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Introduction

Proteome integrity is maintained by the proteostasis network 
(PN), which consists of interconnected systems that regulate 
protein synthesis, folding, transport, and degradation in every 
cell. The functionality of this network declines during aging, 
thus compounding the risk for diseases related to proteostasis 
dysfunction, such as neurodegenerative diseases, cardiomy-
opathies, and metabolic disorders (Balch et al., 2008). Studies 
in yeast and tissue culture have provided fundamental insights 
into the molecular mechanisms of PN function and regulation 
within single cells (Balchin et al., 2016). Multicellular organ-
isms, however, consist of different cell types that are struc-
turally and functionally diverse, reflecting distinct proteomes 
(Uhlén et al., 2015). Thus, the composition and functionality 
of the PN must be tailored to meet the specific needs of each 
cell and tissue type throughout development and adulthood. 
Differentiation, specialization, and spatial organization of cells 
in complex organisms also influence the ability of individual 
cells to sense and respond to stressful stimuli. Therefore, trans-
cellular mechanisms are in place to orchestrate PN functionality 
across organs and tissues (van Oosten-Hawle and Morimoto, 
2014). Here, we review the differential scales of proteostasis 
regulation from the cellular to the organismal level and discuss 
implications for human health.

The cellular proteostasis network
At the single-cell level, the PN comprises the molecular machin-
eries and systems that are essential for all stages of protein bio-
genesis and breakdown (Balch et al., 2008). The generic view of 
the eukaryotic PN (Fig. 1) encompasses the following processes 
(Labbadia and Morimoto, 2015a): (a) translation, controlled by 
the ribosome and associated factors that regulate the synthesis 
of the nascent polypeptide chain; (b) protein folding, assisted 
cotranslationally and posttranslationally by molecular chaper-
ones and cochaperones through cycles of substrate binding and 
release; (c) protein trafficking in the cytosol, across biological 
membranes, and within subcellular compartments; and (d) pro-
tein degradation by the ubiquitin-proteasome system (UPS), 
the autophagy/lysosomal pathways, and cellular proteases. The 
PN extends to all subcellular compartments, such as the ER, 
mitochondria, and nucleus, which possess generic as well as 
dedicated machineries that are specific to the respective micro-
environment (Kaushik and Cuervo, 2015). These subcellular 
networks are highly interconnected and communicate with each 
other to promote proteostasis across the cell (Wolff et al., 2014).

Causes of protein misfolding.� As illustrated in 
Fig.  1, imbalance in the overall flux of proteostasis, however 
transient, promotes off-pathway events that lead to the forma-
tion of damaged, misfolded, or aggregated protein species, 
which can be toxic to the cell (Balchin et al., 2016). Protein 
misfolding occurs continuously because of the inherently er-
ror-prone nature of biological systems. For example, errors in 
transcription, splicing, and translation can result in unstable or 
aberrant protein variants. The highly crowded cellular environ-
ment favors nonnative interactions during protein synthesis, re-
folding, and conformational changes (Ellis and Minton, 2006). 
The presence of intrinsically disordered regions within native 
proteins, as well as conformational changes associated with 
protein function or posttranslational modifications, and the for-
mation of multimeric complexes, also put proteins at risk for 
adopting alternate nonnative structures (Uversky et al., 2008; 
Prabakaran et al., 2012). In addition to intracellular causes, pro-
teotoxic stress induced by environmental fluctuations and phys-
iological stimuli can rapidly affect the composition or integrity 
of the proteome. Off-pathway events are counteracted by chap-
erone machineries, which refold nonnative species and resolve 
protein aggregates, and degradation pathways, which destroy 
misfolded and aggregated proteins (Balchin et al., 2016).

The proteostasis network (PN) regulates protein synthesis, 
folding, transport, and degradation to maintain proteome 
integrity and limit the accumulation of protein aggregates, 
a hallmark of aging and degenerative diseases. In multi-
cellular organisms, the PN is regulated at the cellular, tis-
sue, and systemic level to ensure organismal health and 
longevity. Here we review these three layers of PN regula-
tion and examine how they collectively maintain cellular 
homeostasis, achieve cell type-specific proteomes, and 
coordinate proteostasis across tissues. A precise under-
standing of these layers of control has important implica-
tions for organismal health and could offer new therapeutic 
approaches for neurodegenerative diseases and other 
chronic disorders related to PN dysfunction.
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Chaperone networks.� Among PN components, the 
plethora of functions performed by molecular chaperones is 
central to protein fate and cellular proteostasis. Chaperones can 
function as ATP-independent holdases that interact with nonna-
tive polypeptides to prevent aggregation, foldases that actively 
promote protein folding, or disaggregases that extract polypep-
tides from aggregates in an ATP-dependent manner. Chaperone 
activity is driven by specific associations with cochaperones 
and other partners that determine substrate specificity and the 
function of chaperone complexes (Kim et al., 2013). Members 
of the HSP40/J-protein cochaperone family, which regulate 
substrate binding to HSP70, are more abundant and exhibit 
higher sequence divergence than HSP70 family members (41 
HSP40 vs. 11 HSP70 genes in the human genome), thereby am-
plifying the range of HSP70 functions (Kampinga and Craig, 
2010). One example of this is the ability of DNA​JC2 (HSP40) 
to recruit HSP70 to the ribosome, thus coupling translation to 
protein folding (Hundley et al., 2005; Otto et al., 2005). This 
ribosome-associated chaperone complex coordinates protein 
synthesis rate with cellular folding capacity under stress condi-
tions (Koplin et al., 2010). Molecular chaperones are also 

important in determining the balance between protein folding 
and degradation. Cofactors with tetratricopeptide repeat (TPR) 
domains, such as CHIP (C terminus of Hsp70 interacting pro-
tein, also known as STUB1), and BAG domain–containing nu-
cleotide exchange factors interact with the HSP70/HSP90 
machinery and direct substrates for degradation by the UPS or 
lysosomes (Agarraberes and Dice, 2001; Demand et al., 2001; 
Gamerdinger et al., 2009). Furthermore, in metazoans, different 
combinations of HSP40 family members can associate with 
HSP70 and the nucleotide exchange factor HSP110 to form dis-
tinct disaggregase complexes capable of resolving various types 
of protein aggregates (Nillegoda et al., 2015). Thus, chaperones 
act as a hub that connects multiple branches of the PN to pro-
mote cellular proteostasis.

Protein degradation networks.� In addition to their 
role in the regulated turnover of cellular proteins, degradation 
systems are essential for protein quality control and to limit the 
accumulation of abnormal proteins during stress conditions. 
While the UPS promotes the clearance of misfolded and dam-
aged proteins, autophagy targets aggregated species for lyso-
somal degradation (Kaushik and Cuervo, 2015). Protein turnover 
by the UPS involves an enzymatic cascade that catalyzes the co-
valent attachment of ubiquitin moieties to substrates, followed by 
degradation of the polyubiquitinated substrates by the protea-
some (Hershko and Ciechanover, 1998; Finley, 2009). Substrate 
specificity is conferred by the large family of ubiquitin ligases, 
which comprises nearly 600 genes in the human genome (Li et 
al., 2008). The ubiquitination machinery has important roles in 
the regulation of a myriad of cellular processes and, importantly, 
in linking protein degradation to different PN activities. For ex-
ample, the ubiquitin ligase listerin associates with the ribosome 
and ubiquitinates nascent chains upon stalled translation to pre-
vent the buildup of aberrant polypeptides (Bengtson and Joazeiro, 
2010; Brandman et al., 2012). Ubiquitination is also key to the 
triage decision of the HSP70/HSP90 complex between substrate 
folding and proteasome-mediated degradation that is governed 
by the ubiquitin ligase activity of the cochaperone CHIP (Connell 
et al., 2001). In addition, the UPS is central to the quality control 
of ER proteins, which are polyubiquitinated, retrotranslocated, 
and cleared by cytosolic proteasomes in a process termed 
ER-associated degradation (Preston and Brodsky, 2017). Ubiq-
uitination also aids the selective targeting of proteins to lyso-
somes by macroautophagy and in endosomal sorting mechanisms, 
indicating significant cross talk between these pathways (Kraft et 
al., 2010; Komander and Rape, 2012).

PN regulation by cell stress response path-
ways.� Despite the remarkable ability of the PN to buffer 
off-pathway events, its activity can become limiting under sus-
tained proteotoxic stress. To counteract the accumulation of 
nonnative species in the cell, the PN is highly dynamic, and the 
level of individual components can be adjusted upon changes in 
proteostasis load. The functionality of different branches of the 
PN is continuously monitored by multiple pathways, including 
the heat shock response (HSR), the unfolded protein response 
(UPR), and the oxidative stress response (OxR; Labbadia and 
Morimoto, 2015a). Each of these stress responses is controlled 
by distinct transcription factors that regulate gene expression in 
response to specific stresses. In addition, the transcriptional re-
sponses are generally coupled with a decrease in global protein 
synthesis through reduced RNA splicing and translation, 
thereby reducing the influx of newly synthesized proteins and 
allowing preferential translation of stress-responsive mRNAs 

Figure 1.  Overview of cellular proteostasis. Proteostasis encompasses the 
cellular processes that guide the synthesis, folding, transport, and degra-
dation of all proteins. It is regulated by the PN, which consists of the trans-
lation machinery, molecular chaperones, UPS, and autophagy to maintain 
the overall flux of proteostasis (black arrows). Nonnative conformations 
produced by off-pathway events (red arrows) are recognized by quality 
control mechanisms to prevent the accumulation of abnormal proteins in 
the cell. Misfolded and aggregated proteins are either redirected to the 
folding pathway through disaggregation and refolding (blue arrows) or 
targeted to degradation systems (gray arrows).
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until balance is restored (Harding et al., 2000; Biamonti and 
Caceres, 2009; Shalgi et al., 2013).

The HSR.� The HSR is controlled by heat shock factor 1 
(HSF1), which increases the expression of specific chaperones 
to enhance folding capacity in response to protein misfolding in 
the cytosol (Akerfelt et al., 2010). In its inactive state, mono-
meric HSF1 localizes to the cytosol or nucleus in association 
with the HSP70/HSP90 machinery. Nonnative proteins that 
form during stress conditions compete with HSF1 for chaper-
one binding. Free HSF1 forms homotrimers that bind with high 
affinity to heat shock elements and induce the transcription of 
its gene targets, including HSP70 and HSP90 (Baler et al., 
1993; Shi et al., 1998; Zou et al., 1998). Attenuation of the HSR 
involves acetylation of HSF1, proteasomal turnover, and reasso-
ciation with chaperones (Westerheide et al., 2009; Ray-
chaudhuri et al., 2014).

The UPRER.� The UPR of the endoplasmic reticulum 
(UPRER) involves the transcription factors XBP1, ATF6, and 
ATF4 as separate response elements to implement three ER 
stress–responsive arms (Hetz et al., 2015). XBP1 is activated by 
the transmembrane endoribonuclease IRE1, which senses the 
folding environment inside the ER. Activation of ATF6, an 
ER-resident transmembrane protein, involves its relocation 
from the ER to the Golgi apparatus and subsequent proteolytic 
cleavage in response to ER stress. Both XBP1 and ATF6 induce 
prosurvival pathways that up-regulate genes involved in protein 
folding, ER-associated protein degradation, and lipid metabo-
lism (Walter and Ron, 2011). Finally, activation of the kinase 
PERK inhibits protein translation via phosphorylation of the 
translation initiation factor eIF2α and leads to the activation of 
ATF4, which induces the expression of chaperones, autophagy 
components, and detoxifying enzymes. During prolonged ER 
stress, hyperactivation of IRE1, as well as induction of the 
proapoptotic transcription factor CHOP by ATF4, eventually 
triggers cell death, likely to remove damaged cells from the 
population (Tabas and Ron, 2011).

The UPRmt.� Analogous to the UPRER, the mitochon-
drial UPR (UPRmt) is activated upon folding stress in the mi-
tochondria via a conserved transcription factor, known as 
ATF5 in mammals and ATFS1 in Caenorhabditis elegans 
(Schulz and Haynes, 2015; Fiorese et al., 2016). In the ab-
sence of mitochondrial stress, ATFS1, which contains both a 
mitochondrial targeting sequence and a nuclear localization 
signal, is imported into mitochondria and degraded. Stress- 
induced impairment of mitochondrial import leads to nuclear 
translocation of ATFS1, which, together with the ubiqui-
tin-like protein UBL5 and the transcription factor DVE1, acti-
vates the expression of genes involved in mitochondrial repair 
mechanisms, including protein folding and detoxification 
(Haynes et al., 2007; Nargund et al., 2012).

The OxR.� Oxidative and xenobiotic stress activate the 
OxR, which controls the expression of redox-regulatory pro-
teins and components involved in protein degradation. The OxR 
has two branches, which are mediated by the stress-responsive 
transcription factors NRF1/NFE2L1 and NRF2/NFE2L2 in 
mammals, whereas in C. elegans these functions are performed 
by SKN1 (Itoh et al., 1997; An and Blackwell, 2003; Rad-
hakrishnan et al., 2010). The ER-resident transcription factor 
NRF1 undergoes proteolytic cleavage upon activation and con-
trols the expression of proteasome subunits and other UPS com-
ponents (Radhakrishnan et al., 2014; Sha and Goldberg, 2014). 
NRF2 is negatively regulated by the redox-sensitive ubiquitin 

ligase KEAP1 in the cytosol. Inactivation of KEAP1 by oxida-
tive and electrophilic stress leads to the stabilization and nuclear 
translocation of NRF2, which induces the expression of antiox-
idant proteins and detoxification enzymes (Kensler et al., 2007).

Cross talk between cell stress responses.� Al-
though the HSR, UPR, and OxR pathways differ in their input 
and output, increasing evidence indicates that substantial cross 
talk exists between their signaling components. The HSR can 
be activated by ER stress, and it was further shown that HSF1 
overexpression in IRE1-deficient cells relieves defects in ER 
proteostasis, suggesting an interplay between the HSR and the 
UPRER (Liu and Chang, 2008). SKN1 is also activated by the 
UPRER and has a central role in the transcriptional response to 
ER stress. Conversely, key UPRER signaling factors are involved 
in the activation of SKN1 during oxidative stress. Notably, these 
two SKN1-mediated responses as part of the UPRER and OxR 
have distinct but overlapping targets (Glover-Cutter et al., 
2013). Recently, a mitochondrial-to-cytosolic stress response 
was identified in C. elegans that links mitochondrial proteosta-
sis to the cytosolic folding environment (Kim et al., 2016). 
Therefore, multiple pathways cooperate during stress to mount 
an appropriate response to preserve the proteome across the cell.

Evidence for a tissue-specific PN
The essential role of the PN in shaping protein structure and 
function suggests a tight relationship between proteome and PN 
composition in a given cell. PN components have undergone 
substantial expansion during evolution, paralleling the increas-
ing complexity and diversity of the proteome. This is exempli-
fied by the near-linear relationship between the total number of 
genes and the number of chaperone genes belonging to HSP 
families in genomes (Powers and Balch, 2013). Hence, the in-
crease of proteome size during evolution was accompanied by a 
diversification of chaperone machineries rather than simply an 
increase in chaperone levels, suggesting that chaperones may 
have coevolved with the proteome. The specific proteomes that 
support the organization and function of different cell types in 
multicellular organisms represent an additional layer of com-
plexity to proteostasis regulation. This implies that chaperones 
and other PN components must be tailored to accommodate 
specialized proteomes in different cell and tissue types (Pow-
ers et al., 2009). Here we focus on muscle and secretory cells 
as two well-characterized examples of cell types that rely on 
specific PN composition. 

Proteostasis in muscle cells.� Muscle function de-
pends on complex, highly ordered protein structures, mainly 
composed of actin and myosin filaments that provide contractile 
force. The proper folding of actin and myosin, their assembly 
into filaments, and maintenance of these dynamic structures, 
require both specialized and ubiquitous PN components. In 
C. elegans, the assembly of myosin filaments requires the mus-
cle-specific chaperone UNC45, which binds to the unstructured 
motor domain to promote folding and recruits the ubiquitous 
HSP90 chaperone to assist myosin assembly (Barral et al., 
1998, 2002; Kim et al., 2008). Homologs of UNC45 are also 
essential for myogenesis in zebrafish, mouse, and human cells, 
suggesting that the requirement for myosin-specific chaperones 
in muscle is conserved (Price et al., 2002; Wohlgemuth et al., 
2007). The folding of monomeric actin is assisted by the ubiq-
uitous chaperone prefoldin (also known as GimC), which pre-
vents aggregation of nascent actin polypeptides, and by the 
ubiquitous TRiC chaperonin (also known as CCT), which 
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encapsulates partially folded actin to complete its folding (Vain-
berg et al., 1998). Knockdown of different TRiC subunits in 
C.  elegans showed specific activation of an HSR reporter in 
body wall muscle, indicating a high requirement for the activity 
of this ubiquitous chaperonin in muscle cells (Guisbert et al., 
2013). The small heat-shock protein (sHSP) αB-crystallin pro-
motes the folding of various filamentous proteins, including 
actin and the intermediate filament protein desmin, and is linked 
to several myopathies affecting skeletal and cardiac muscles 
(Bennardini et al., 1992; Singh et al., 2007). A recent study in 
C.  elegans showed that the myogenic transcription factor 
HLH-1 (MyoD) drives the expression of muscle chaperones, 
thereby establishing muscle-specific proteostasis as part of the 
differentiation program (Bar-Lavan et al., 2016). Muscle main-
tenance also relies on specialized machineries for controlled 
protein degradation. For example, a chaperone complex con-
sisting of the constitutively expressed HSP70 (HSC70) together 
with BAG3, HSPB8, and CHIP, targets damaged structural 
components to the autophagic system for degradation (Arndt et 
al., 2010). The muscle-specific ubiquitin ligases MAFbx/
atrogin-1 and MuRF family members are induced and mediate 
breakdown of various muscle proteins during atrophic condi-
tions, further demonstrating the need for specific PN activities 
in this tissue (Bodine et al., 2001; Gomes et al., 2001). Collec-
tively, these findings indicate that a cell-type specific proteosta-
sis environment is crucial for the establishment and maintenance 
of muscle cell function.

PN regulation in secretory cells.� Secretory cells, 
such as insulin-secreting β cells and antibody-secreting plasma 
cells, produce high levels of specific proteins that need to be 
translated, processed through the ER and Golgi apparatus, and 
exported. High secretory capacity requires expansion of the ER 
and up-regulation of PN components to ensure proper synthe-
sis, folding, and transport of the proteins to be secreted (Brewer 
and Hendershot, 2005). Differentiation of B cells into plasma 
cells, and associated expansion of the secretory apparatus, is 
dependent on the UPRER mediator XBP1 (Reimold et al., 2001; 
Shaffer et al., 2004). Interestingly, XBP1 activation during dif-
ferentiation does not appear to arise from ER stress caused by 
increased immunoglobulin synthesis, but rather represents a 
programmed event integral to the differentiation process (Hu et 
al., 2009; Todd et al., 2009). XBP1-deficient mice exhibit de-
fects in the development of multiple secretory organs, including 
liver, pancreas, and salivary glands, suggesting that the role of 
XBP1 in differentiation extends to other secretory tissues (Rei-
mold et al., 2000; Lee et al., 2005). In pancreatic β cells, acute 
activation of the UPRER also adjusts the rates of protein synthe-
sis, folding, and clearance in response to metabolic signals and 
changes in protein load (Harding et al., 2001; Scheuner et al., 
2005). Thus, activation of the UPRER allows specific cell types 
to modulate the composition of the PN to support both cellular 
differentiation and function.

PN composition in different tissues.� In support 
of the notion of tissue-specific proteomes to direct specialized 
cellular functions, a recent analysis of gene expression as part 
of the Human Protein Atlas project revealed that only 44% of 
protein-coding genes are expressed in all tissues (Uhlén et al., 
2015). As shown in Fig. 2, the expression of genes correspond-
ing to soluble, membrane-associated, secreted, and mitochon-
drially encoded proteins varies greatly across tissues. Some 
striking examples of tissue-specific enrichment are in the pan-
creas and muscle, which have elevated expression of secreted 

and mitochondrially encoded proteins, respectively, compared 
with the mean of all tissues (Fig. 2, compare A with C). Analy-
sis of this dataset focusing on the chaperome, a previously de-
fined set of genes encoding chaperones and cochaperones 
(Brehme et al., 2014), shows that the expression levels of indi-
vidual classes also vary across tissues (Fig. 2 C). Certain classes 
are highly enriched in specific tissues, such as ER-specific 
chaperones, which constitute the major class of the expressed 
chaperome in the secretory tissues of the pancreas, small intes-
tine, and liver (Fig.  2  C). The sHSPs are overrepresented in 
skeletal and cardiac muscle, consistent with their role in the 
folding of filament components. By comparison, the proportion 
of HSP70, HSP40, and HSP90 classes is relatively constant in 
all tissues (Fig. 2 C), in accordance with the central role of these 
chaperone machineries in proteome maintenance in all cells. 
However, members of these families can be enriched in specific 
tissues to support specialized functions. The expression of indi-
vidual chaperones or PN components across human tissues 
showed highly variable profiles in previous studies, including 
core chaperones such as HSC70 and HSP90 (Hageman and 
Kampinga, 2009; Powers et al., 2009). Several HSP40 cochap-
erones also have tissue-specific expression patterns, such as 
HSJ1 (DNA​JB2), which is preferentially expressed in neurons, 
whereas other family members showed testis-specific expres-
sion (Cheetham et al., 1992; Hageman and Kampinga, 2009). 
Notably, our analysis revealed that only 10% of chaperome 
genes show highly restrictive tissue expression (31 of 324 chap-
erome genes). Most of these are confined to reproductive or-
gans, which follows the general trend observed for the entire 
proteome (Uhlén et al., 2015). The TPR and HSP40 cochaper-
one groups represent the majority of the tissue-enriched genes 
(11 and 7, respectively). As expected, expression of the func-
tional homolog of UNC45 in humans, UNC45b, was restricted 
to skeletal and heart muscle, whereas tissue-enriched genes be-
longing to the ER-specific class were selectively expressed in 
secretory organs. Therefore, tissue specificities of the chaper-
ome are determined by both differential expression of ubiqui-
tous components and specific factors. These results indicate that 
tissue-specific proteomes are supported by profound differences 
in the overall composition of the chaperome, and we expect that 
this will apply also to other branches of the PN.

PN regulation in development.� The aforemen-
tioned findings suggest that differential PN composition is es-
sential for cell identity and is likely established early during 
differentiation. The PN undergoes major remodeling during 
development to support rapid growth and morphogenesis. HSF1 
is essential for development in C. elegans, Drosophila melano-
gaster, and mice (Jedlicka et al., 1997; Xiao et al., 1999; Walker 
et al., 2003) and was recently shown to control a transcriptional 
program that is distinct from the HSR, which includes chaper-
one genes and other factors that promote protein biogenesis and 
anabolism (Li et al., 2016). This is reminiscent of the role of 
HSF1 during malignant transformation of cancer cells, in which 
it also drives a specific program that supports deregulated 
growth and proliferation (Mendillo et al., 2012). HSF1 is also 
required in mouse oocytes where it supports meiosis through 
the specific induction of the cytoplasmic HSP90α (Metchat et 
al., 2009). Similarly, the expression and activity of the sHSP 
SIP1 is restricted to oocytes and embryos in C. elegans (Flecken-
stein et al., 2015). These observations further reinforce the no-
tion that spatial and temporal regulation of PN components is 
critical for cell fate determination.
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Coordination of proteostasis at the 
organismal level
Living systems are continuously confronted with a broad range 
of environmental insults and physiological changes that can re-
sult in cellular stress and macromolecular damage. The com-
plex organization of cells and tissues in multicellular organisms 
poses challenges to stress-induced PN remodeling, as cells 
greatly differ in their exposure and sensitivity to external and 
internal cues. Therefore, proteotoxic events are communicated 
between cells and tissues to activate repair mechanisms and pre-
vent further damage to the organism. Cell-nonautonomous reg-
ulation of the PN represents a third layer, in addition to cellular 
and tissue-specific regulation, that allows systemic control of 
proteostasis (Fig. 3).

Cell-nonautonomous regulation of the HSR.� 
Mechanisms of cell-nonautonomous regulation of proteostasis 
are best characterized in the case of the HSR, which underlies 
systemic control by thermosensory neurons through serotonergic 
signaling in C. elegans (Prahlad et al., 2008; Tatum et al., 2015). 

Optogenetic activation of either thermosensory neurons or sero-
tonergic neurons is in fact sufficient to activate the HSR in the 
absence of heat stress (Tatum et al., 2015). This neuronal circuitry 
constitutes an additional level of control upstream of the cellular 
HSR because it prevented cell-autonomous induction of HSF1 in 
response to misfolded proteins, possibly to protect cells from del-
eterious effects of chronic activation of the stress response 
(Prahlad and Morimoto, 2011). These findings suggest that ef-
forts to achieve optimal proteostasis at the single-cell level are not 
necessarily beneficial at the level of the organism, which could 
explain the requirement for master regulators upstream of cellular 
stress responses. In addition to neuronal control of the HSR, 
chaperone expression is regulated through transcellular signal-
ing, whereby local perturbation caused either by the tissue- 
specific expression of a misfolded protein or altered expression of 
a chaperone triggers compensatory responses in other tissues 
(van Oosten-Hawle et al., 2013). This process relies on the tran-
scription factor PHA4/FOXA, which acts in both the signaling 
and the receiving tissues to regulate chaperone expression.

Figure 2.  Tissue expression profile of the human proteome and chaperome genes. Analysis of mRNA expression data from the Human Protein Atlas (Uhlén 
et al., 2015). (A) Combined expression data of 20,358 human protein-coding genes in 32 tissues are represented as the fraction of total transcripts en-
coding soluble, membrane-associated, secreted, mitochondrial-encoded and genes with isoforms belonging to more than one category. For each category, 
the number of genes included in the analysis is indicated in brackets. (B) Combined expression data of genes corresponding to molecular chaperones 
and cochaperones of the human chaperome (Brehme et al., 2014) in 32 tissues. The chaperome consists of the following groups of chaperones and 
cochaperones found in all compartments: HSP40, HSP70, HSP90, HSP60, prefoldin (PFD), sHSPs, and TPR domain-containing proteins, as well as organ-
elle-specific chaperones of the ER (ER-specific) and mitochondria (MITO-specific, all nuclear encoded). It should be noted that the groups defined as HSP70 
and HSP90 include both HSP chaperones and associated factors. Of the 332 chaperome genes defined by Brehme et al. (2014), 324 were present in the 
Human Protein Atlas dataset. (C) Tissue-specific expression of the proteome and the chaperome in selected tissues corresponding to bone marrow, liver, 
pancreas, skin, brain, small intestine, skeletal muscle, heart muscle, and adipose tissue. Expression data for the proteome and chaperome are represented 
as in A and B, respectively.
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Cell-nonautonomous control of the UPR.� Evi-
dence from multiple organisms indicates that the UPRER and the 
UPRmt are also under cell-nonautonomous control. Perturbation 
of the mitochondrial electron transfer chain increases lifespan 
in both invertebrates and rodents through the activation of the 
UPRmt (Liu et al., 2005; Copeland et al., 2009; Durieux et al., 
2011). Neuron-targeted disruption of mitochondrial function 
can lead to cell-nonautonomous activation of the UPRmt in non-
neuronal tissues in C. elegans (Durieux et al., 2011). Mild per-
turbation of the electron transfer chain in Drosophila muscle 
also leads to a systemic response, which involves repression of 
insulin signaling and has beneficial effects on organismal health 
and lifespan (Owusu-Ansah et al., 2013). Similarly, the UPRER 
is induced in peripheral tissues when active XBP1 is overex-
pressed in neurons, which likely depends on neuronal activity 
(Taylor and Dillin, 2013). Induction of the UPRER in nonneuro-
nal tissues during infection is mediated by sensory neurons in 
C. elegans, suggesting an organismal stress response to patho-
gens (Sun et al., 2011). Cell-nonautonomous regulation of cel-
lular stress responses has also been observed in mice, where 
overexpression of active XBP1 in pro-opiomelanocortin neu-
rons leads to activation of the UPRER in the liver 
(Williams et al., 2014).

Cell-nonautonomous regulation in longevity 
pathways.� Several longevity pathways that increase stress re-
sistance and proteostasis have been shown to be regulated cell 
nonautonomously in invertebrates. Dietary restriction increases 
lifespan and proteostasis in C. elegans, Drosophila, and mice 
(Mair and Dillin, 2008). The effects of dietary restriction on 
organismal health and longevity have been linked to an isoform 
of the oxidative stress transcription factor SKN1, which is spe-
cifically expressed in a subset of sensory neurons in C. elegans 
(Bishop and Guarente, 2007). Intestinal expression of DAF16/
FOXO, the effector of the longevity insulin/IGF1 signaling 
pathway, also acts distantly on muscle tissue to enhance proteo-
stasis (Zhang et al., 2013). Similarly, overexpression of dFOXO 

in Drosophila muscle influences proteostasis in retina, brain, 
and adipose tissues (Demontis and Perrimon, 2010).

Organismal health and longevity is also controlled by the 
reproductive system in C.  elegans (Hsin and Kenyon, 1999). 
Signaling from the germ stem cells was shown to repress so-
matic cell stress responses and proteostasis capacity during early 
adulthood, at the onset of reproduction (Shemesh et al., 2013; 
Labbadia and Morimoto, 2015b). Germ stem cell–mediated reg-
ulation of the HSR in somatic tissues is associated with the ac-
cumulation of repressive chromatin marks at heat shock genes, 
which restricts HSF1-mediated induction of stress-responsive 
genes (Labbadia and Morimoto, 2015b). Enhanced proteosta-
sis and extended lifespan in animals devoid of a germline rely 
on multiple transcription factors, including DAF16, PHA4, and 
SKN1, in addition to HSF1 (Lin et al., 2001; Lapierre et al., 
2011; Steinbaugh et al., 2015). Removal of the germline also 
increases lifespan in Drosophila through modulation of insulin 
signaling, indicating that regulation of health and longevity by 
the reproductive system is conserved (Flatt et al., 2008).

Most of our understanding of cell-nonautonomous con-
trol of proteostasis comes from studies in invertebrate model or-
ganisms. However, evidence is starting to emerge that a similar 
process exists in mammals, where circulating factors have long 
been known to distantly regulate multiple aspects of physiology 
(Williams et al., 2014). Further investigations are required to 
identify these factors and the pathways that they regulate, and to 
determine whether they are conserved in humans.

Implications for neurodegenerative diseases
Although the dynamic nature of the PN allows organisms 
to buffer acute and chronic stresses, proteostasis capacity is 
limited and declines during aging. Many age-related pathol-
ogies, and in particular neurodegenerative diseases such as 
Alzheimer’s disease, Parkinson’s disease, and amyotrophic 
lateral sclerosis (ALS), are characterized by the accumulation 
of abnormal proteins, which is associated with proteostasis 

Figure 3.  Differential scales of proteostasis 
regulation in multicellular organisms. The PN 
is regulated at multiple scales from the cellu-
lar to the organismal level, which is illustrated 
here for the human chaperome (refer to Fig. 2 
for details). At the cellular level, the PN con-
sists of the molecular machineries required 
in all compartments to maintain proteostasis 
(top). Tissue-specific regulation of PN com-
ponents tailors PN activity to tissue-specific 
functions (middle). Recent discoveries in in-
vertebrate and vertebrate models suggest that 
the PN is also controlled across tissues and 
organs by neuronal activity and intertissue 
communication to regulate proteostasis at the 
organismal level (bottom).
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dysfunction (Meijering et al., 2015; Mukherjee et al., 2015). 
Experimental evidence for the limited capacity of the PN 
came from studies in C. elegans, where expression of aggre-
gation-prone polyglutamine proteins exposed the phenotypes 
of diverse temperature-sensitive mutations at the permissive 
temperature in different tissues (Gidalevitz et al., 2006). 
Misfolding of metastable proteins also occurs during normal 
aging, which coincides with the decline of cellular stress re-
sponse in young adults (Ben-Zvi et al., 2009; Shemesh et al., 
2013; Labbadia and Morimoto, 2015b). Studies in rodents 
revealed that the levels of molecular chaperones and stress 
responses are decreased in older animals, suggesting that re-
duced PN capacity is a hallmark of aging (Blake et al., 1991; 
Carnemolla et al., 2014). Changes in chaperone expression 
have also been observed in the human brain during aging 
(Brehme et al., 2014). Although levels of ATP-dependent 
chaperones (HSP60, HSP40, HSP70, and HSP90 families) de-
creased, a subset of ATP-independent chaperones (small HSPs 
and TPR-containing proteins) were induced, which suggests 
a major remodeling of the PN during aging. These changes 
were exacerbated in individuals with Alzheimer’s disease, 
Parkinson’s disease, and Huntington’s disease, indicating that 
PN remodeling during aging may contribute to the onset and 
progression of these diseases (Brehme et al., 2014).

A distinctive feature of protein conformational diseases is 
the vulnerability of certain cell types, which may be explained 
by cell type–specific differences in PN function and regula-
tion. The causative genes in many neurodegenerative diseases, 
such as Huntington’s disease and familial forms of Parkin-
son’s disease, Alzheimer’s disease, and ALS, are ubiquitously 
expressed, yet the toxicity of the mutant protein is apparently 
selective to certain subpopulations of neurons. It has been pro-
posed that differences in inducibility of the HSR (Marcuccilli 
et al., 1996; Batulan et al., 2003), chaperone activity (Kim et 
al., 2002; Hay et al., 2004), and protein turnover rates (Tsv-
etkov et al., 2013) could contribute to this phenomenon. Cell 
type–specific vulnerability could also arise from different rates 
of proteostasis decline among tissues during aging (Labbadia 
and Morimoto, 2015a). An improved understanding of the 
functional basis for cell type–specific PN functionality will 
help to define disease-relevant changes in human pathologies. 
In addition, the recent identification of cell-nonautonomous 
regulation of proteostasis suggests that these mechanisms 
could impact disease susceptibility in human populations, pro-
vided they are conserved.

Strategies to remodel the PN in disease.� Re-
modeling of the PN to compensate for the age-related decline in 
proteostasis offers a therapeutic strategy that could profoundly 
influence vulnerability to disease in humans. In support, studies 
in animal models have revealed that modulation of longevity 
pathways influences proteotoxicity. Genetic manipulation of 
IGF1/DAF2 and HSF1 pathways prolongs lifespan and protects 
against aggregation and toxicity of disease model proteins in 
C. elegans, Drosophila, and mice (Kaspar et al., 2003; Cohen et 
al., 2009; Kenyon, 2010; Neef et al., 2011). Genome-wide 
screens for modifiers of polyglutamine aggregation and toxicity 
have identified genes that are highly enriched in PN compo-
nents, with molecular chaperones being an important class 
(Nollen et al., 2004; Bilen and Bonini, 2007; Silva et al., 2011). 
Accordingly, overexpression of chaperones and cochaperones 
from the HSP70 and HSP40 families ameliorates neurodegener-
ation in mouse models (Cummings et al., 2001; Adachi et al., 

2003; Labbadia et al., 2012). Consistent with genetic studies, 
chemical compounds that modulate the activity of different 
branches of the PN promote proteostasis and are protective in 
various models of protein conformational diseases (Brandvold 
and Morimoto, 2015; Labbadia and Morimoto, 2015a). Small 
molecules that induce the HSR, UPRER, or OxR or act as al-
losteric modulators of HSP70 or pharmacological chaperones 
were shown to reduce aggregation and toxicity of multiple dis-
ease-linked proteins in animal models (Calamini et al., 2011; 
Wang et al., 2013; Makley et al., 2015; Bott et al., 2016;  
Plate et al., 2016).

Recent discoveries in invertebrate models have raised 
the possibility that cell-nonautonomous signaling also regu-
lates protein aggregation and toxicity in misfolding diseases. 
Neuronal control of proteostasis regulates the aggregation of 
disease-linked polyglutamine and mutant SOD1 proteins in 
nonneuronal tissues (Garcia et al., 2007; Prahlad and Morim-
oto, 2011). Overexpression of DAF16 in the intestine also 
triggers a systemic response that ameliorates toxicity of Aβ 
peptide in muscle (Zhang et al., 2013). It is well established 
that nonneuronal cells such as glia control neuronal function 
and contribute to toxicity in several neurodegenerative diseases, 
including ALS and Huntington’s disease (Ilieva et al., 2009). 
Interestingly, it was recently shown that activation of the in-
nate immune response in intestine suppresses rotenone-induced 
neurotoxicity in C. elegans, suggesting that neurodegeneration 
could be influenced cell nonautonomously by distal tissues in 
the periphery (Chikka et al., 2016). These findings suggest that 
protein folding in a damaged tissue could be restored by tar-
geting other tissues or by acting on the systemic signals that 
distantly regulate proteostasis.

Concluding remarks
Multicellular organisms have evolved complex pathways to 
regulate the activity and composition of the PN at the cellu-
lar, tissue, and systemic level. Although generally viewed 
as a housekeeping network invariably present in all cells, the 
composition of the PN can differ greatly between tissues, with 
important implications for organismal health and disease. In-
vertebrate models have been instrumental for the discovery 
of tissue-specific PN components and pathways that regulate 
proteostasis throughout the organism. Evolutionary conserva-
tion of many key components of these pathways reinforces the 
use of model organisms as important tools in the study of PN 
regulation. Future efforts should address how cell type–specific 
PNs are established and how they respond to different forms of 
stress. Furthermore, unraveling the details of the tissue circuitry 
of systemic PN regulation and the directionality of transcellular 
signals, as well as their identity, could offer new therapeutic 
strategies in diseases related to PN dysfunction, including the 
possibility of treating one tissue by targeting another. Such an 
approach would overcome the inaccessibility of certain tissues 
to therapeutics and could therefore be of particular interest for 
the treatment of neurodegenerative diseases.
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