical Parametric Mapping package (SPM) was uti-
lized to register the MR images into the normalized
Montreal Neurological Institute(MNI) space [19]. The
MNI brain atlas is then divided into 116 anatomical vol-
umes of interest (AVOIs) by Anatomical Automatic La-
beling (AAL) [20]. After brain MR images of 44 patients
are registered spatially and normalized into MNI space,
the three-dimensional distance and Euclidean norm
among centers of 116 AVOIs and center of tumor in
MNI space are calculated to serve as the location fea-
tures, which leads to 464(116*4) features.

Intensity, shape, texture and wavelet features

In addition to 464 location features, another 555
high-throughput features measuring intensity, shape, tex-
ture and wavelet are generated from the segmented vol-
umes. The dimensions of features in each category are 21,
15, 39 and 480 respectively. Intensity features are applied
to describe the intensities distribution of pixels within the
tumor volumes. Shape features typify the morphological
structure of the tumor. Texture features reflect the prop-
erties of tumor arrangement spatially. Wavelet features
quantify the intensity and texture of each MR image in
different eight frequency sub-bands and various feature
orientations. All of 555 features have generally been used
in previous radiomics studies [21-24]. The total of 1021
features including 464 location features, the above 555
high-throughput features and two clinical features (pa-
tients’ gender and age at diagnosis) are demonstrated in
Additional file 1. These feature-extracting algorithms are
calculated using the Matlab R2017a version (MathWorks).
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Feature selection

Among the 1021 features, a large quantity of them was
highly redundant, which brought difficulties in the classifi-
cation and increased the computational complexity [25].
To identify a small number of features that are optimal for
classification of pathological subtypes and genetic muta-
tional status, we proposed a three-stage feature selection
method to gradually select the most relevant features.

In the first stage, we modified the manual segmented
regions of tumor lesions by eight scenarios as follows:
(a) horizontal translation by 2 pixels; (b) horizontal and
vertical translation by 2 pixels; (c) 1° rotation; (d) 5° rota-
tion; (e) combining modifications a, b and ¢; (f) combin-
ing modifications a, b and d; (g) enlarging by 1 pixel
along radial lines; and (h) shrinking by 1 pixel along ra-
dial lines. Then we assessed modifications-robustness in
region of interests of high-throughput texture features
using the intraclass correlation coefficient (ICC) [26].
High-throughput features were selected as robust vari-
ables with ICC greater than 0.8.

In the second stage, we enrolled robust texture fea-
tures, location features and clinical features, and adopted
a Random Forest classification model using the 10-fold
cross validation [27]. In every fold, all the features were
ranked according to their contribution to decreasing the
impurity, and the top 25% were preserved as remarkable
features. We performed the model construction in the
datasets for 100 bootstrap repetition, namely, we ob-
tained 1000 lists of remaining features. Then, we sorted
the features descendingly based on their respective sum
of contribution in the 1000 ranking lists.

In the third stage, a sequential forward selection strat-
egy was applied to carefully select a small group of sig-
nificant features in compliance with the contribution
ranking. We still adopted a Random Forest classification
model to evaluate the predictive accuracy for candidate
subset of features using the 10-fold cross validation. The
sequential forward selection strategy is a feature selec-
tion strategy that sequentially adds one feature from top
to bottom according to the contribution ranking. The
classification accuracy was recorded for each subset of
features and the selection process stopped when all fea-
tures were added. The subset of features with the highest
classification accuracy was finally selected.

Classification

In this paper, the selected features were fed into an outer
Random Forest to build the ultimate prediction model of
pathological subtypes, BRAF and CTNNBI1 mutational
status. The performance of classification model was evalu-
ated and validated by employing the 10-fold cross valid-
ation model. Several indexes, containing accuracy(ACC),
sensitivity(SENS), specificity(SPEC), positive predictive
value(PPV), negative predictive value(NPV), Matthew’s

Page 3 of 11

correlation coefficient (MCC), out-of-bag (OOB) score
and the area under the receiver operating characteristic
curve (AUC), were obtained as metrics to assess quantita-
tive discrimination performance of the radiomics model in
the classification of pathological subtypes and genetic mu-
tational status.

In 10-fold cross-validation, the original dataset was
randomly partitioned into ten equal sized subsets. Of the
ten subsamples, nine subsamples were used as training
data for model construction and the remaining one sub-
sample was retained as the validation data for testing the
model. The cross-validation process was then repeated
ten times, with each of the ten subsets used exactly once
as the validation data. Therefore, classification results of
cases in every validation fold could be obtained for the
all trees in the relevant random forest model. Then we
calculated the proportion of positive prediction results
size to the number of trees as scores for every validation
sample and the positive result was defined by ACP,
BRAF mutation or CTNNBI1 mutation. Finally, we per-
formed this technique in the all folds and acquired the
scores of all cases. The ROC curve could be plot based
on the score variables. The threshold of score variables
was set to 0.5, which means that the category with the
most votes of trees is specified as the final classification
result in the random forest. The patients with score vari-
able above 0.5 were classified as positive cases. Hence,
the prediction results of all patients were acquired. For
the pathological subtypes model, sensitivity is defined
for ACP and specificity is defined for PCP. For the gen-
etic mutational status models, sensitivity and specificity
are defined to estimate the mutation and wild type, re-
spectively. The measurement indexes could be calculated
based on the ROC curve and prediction results ultim-
ately. Using all cases rather than 10-fold cross validation
to construct the prediction models, we can acquire the
generalization accuracy (OOB score).

In addition, radiomics-based prognostic nomograms
were developed based on selected features, and the dis-
criminative ability of prognostic models could be mea-
sured using Harrell’s C-index. The value of the C-index
ranges from 0.5, which indicates no discriminative abil-
ity, to 1.0, which indicates perfect ability to distinguish
pathological subtypes and genetic mutational status.

Statistical analysis

Mann—Whitney U test and Fisher exact test were used
to evaluate whether age, gender and pathological types
had statistical differences between different gene sta-
tuses. The rms package was used for nomograms, and
the Hmisc package was used for calculation of C-index
in R software. Statistical significance was set as p < 0.05.
All statistical analyses were performed by using SPSS
software version 22.0 (IBM Corp.) and R software.
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Results

Clinical, genetic, and pathological findings

Including forty-four patients in our study, we stratified all
the cases into three categories based on mutational status
included BRAF mutation group, CTNNB1 mutation
group and not detected (BRAF and CTNNBI gene status
are both wild types.) group. Distribution of gender, age,
pathological subtypes and mutational profile was summa-
rized in Table 1. There was a significant relationship be-
tween age and mutational profile (p = 0.002). Six (60.0%)
of ten cases with not detected status was observed in
pediatric patients while nineteen (86.4%) of twenty-two
CTNNB1 mutant cases struck adult patients and all
twelve (100%) BRAF mutant cases were adults. This result
was also in accordance with the previous study [4]. In
addition, pathological types also had a strong correlation
with mutational profile (p <0.001), and all twelve (100%)
tumors were classified as papillary craniopharyngiomas in
the BRAF mutation group while eighteen (81.8%) of
twenty-two tumors were classified as adamantinomatous
craniopharyngiomas in the CTNNBI1 mutation group. For
not detected cases, eight (80.0%) of ten tumors belonged
to adamantinomatous craniopharyngiomas. BRAF V600E
mutation and CTNNBI1 mutation were mutual exclusive
in all cases. Mutational profile was not changed between
primary and paired recurrent craniopharyngiomas (p =
1.000) in Table 1. Distinct immunostaining patterns of
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BRAF V600E and B-Catenin in different histopathological
subtypes were seen in Additional file 2. Illustration of
BRAF and CTNNBI1 mutation profile can be seen in the
Additional file 3.

Tumor segmentation

The tumor segmentation results were shown in Fig. 1, in-
cluding eight representative axial TI-MPRAGE MR images
obtained from one BRAF mutant case. In each image, the
area surrounded by red line indicated the tumor.

Data partitioning

Thirty-two primary craniopharyngiomas patients were
used as the main cross validation dataset. We selected
the most significant features of the main dataset for pre-
diction models. The main radiomics models were con-
structed based on the main dataset. Another 12
recurrent or treated cases were added into the main
database as extensional database.

As the main radiomics models were used for patho-
logical subtypes and gene status prediction of primary
craniopharyngiomas, using the 12 recurrent or treated
patients as a test database could not accurately assess
model performance. Besides, the number of additional
patients is not enough for recurrent model construction.
The additional cases are also imbalanced such as only
three BRAF mutation patients (Table 1). Because the

Table 1 Demographics characteristics stratified by the BRAF and CTNNB1 mutations status in the primary patients and recurrent

patients
BRAF Mutant CTNNB1 Mutant Not Detected P Value
N=12 N=22 N=10
Dataset PPIN=9) RP(IN=3) PPIN=15) RP(IN=7) PP(N=28) RP(N=2) 1.000
Gender 0.770
Male (%) 9 (75.0) 14 (63.6) 6 (60.0)
7 2 12 2 5 1
Female (%) 3(250) 8 (364) 4 (40.0)
2 1 3 5 3 1
Agel(year) 0.002
Mean + SD 470+99 379+£159 249+188
49.7 £ 865 390+108 398+159 3394163 280+199 125+64
>18 (%) 12 (100.0) 19 (86.4) 4 (40.0)
9 3 13 6 4 0
<18 (%) 0 (0.0) 3(136) 6 (60.0)
0 0 2 1 4 2
Pathology <0.001
ACP (%) 0 (0.0) 18 (81.8) 8 (80.0)
0 0 13 5 6 2
PCP (%) 12 (100.0) 4(182) 2 (20.0)
9 3 2 2 2 0

Abbreviations: PP Primary patients, RP Recurrent patients, SD Standard deviation, ACP Adamantinomatous type, PCP Papillary type
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image, the area surrounded by red line indicated the tumor

Fig. 1 Tumor segmentation results of eight representative axial T1-MPRAGE MR images obtained obtained from one BRAF mutant case. In each

prediction on primary and recurrent mixed cases was
more in line with clinical status, the previous selected
features in the primary database were directly used for
construction of ultimate classification model in exten-
sional database to test their extensiveness on recurrent
or treated cases skipping the feature selection procedure.
More reliable prediction results could be obtained com-
bining the additional cases with main dataset.

Radiomics model construction based on main dataset

Three hundred and seventy one texture features had
an ICC greater than 0.8 on the basis of digital algo-
rithmic modification in Additional file 4. After the
first stage of feature selection method, we obtained
eight hundred and thirty seven preliminary features in
total. Then using the random-forest based feature se-
lection method, several significant features were se-
lected and involved in the further prediction step of
pathological subtypes and genetic mutational status.
We obtained four features for pathological subtypes
discrimination, two features for BRAF V600E muta-
tional prediction and three features for CTNNB1 mu-
tational status estimation, respectively. Three violin
plots, which combine the box plots and kernel density
plots, are drawn to demonstrate difference of selected
radiomics features within three taxonomies including
pathological subtypes, BRAF and CTNNBI genetic
mutational status (Fig. 2). In pathological subtypes
discrimination, four selected features are called dis-
similarity of LLL decomposition (feature A), kurtosis
(feature B), root mean square (feature C) and com-
pactness (feature D).In BRAF V600E mutational pre-
diction, two selected features are known as small
zone emphasis of HHL decomposition (feature E) and

short run low gray-level emphasis (feature F). In
CTNNBI1 mutational status estimation, three selected
features are named h-skewness of HLL decomposition
(feature G), h-mean of HHH decomposition (feature
H) and short run low gray-level emphasis (feature I).
All features were normalized to the -1 to 1 range.
The calculations of these features are presented in
Additional file 1.

As shown in Table 2, our proposed radiomics method
achieved respectable performance in pathological subtypes
and genetic mutational status classification on 10-fold val-
idation cohort. Craniopharyngioma pathological subtypes
were discriminated with AUC of 0.96, ACC of 0.91, SENS
of 0.92 and SPEC of 0.89. BRAF V600E mutational status
was estimated with AUC of 0.92, ACC of 0.94, SENS of
0.89 and SPEC of 0.96. CTNNB1 mutational status was
predicted with AUC of 0.95, ACC of 0.91, SENS of 0.93
and SPEC of 0.88. Figure 3 shows the receiver operating
characteristic curve (ROC) of radiomics classification
model before and after selection.

In the feature selection procedure, all variables in-
cluding the location features were enrolled to select
the optimal features for prediction. There were no lo-
cation features included in the optimal features sub-
set. However, due to the correlations between features
[25], the most significant features subset will change
if some features are removed from the feature set in-
cluding all variables even though the removed fea-
tures are not in the set of selected features. Although
our ultimate radiomics models did not contain any
location feature, these location features contributed to
selecting the most significant features subset. In our
experiments, the performance of the model decreased
a bit without considering location features.
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Fig. 2 The violin plot of discriminative features. a Dissimilarity of LLL decomposition (feature A), kurtosis (feature B), root mean square (feature C)
and compactness (feature D); b small zone emphasis of HHL decomposition (feature E) and short run low gray-level emphasis (feature F); ¢ h-
skewness of HLL decomposition (feature G), h-mean of HHH decomposition (feature H) and short run low gray-level emphasis (feature 1). Mann-
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To evaluate the weights of involved features in classifi-
cation model, three nomograms were developed as indi-
vidualized tools in Fig. 4. The selected radiomics features
shows good ability to distinguish pathological subtypes
(C-index of 0.819) and genetic mutational status (C-index
of 0.810 for BRAF gene and C-index of 0912 for
CTNNBI gene). To use the nomogram, find the predictor
points on the uppermost point scale that correspond to
each patient radiomics feature and add them up. The total
points projected to the bottom scale indicate the probabil-
ity of ACP, BRAF mutation or CTNNB1 mutation.

Namely, the points of selected features could represent
their weights in corresponding radiomics model.

Although we extracted a very large and complex set of
features to describe the whole tumor regions, only a few
features were put into the final classification model after
the feature selection. That is to say, very few feature param-
eters were eventually used for the model construction.
Moreover, the Random Forest-based classification method
could reduce the risk of overfitting as well. Random forests
do not overfit as more trees are added, and produce a limit-
ing value of the generalization error [27]. Via limiting the

Table 2 Pathological types, BRAF gene and CTNNB1 gene status differentiation performance in different datasets

Dataset AUC ACC SENS SPEC PPV NPV MCC OOB
Pathological types n=32 BS 0.69 063 038 0.79 0.56 0.65 0.19 0.66
AS 0.96 091 0.92 0.89 0.86 0.94 0.81 0.91
n=44 - 0.89 0.86 0.89 0.85 0.80 0.92 0.73 0.85
BRAF gene n=32 BS 0.59 0.69 0.1 091 033 0.72 0.04 0.63
AS 0.92 0.94 0.89 0.96 0.89 0.96 0.85 091
n=44 - 091 093 0.83 097 091 0.94 083 093
CTNNB1 gene n=32 BS 0.74 0.72 0.73 0.71 0.69 0.75 044 0.66
AS 0.95 091 093 0.88 0.88 0.94 081 0.88
n=44 - 093 0.86 0.86 0.86 0.86 0.86 0.73 0.86

Abbreviations: BS Before selection, AS After selection
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Fig. 3 ROC curves of prediction before and after feature selection based on main dataset. a Pathological subtypes ROC curve; b BRAF gene ROC
curve; ¢ CTNNBT gene ROC curve

number of splits or the size of nodes for which splitting is
allowed, gains could be realized to avoid overfitting [28].

Radiomics model construction based on extensional
dataset

To verify the stability of our proposed radiomics method,
12 cases who had recurrent tumors or with previous history
of ventriculoperitoneal shunt were added into the main
cross validation dataset to further test the performance of
the method. The discriminative features, which were se-
lected from the previous radiomics model based on main
dataset, were included in the following construction of Ran-
dom Forest classification model using the extensional data-
set on 10-fold validation cohort. Craniopharyngioma
pathological subtypes were discriminated with AUC of
0.89, ACC of 0.86, SENS of 0.89 and SPEC of 0.85. BRAF
V600E mutational status was estimated with AUC of 0.91,
ACC of 093, SENS of 0.83 and SPEC of 0.97. CTNNB1
mutational status was predicted with AUC of 0.93, ACC of
0.86, SENS of 0.86 and SPEC of 0.86. Table 2 lists the clas-
sification performance difference in different datasets using
the same features, which reveals a bit drop in performance
within treated or recurrent cases. Figure 5 exhibits the
ROC of the classification model in main dataset and further
validation dataset after feature selection, and the ROC of
different datasets are very close to each other.

Discussion

Craniopharyngiomas are locally aggressive parasellar tu-
mors with relatively low incidence compared to other
brain tumors [1]. In our cohort, forty —four patients
were enrolled, which corresponded to six thousands
brain tumors. Some of patients were present with pro-
found neurological deficits; meanwhile, total resection
was not performed in every cases. Recent genomic find-
ings provided potential targets for anti-cancer treatment
in craniopharyngiomas. Researchers identified frequent

somatic mutation of BRAF V600E and CTNNBI in CPs
[6, 7]. These two mutations were mutual exclusive in dif-
ferent subtypes defined pathologically as adamantinoma-
tous and papillary [4, 9-11]. Researchers reported that
such kind of genetic alteration were observed in 76-96%
CPs [6, 7, 29]. In our small sample size cohort, the mu-
tational ratio of both BRAF and CTNNBI1 were a little
bit lower compared to previous reports. This result may
lead to the reason that sanger sequencing used in our
study was less sensitive to next generation sequen-
cing(NGS) in detecting BRAF and CTNNB1 mutation.
However, Sanger sequencing is more simple and
cost-effective in basic molecular lab. It was still the first
choice in regular clinical practice.

According to successful experience in BRAF inhibitors
targeting BRAF mutant cancers like melanoma [30], two
patients of recurrent CPs with BRAF V600E mutation
were subscribed with BRAF/MEK inhibitors [12, 13].
Target therapy worked well in a short period resulting in
significant tumor size decrease. These clinical outcomes
were inspiring and came to the idea of neo-adjuvant tar-
get therapy for large-sized or complex tumors. Neuro-
surgeons can perform safe surgery for CPs with more
possibility of radical resection if this target therapy really
works. Before operation, accurate molecular diagnosis is
crucial to the administration of target therapy. In Bras-
tianos et al. report, they announced BRAF mutation
could be detected in patients’ peripheral blood samples
[13]. However, we could not duplicate their result in our
lab, and since now, not so many data support liquid bi-
opsies for primary benign brain tumor patients. We
speculated that existence of brain-blood-barrier is the
main reason for the failure of liquid biopsy. Even if it
works, expensive price and sophisticated lab setting-up
will be major problems. That is why we want to develop
a MRI-based radiomics approach for noninvasive predic-
tion of genetic alterations.
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In our study, a radiomics-based approach was pro-
posed to classify pathological subtypes and detect genes
mutational status. Several successful precedents for ref-
erence have been shown in recent radiomics studies
about gene detection of brain tumors. A primary cohort
consisting of 110 patients pathologically diagnosed with
grade II glioma was retrospectively studied [17]. In
LOOCYV, the noninvasive isocitrate dehydrogenase 1
(IDH1) status estimation presented an estimation AUC
of 0.86, ACC of 0.80, SEN of 0.83 and SPEC of 0.74.
Deep learning-based radiomics (DLR) was developed on
a dataset of 151 patients with low-grade glioma with
multiple modalities of magnetic resonance (MR) images
for predicting the mutation status of IDH1, and achieved
ACC of 0.91 and AUC of 0.96 [16]. Yue et al. proposed a
novel diagnostic criterion of BRAF mutation and wild

type in craniopharyngiomas with SENS of 1.00 and
SPEC of 0.91 [18]. In our study, high-throughput fea-
tures applied into our radiomics model are extracted
quantitatively and noninvasively on medical images fol-
lowing the well-established standard to describe the
structural heterogeneity of tumors. In contrast, diagnos-
tic criterion proposed by Yue et al. is confirmed empiric-
ally, which is notwithstanding worth considering such as
tumor location. In this paper, we measured the tumor
location with Anatomical Automatic Labeling (AAL) by
spatial registration and normalization of brain images
into MNI space. Since AAL is designed for cerebral
hemispheres and the sellar regions - routine lesions of
craniopharyngiomas [20] - are anatomical areas rather
than cerebral hemispheres, the location features were
quantified using three-dimensional distance vector and
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Euclidean norm among center of each anatomical vol-
ume of interest (AVOI) and tumor.

Although the high-throughput features analysis ex-
ploits the ability of characterizing the whole tumor re-
gions, it is evident that radiomics features extraction
provides a very large and complex set of data, which
presents high correlation among them and results in risk
of overfitting. Thus, it is necessary to reduce the number
of features to develop an estimation model. Based the
Random Forest-based feature selection and classification
method, several significant features are obtained for
model construction as this approach could handle the
problem of overfitting [27, 28].

In the main dataset, our proposed radiomics method
selects four radiomics features and classifies PCPs and
ACPs with an AUC curve of 0.96 and ACC of 0.91.
BRAF V600E mutation and wild-type in craniopharyn-
giomas are discriminated with an AUC curve of 0.92
and ACC of 0.94 using two radiomics features while
CTNNB1 mutation and wild-type in craniopharyngio-
mas are distinguished with an AUC curve of 0.95 and
ACC of 091 based on three radiomics features. Al-
though the use of selected features could contribute to
the performance of radiomics model, they are challen-
ging to decipher with the naked eye. Moreover, it re-
mains a significant obstacle to ensure that clinicians
expert in gleaning detailed information from imaging
features. However, these undiscerned features contain
more detailed information of morphological structure
and texture about the tumor. Therefore, by incorporat-
ing these radiomics features, a radiomics-based model
can assist doctors in accurately identifying patients with
pathological subtypes and genetic mutational status. Be-
sides, textural features that are more effective for patho-
logical subtypes and genetic mutational status estimation

could be selected by employing MR intensity
standardization [31]. Three nomograms are developed as
individualized tools to assess the weights of integrated
features in classification, and the selected radiomics fea-
tures reveals adequate discrimination in pathological
subtypes (C-index of 0.819) and genetic mutational sta-
tus (C-index of 0.810 for BRAF gene and C-index of
0.912 for CTNNBI1 gene). Adding 12 treated patients to
main dataset, the performance of radiomics model has a
bit drop in pathological subtypes classification and has
little drop in BRAF V600E and CTNNBI1 mutational
prediciton, which demonstrates the viability and effect-
iveness of our radiomics method to construct prediction
model in pathological types and gene status in despite of
tumor changes after treatment. Compared with Sanger
sequencing and NGS, the radiomics method is noninva-
sive, higher sensitivity and lower detection cost that MR
images of patients are only required.

Limitations

Our study has some limitations. Firstly, the study retro-
spectively was based on patients with definite patho-
logical diagnosis. However, other tumors that occur in
the sellar regions as craniopharyngiomas, including pitu-
itary adenoma, Rathke’s cyst and germ cell tumor, may
confuse surgeons preoperatively, and these tumors
would be included in future studies. Secondly, the size of
enrolled patients was not big enough. Since craniophar-
yngiomas is a rare disease, study based on multiple cen-
ters could enlarge the study dataset and improve the
performance of radiomics model.

Conclusion
In the current study, we developed and validated a novel
MRI-based radiomics model for noninvasive prediction
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of pathological subtypes and genetic mutational status in
patients with craniopharyngiomas. The radiomics nomo-
grams fancilitated noninvasive estimation of pathological
subtypes and genetic mutational status. The proposed
radiomics model successfully stratified patients using the
radiomics features extracted from MR images and se-
lected using Random Forests algorithm, and could offer
potential guidance for clinical decision-making.
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