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Covid-19 has become a pandemic that affects lots of individuals daily, worldwide, and,

particularly, the widespread disruption in numerous countries, namely, the US, Italy, India,

Saudi Arabia. The timely detection of this infectious disease is mandatory to prevent

the quick spread globally and locally. Moreover, the timely detection of COVID-19 in the

coming time is significant to well cope with the disease control by Governments. The

common symptoms of COVID are fever as well as dry cough, which is similar to the

normal flu. The disease is devastating and spreads quickly, which affects individuals of

all ages, particularly, aged people and those with feeble immune systems. There is a

standard method employed to detect the COVID, namely, the real-time polymerase chain

reaction (RT-PCR) test. But this method has shortcomings, i.e., it takes a long time and

generates maximum false-positive cases. Consequently, we necessitate to propose a

robust framework for the detection as well as for the estimation of COVID cases globally.

To achieve the above goals, we proposed a novel technique to analyze, predict, and

detect the COVID-19 infection. We made dependable estimates on significant pandemic

parameters and made predictions of infection as well as potential washout time frames

for numerous countries globally. We used a publicly available dataset composed by

Johns Hopkins Center for estimation, analysis, and predictions of COVID cases during

the time period of 21 April 2020 to 27 June 2020. We employed a simple circulation

for fast as well as simple estimates of the COVID model and estimated the parameters

of the Gaussian curve, utilizing a parameter, namely, the least-square parameter curve

fitting for numerous countries in distinct areas. Forecasts of COVID depend upon the

potential results of Gaussian time evolution with a central limit theorem of data the Covid

prediction to be justified. For gaussian distribution, the parameters, namely, extreme

time and thickness are regulated using a statistical Y2 fit for the aim of doubling times

after 21 April 2020. Moreover, for the detection of COVID-19, we also proposed a

novel technique, employing the two features, namely, Histogram of Oriented Gradients

and Scale Invariant Feature Transform. We also designed a CNN-based architecture

named COVIDDetectorNet for classification purposes. We fed the extracted features
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into the proposed COVIDDetectorNet to detect COVID-19, viral pneumonia, and other

lung infections. Our method obtained an accuracy of 96.51, 92.62, and 86.53% for two,

three, and four classes, respectively. Experimental outcomes illustrate that our method

is reliable to be employed for the forecast and detection of COVID-19 disease.

Keywords: prediction, Coronavirus - COVID-19, Time-series (TS) model, gaussian, mathematical model, epidemic

spreading algorithm

INTRODUCTION

In March 2020, the World Health Organization (WHO)
confirmed a widespread of a novel Corona Virus called COVID-
19, a pandemic. COVID-19 is caused by a virus named severe
acute respiratory syndrome coronavirus 2 (SARS Cov2). Initially,
the pandemic started in Wuhan, China; however, it spread
quickly to a large part of the globe (1). COVID-19 spreads via
breathing drops of the diseased individual, which are generated
when the infected person sneezes or coughs. The droplets of
an infected person can also contaminate large surfaces that
increase the spread more quickly. The infected person may suffer
respiratory illness either severe or mild; however, the severe may
need the support of ventilation (2). People of old age and those
having chronological illnesses are prone to COVID-19 infection.
Therefore, many countries shut their international borders and
imposed strict presentation measures to avoid a quick spread of
the COVID-19 (3).

Researchers and scientists have developed different vaccines
to combat the pandemic by sequencing ribonucleic acid (RNA)
from COVID-19. The organizations of vaccines employed both
conventional and leading-edge technology with six different
platforms of vaccine, such as deoxyribonucleic acid (DNA),
messenger RNA (mRNA), viral vector-based, subunit or protein,
inactivated virus, and a live attenuated virus. However, the
developed vaccines can significantly reduce the quick spread
and enhance immunity by producing antibodies. The vaccines
have shown 95% effectiveness; however, some issues were
encountered while managing the vaccines, i.e., the hesitancy of
vaccine, complacency, and logistical challenges of the supply
chain. Most importantly, the vaccines are not to cure rather a
prevention measure against COVID-19 (4). Although, vaccines
are produced, however, detection is crucial as it assists in easily
tracking the persons who were in touch with the infected person.
The quick spread of the pandemic is significantly avoidable by
tracing these people. In the initial stage, the infection manifests
as an infection of the lungs; hence, the researchers utilized the
lung’s x-rays and computed tomography (CT) images to detect
the lungs infection (5).

Numerous models have been designed to predict the
infectious disease that quickly spread similar to the COVID-19.
Recently, a model named susceptible-infected-removed (SIR) (6,
7) has been employed for estimating the spread and fatality rate
of COVID. Distinct variations of these systems are either very
simple so that they cannot accurately generate the predictions, or
either very complex for understanding. The early forecasting of
certain attributes for COVID-19, namely, the highest quantity of

positive cases, the fatality rate per day, forecasting peak number,
the exact time of new severe sick people per day (SSPs), is
believed to be significant for each country, especially those that
are expected to witness exponential growth. More specifically,
the quick and dependable forecasting of COVID is significant for
the policymakers to enhance the monitoring of pandemic drift
and to take precautionary measures for avoiding the shortage of
life-saving resources in medical centers as well as in emergency
services. In this work, we present the development as well as
utilization of the Gaussian model as a beneficial, simple, and
effective description of fatalities due to COVID-19 with time and
the recent works in the USA (8) and Germany (9). Distinct from
the prior study, we chose to use a knowledgeable regular death
rates algorithm (10) as evaluated input data. Moreover, we also
presented the Gaussian doubling times principle as an amount of
an increased rate (11) as an alternative to the growing infections.
The Gaussian distribution function assessment has a significant
role to resolve various problems in plasma kinetic theory named
drift-Maxwellian (12) or counter streaming bi-Maxwellian (13)
velocity distribution function. The above-mentioned terms are
called plasma physics.

Accurate and timely detection of COVID-19 is important
for controlling the quick spread of this disease among people.
It has become more crucial to detect the COVID-19-infected
people after the vaccination to quarantine the people and to
prevent the spread. The PT-PCR is believed to be a standard
detection method for COVID; however, PT-PCR generates a
lot of false positives due to various reasons, namely, stages of
the disease, technique of collecting specimens, disadvantages of
methodology that sustainably delay the control and detection
process. The sensitivity and specificity of the initial standard
testing method have been dejected in these works (14–17).
Hence, we required a unique automatic diagnostic method,
which can assist to stop the quick spread of COVID-
19 (18).

Medical experts, clinicians, technologists, and researchers
are putting their efforts to early detect the patients with
COVID-19. In 2019, more than 755 research articles were
published as reported by PubMed (19), while, in the first 3
months of 2020, more than 1,245 articles were published.
Deep learning (DL) and artificial intelligence methods are
utilized by scientists for the detection of COVID-19 using
CT and chest x-rays images (CXI). DL techniques (20–26)
have shown extraordinary results in research applications and
are commonly employed due to the enhanced performance
comparative to the conventional techniques. Compared to
machine learning and conventional techniques, features
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are not selected manually. On the other hand, the DL
model can be trained by changing the configurations and
parameters to learn the prominent features from the dataset.
The research community has examined the DL techniques
to explore the medical imaging field before the COVID-
19 pandemic. DL attained maximum attention to detect
COVID-19 using CXI. Researchers reported detailed methods
(27, 28) to detect COVID-19 through computer vision and
artificial intelligence.

For many papers, transfer learning-based techniques are the
go-to methods. In transfer learning, the pre-trained models on
the ImageNet dataset are employed for performing the transfer
learning. Even though methods are the same, however, distinct
architectures are employed in works (29). Distinct variants
are employed even if the architectures are the same. Cross-
validation is also considered in transfer learning. Additionally,
techniques with novel CNN models are also employed that
use the significance of transfer learning when the available
data are small for training. In (30), a CNN-based architecture
named COVID-Net was designed for the detection of COVID-
infected patients through CXI. Authors also introduced a dataset
COVIDx that has three classes, i.e., normal, COVID, and viral
pneumonia (VP). COVID-Net is based on the two phases of
projections, such as depth-wise representation, expansion, and
extension. Initially, the CNN was trained on ImageNet as well
as on the COVIDx dataset. In (31), a model that comprises
three portions, such as a backbone, a classification head, and
an anomaly detection head, was developed for the detection
of COVID-infected people. The backbone part was used on
ImageNet for extracting the high-level feature from CXI, and
the extracted features were passed into other two parts of the
network such as classification and anomaly heads to generate
a score. A cumulative score of “one” was also used for every
prediction. In (32), a capsule network-based model named
COVID-CAPS was designed for the detection of COVID-19
through CT scans and CXI. It was reported that the benefit
of employing a capsule network is it performs good, while
the training data are small. The COVID-CAPS was trained
using the dataset (33). In (34), a CNN-based model, namely,
DeTraC was developed that comprises three stages, such as
feature extraction, decomposition, and the third stage, a class
composition. The backbone architecture was employed to obtain
features from images, followed by using SGD optimizer and,
finally, a class to categorize images into normal or COVID-19
infected. In (35), COVIDLite was developed that employed a
depth-wise separable CNN to classify the CXI for the detection
of COVID-19. Similarly, this (36) also employed depth-wise
separable convolutional layers in the XceptionNet architecture
(37) and named it a Fast COVID-19 detector. To improve
the color fidelity, white balancing was used, while, to expand
the visibility and optimize the white balance, preprocessing
was executed. In (38), the CNN model was designed that
comprises a block of convolutional layers, having 16 filters, a
batch normalization layer, an activation function ReLU, two fully
connected layers, followed by a SoftMax layer. In (39), a set of
customized CNN models was employed for the prediction of
an infection graph. Additionally, viral and bacterial pneumonia

were also detected using the CNN-based model. In (40), a
tailored CNN was employed that takes the fused set of features
by employing two models, namely, Xception and ResNet50V2.
A fused set of features was fed into the convolutional and
classification layer for the classification purposes. Similarly, in
(41), deep features were obtained by employing the MobileNet,
and the deep features are fed into the global pooling and fully
connected layer. The performance of the model was evaluated
by transfer learning, training from the scratch, and fine-tuning
the network. The CoroNet (41) was used to classify the x-
ray images into four distinct classes, such as normal, viral and
bacterial pneumonia, and COVID-19. Xception was used as a
base model; however, the last two layers, such as dropout and
two fully connected layers, were added. In (42), DarkCovidNet
was designed for COVID-19 detection, which is based on the
Darknet-19 (43). DarkCOVIDNet used a smaller number of
layers than Darknet-19. Two layers, such as average pooling
and SoftMax, were added for classification. In (44), a four-stage
technique, namely, exemplar-based pyramid feature producing,
relief, iterative principal component analysis, and classification,
was developed to detect patients with COVID-19. The feature
extraction was emphasized by the initial three stages, while, in
the last stage, a deep neural network and artificial neural network
were used for classification purposes. In (45), CovXNet with
depth-wise convolutional layers was developed for binary as well
as a multi-class classification problem. The model was trained
from the scratch as well as used numerous modifications, such
as fine-tuning, transfer learning.

In this work, we addressed the challenges that are associated
with predicting and detecting COVID earlier by proposing a
novel framework to reliably analyze, predict, and detect COVID-
19. Moreover, the proposed framework is capable of effectively
detecting VP, as well as extra lung infections.

Major contributions of the proposed study are given
as follows:

• We used Gaussian doubling times for best analysis in addition
to the prediction of COVID-19 globally.

• We developed an innovative COVID detector, which employs
two features, namely, scale invariant feature transform (SIFT)
and histogram of oriented gradients (HOG).

• We developed a novel CNN-based architecture called
COVIDDetectorNet to effectively detect the patients with
COVID-19 and patients suffering from VP, and other
infections of the lungs.

• The proposed COVID detection technique has capability to
detect normal, COVID, VP, as well as other lung infections.

• To detect COVID and other lungs abnormalities, we have
performed rigorous experiments on the publicly available
dataset, namely, the COVID Radiography dataset.

The rest of this manuscript is structured as follows: Section
2 Materials and Methods has a detailed explanation of
our proposed working mechanism to detect the COVID-
19 and estimate an infection rate. Section 3 Proposed
Method gives an explanation of experimental outcomes,
while, finally, Section 4 Results and Analysis has concluded
the work.
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MATERIALS AND METHODS

This section provides an in-depth summary of data and
techniques for the COVID-19 infections, forecasting in Asian
countries and globally. Moreover, the detailed discussion of
the proposed CNN-based architecture, i.e., COVIDDetectorNet
is presented to detect COVID-infected people, VP, and other
lung infections.

Forecasting Data
For forecasting the infection rate, we collected the data through
a real-time inquiry from Johns Hopkins University as well as
additional suppliers, namely, WHO, to examine and make a
forecast about the pandemic for worst-hit countries. Currently,
the COVID data are gathered from numerous sources, such
as media reports, online news, as well as official reports of
governments, etc. It is significant to consider the data of all
sources as it will be helpful to examine the diverse data to have
a clear as well as a comprehensive image of an epidemic and
its implications.

Scientific Simulation for Forecasting
The statistics and literature (46) demonstrate that there are three
stages of a pandemic, namely, the total of infected people grows
exponentially, the peak of an epidemic, and the quick decline in
the infectious rate (9). Therefore, we employed a Gaussian curve
to illustrate the progress of a pandemic. Kprepresents the amount
of COVID-affected individuals’ each day p, which is illustrated
through a Gaussian curve as follows:

K
(

p
)

= P0e
−
(

P−D
1

)2

(1)

In the above Equation (1), P0 represents the highest amount of
infectious cases each day D, while 1 shows a standard deviation
of a curvature.

Change in the level of infection is computed through
separating K(p) w.r.t p. Hence, change in relative rate R(p) is
given the following Equation (2).

R
(

k
)

=

dk(p)
dp

k
(

p
) =

d ln k
(

p
)

dp
=

2
(

D− p
)

12
(2)

Doubling Time Expression
The number of cases per day can be computed by Equation (3) in
terms of doubling time E.

kkobs
(

p
)

= kobs0e
p ln 2
E (3)

Similarly, relative change can be computed by the Equation (4).

R
(

p
)

=

dkobs(p)
dp

kobs
(

p
) =

d ln kobs
(

p
)

dp
=

ln 2

E
(4)

The doubling time in terms of D and 1 is computed by
combining the equations (2) and (4) as follows;

C
(

D, p
)

=
ln 212

2
(

D− p
) =

0.3512

D− p
(5)

when at p= 0,

C (D, 0) =
0.3512

D
(6)

FIGURE 1 | Worldwide cases doubling rate.
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We required calculation of doubling time so as to obtain
two values, namely, D and 1. It is computed, applying the
Equation (4).

C
(

p
)

=
P∗ ln 2

ln E(Y+P)
E(Y)

(7)

In the Equation (7), the E (Y) denotes the amount of COVID
cases on Day Y, while P represents a rolling window. In this work,
we used a rolling window of 7.

Doubling Time for Worldwide Cases
Figure 1 depicts doubling time for worldwide infection cases
from 21 April 2020. We selected this date because the doubling

rate was stabilized globally from the above-mentioned date,
as every country started releasing the data publicly. Moreover,
we analyzed the data till 27 June 2020 and the analyzed data
assumingly it has an error of 20%. We used the data (9). In order
to obtain the value of D, we analyzed the doubling rate at p= 0,

C (D, 0) =
0.3512

D
= 22.6 ⇒ 0.3512

= 22.6D (8)

From Equations (5) and (8)

C
(

D, p
)

=
0.3512

D− p
=

22.6E

D− p
=

22.6

1− p/D
(9)

FIGURE 2 | (A) The best estimate of E. (B) The doubling rate of global cases with estimates.
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Figure 1 illustrates a Gaussian model worldwide, doubling the
rate from the date 21 April 2020 to 27 June 2020, with an error
of 20%.

Statistical Fit for Worldwide Cases
We computed the value ofD for the Gaussian curve of worldwide
cases by computing a Y2 fit using Equation (10).

Y2 (D) = 6M
l=0

(

n
(

pl
)

− C
(

D, pl
)

δ
(

pl
)

)2

(10)

The n
(

pl
)

in Equation (10) represents the analyzed doubling rate,
C
(

D, pl
)

shows the estimated doubling rate, and δ
(

pl
)

represents
an error for the analyzed rate with almost 20% and by employing
the Equation (9); we got the following expression:

Y2 (D) = 6M
l=0

(

n
(

pl
)

−
22.6

1−pl/D

.2m
(

pl
)

)2

(11)

From the analysis till 27 June 2020, M = 67; hence, D is a single-
free parameter, and the freedom degree is computed byM − 1 =

66, while the lowest value of Y2
min is equal to 63.28 by using D

FIGURE 3 | (A) The doubling rate of global cases with estimates. (B) Gaussian function for global cases.
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equals to 109.5 days from p= 0 on 21 April 2020 as illustrated in
Figure 2A.

Ratio Y2
min/(M − 1) is equal to 0.96 that signifies that model

is performing well on the data because the ratio is <Value 1.
Figure 2B illustrates the analyzed doubling rates with modeled
doubling rates.

The value of D is equal to 109.5 when p= 0 on 21 April 2020,
comparable to 21 April 2020+D, which is 08/08/2020. Then, the
best fit Gaussian doubling time is given by,

C
(

D, p
)

=
22.6

1− p/D
=

22.6

1− p/109.5
=

2474.7

109.5− p
(12)

The estimate of the doubling rate up to 14/07/2020 is illustrated
in Figure 3A. We have the value of D, which is equal to 109.5, so
we can compute the 1 by using Equation (8).

1 = 84.09 (13)

For the worldwide infection cases, the Gaussian function in terms
of the ratio of

k(p)
k0

is illustrated in Figure 3B.

Doubling Time in Asia for Infection Cases
The doubling time in Asia for infection cases from 21 April 2022
is illustrated in Figure 4. We have selected five different countries
from Middle East, namely, Saudi Arabia, Pakistan, Turkey, Iran,
and India, to make sure that all the observations are statistically
related and within the same time frame from the start of the
spread in various countries.

As stated before, we analyzed the data up to 27 June
2022, having an error of 20% assumption using the data (9).
We examined the analyzed doubling rate for the same Asian

countries that are mentioned above when the value of p = 0,
that is

C (D, 0) = 18.42D (14)

Utilizing two Equations (5) and (14)

C
(

D, p
)

=
18.42

1− p/D
(15)

Figure 5 illustrates the doubling rate, starting from 21 April 2020
to 27 June 2020, with an error of 20% for the above-mentioned
Asian countries.

Statistical Fit for Cases in Asia
For the Gaussian curve of infection cases in Asian countries, we
computed the value of D, and the Gaussian curve is determined
by conducting a Y2 fit, and it is computed by using the
Equation (16).

Y2 (D) = 6M
l=0

(

n
(

pl
)

− C
(

D, pl
)

δ
(

pl
)

)2

(16)

In the above Equation (16), n
(

pl
)

is the analyzed doubling
rate, while C

(

D, pl
)

represents an estimated doubling rate, and
δ
(

pl
)

shows an error term for the analyzed rate, particularly for
the Asian countries. The error is 20%, and, by employing the
Equation (14), we got the following Equation (17):

Y2 (D) = 6M
l=0

(

n
(

pl
)

−
18.42

1−pl/D

0.2n
(

pl
)

)2

(17)

From the analysis till 27 June 2020, M = 67; hence, D is a single-
free parameter, and the freedom degree is computer byM − 1 =

FIGURE 4 | The doubling rate of cases in Asia.
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FIGURE 5 | The doubling rate of cases in Asia.

FIGURE 6 | The best estimate of E.

66, while the lowest value of Y2
minis equal to 64.02 by using D

equals to 127 days from p = 0 on 21 April 2020, as illustrated in
Figure 6.

Ratio Y2
min/(M − 1) = 0.97 that signifies that model is

performing well on the data because the ratio is smaller than
Value 1. Figure 7 illustrates the analyzed doubling rates with
modeled doubling rates for the Asian countries.

The value of D is equal to 127 when p = 0 on 21/04/2020,
comparable to 21/04/2020 + D, which is 08/08/2020. Then, for
Asian countries, the best fit Gaussian doubling time is given by,

C
(

D, p
)

=
18.42

1− p/D
=

18.42

1− p/127
=

2339.34

127− p
(18)

The estimate of doubling rate up to 14/07/2020 for the Asian
countries is illustrated in Figure 8. We have the value ofD, which
is equal to 127, so we can compute the 1 by using Equation (8).

0.3512
= 18.42D ⇒ 1 = 81.75 (19)

For the Asian countries’ infection cases, the Gaussian function in
terms of the ratio of

k(p)
k0

is illustrated in Figure 9.
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FIGURE 7 | The doubling rate of cases in Asia with estimates.

FIGURE 8 | The doubling rate of cases in Asia with estimates.

PROPOSED METHOD

The major purpose of this working mechanism is to estimate
the infection rate throughout the Asian countries as well as
worldwide and to detect the COVID-19-infected people. The
working mechanism comprises two stages, such as employing
the two features, namely, histogram of oriented gradients
(HOG) and the scale invariant feature transform (SIFT) on
CXI and, next, passing the extracted features into the proposed
CNN-based architecture named COVIDDetectorNet for further

processing and prediction. The working of our method HOG-
SIFT-COVIDDetectorNet is illustrated in Figure 10.

COVID-19 Detection
Dataset
We employed a public dataset COVID-19 CHEST X-RAY
DATABASE1 to perform all the experiments, such as two classes
(COVID and normal), tree classes (COVID, normal, and VP),

1Available online at: http://www.chest-x-rays-radiographicimages.com.
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FIGURE 9 | Gaussian function for cases in Asia.

and four classes (COVID- normal, VP, and other lung infections).
A team of researchers belonging to different countries, namely,
the University of Doha, Dhaka, Qatar, Pakistan, and Malaysia,
has collaboratively developed the dataset with the help of medical
experts. The dataset has four different classes, where 3.616 CXI
are of COVID; 6,012 of the other lung infections; 1,345 viral cases
of pneumonia; and 10,192 of normal people. Each image has a
resolution of 299× 299 and a PNG extension.

Features Extraction
Scale Invariant Feature Transform
In the initial stage, we employed the SIFT feature descriptor
on the CXI to extract prominent features. SIFT captures the
distinct characteristics based on the difference of a pixel gradient.
Although the speeded-up robust features (47) have shown
significant robustness as compared to the SIFT features, however,
it has a high computational cost. The SIFT feature (48) was
developed for extracting the unique invariant characteristics
from the images, which can be utilized for performing
dependable matching between the distinct views of a scene or
an object. In order to extract SIFT features, we used a four-stage
procedure, such as scale space and extreme detection, keypoint
localization, orientation assignment, and keypoint descriptor.
The detailed computation of the SIFT feature is as follows in the
subsequent sections.

Scale-Space and Extreme Detection
In the initial phase of SIFT feature computation, we defined the
scale space of the CXI as a function, F (a, b, σ), which is generated
from the convolution of a variable-scale Gaussian kernel, K (a, b,
σ) using the input CXII (a, b).

F
(

a, b, σ
)

= K
(

a, b, σ
)∗
I
(

a, b
)

(20)

where the symbol ∗ shows the convolution operation in a and
b, and

K
(

a, b, σ
)

=
1

2π σ 2
e
−a2+b2

2σ2 (21)

For the efficient detection of the stable keypoint locations in the
scale space, we used the scale-space extrema in the difference
of the Gaussian function, followed by the convolution of CXI
as follows;

D
(

a, b, σ
)

=
(

K
(

a, b, kσ
)

− G
(

a, b, σ
))∗

I
(

a, b
)

= F
(

a, b, kσ
)

− F
(

a, b, σ
)

(22)

The k in the Equation (22) shows the multiplicative factor.
For the detection of local maxima and minima of D (a, b, σ),

we compared every sample point to its 8 neighbors in the CXI
and the 9 neighbors in the scale upper and lower as shown in
Figure 13.

Keypoint Localization
In the second stage of SIFT features computation, a candidate’s
key point that was detected in the initial stage is refined to a
subpixel level, however, the unstable are eliminated. Moreover,
non-edge points and noise-sensitive points are removed in
keypoint localization for enhancing the stability of matching
and enhancement of noise exemption. The extreme points of
low contrast are eliminated by employing the Taylor series for
expanding the scale-space function D

(

a, b, σ
)

at sampling point

S
(

a, b, σ
)T

(49). The trace and determinant ratios of the Hessian
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FIGURE 10 | Proposed systems.

matrix are to decrease the edge effect of the difference of the
gaussian function.

Orientation Assignment
In the third stage of the computation of SIFT features, the local
information from the key points is extracted with identified
location and scale. Based on the local characteristics of CXI, it
decrypts the feature point location information, which makes the
SIFT features remain unchangeable for the rotation of the image.
An orientation histogram is produced by using the gradient
orientations of neighboring pixels of keypoints. The keypoints
can be assigned according to the histogram orientation as given

in Equation (23).

m
(

a, b
)

=

√

(F
(

a+ 1, b
)

− F(a− 1, b))
2
+ (F

(

a, b+ 1
)

− F(a, b− 1))
2

θ
(

a, b
)

(23)

= tan−1((F
(

a, b+ 1
)

− F
(

a, b− 1
)

)/(F
(

a+ 1, b
)

− F
(

a− 1, b
)

))

(24)

The above two Equations (23) and (24) provide the modulus and
the direction of the gradient at pixel (a, b); scale of the F is the
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FIGURE 11 | Keypoint descriptor and image gradient.

FIGURE 12 | Histogram of oriented gradients.

corresponding scale of every keypoint. In actual computations,
we achieved the neighborhood gradient direction through the
statistics histogram and sample in the vicinity window centered

at the keypoint. The range of gradient histogram is 0–360
degrees and 36 columns. There are a total of 36 bins in gradient
histogram that cover 360 degrees of orientation. The dominant
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direction of the neighborhood gradient is shown by the peak of
the histogram.

Keypoint Descriptor
Figure 11 shows the feature point definition of the SIFT
descriptor in a neighboring area, which maintains invariable to
the angle of the view and brightness change. In order to make
sure of the rotation invariance, the direction of axis is organized
as the keypoint.

Next, we considered eight by eight windows around each
keypoint. The central red highlighted part in Figure 11 is a
current keypoint position. Every cell depicts a neighboring pixel
in scale of the keypoint, while the arrow in each cell shows the
gradient direction of each pixel. Moreover, the length of each
arrow illustrates the mold value of the gradient, and the yellow
circle illustrates the Gauss-weighting scope. The number of pixels
close to the keypoint signifies the maximum contribution to
gradient direction information.

Next, in each four by four sub-window, the gradient
direction histogram is produced, having eight orientation
bins, and it is called a seed point as illustrated in
Figure 11. One keypoint has total two by two seed points
as illustrated in Figure 11, each seed point has eight
different pieces of vector information. This neighboring
joint orientation information improves the capability of
anti-noise algorithm.

Histogram of Oriented Gradients
HOG was originally developed (see footnote1) for characterizing
images on gradient directions. This feature descriptor is
employed in digital image processing as well as computer
vision for classification and object detection. The major goal
of the HOG algorithm is to analyze the histogram of an
oriented gradient in areas of the neighboring images. Figure 12
illustrates the computation of HOG features. A given image
is split up in numerous minors, as well as correlated zones
named units. These units are again split up in groups of
cells and different gradient directions. In this work, we
extracted HOG features from the CXI as follows: in the
initial stage, we split up an image portion of a sample
having pixel size of (48 × 48) into minor cells of the same
pixel size (8 × 8) and then calculated gradient histogram
of each pixel in all cells through splitting up orientation
into nine bins. The computation of nine-bin histogram for
each cell creates an illustration significantly well and dense to
an interference. Moreover, gradient sections of the CXI are
calculated by employing the one-dimension balanced method
in two different directions, namely, vertical and horizontal.
Gradient sections are calculated by using the following Equations
(25) and (26).

Gradient sections of CXI are calculated through the
one-dimension centered method in horizontal and vertical
directions. Gradient sections are calculated by employing
the below Equations.

Ga

(

a, b
)

= P
(

a+ 1, b
)

− P
(

a− 1, b
)

(25)

Gb

(

a, b
)

= P
(

a, b+ 1
)

− P
(

a, b− 1
)

(26)

The P
(

a, b
)

indicates the pixel value, while the Ga

(

a, b
)

, as well
as Gb

(

a, b
)

, shows gradients in two directions of the pixels, i.e.,
horizontal and vertical, respectively. Moreover, we also calculated
the magnitude and direction of the gradient, such as z

(

a, b
)

for
each pixel

(

a, b
)

as below:

G
(

a, b
)

=

√

Ga

(

a, b
)2

+ Gb(a, b)
2 (27)

z
(

a, b
)

= tan−1

(

Gb

(

a, b
)

Ga

(

a, b
)

)

(28)

The orientation for gradients ranges from 1–180. We calculated
both the orientation and magnitude for every pixel in each cell.
Finally, we normalized the histogram for every cell and grouped
the histograms of all the cells to illustrate a single block. The
histograms block depicts the HOG features of the CXI. HOG
features have advantage of preserving the spatial characteristics
of images.

Convolutional Neural Networks
DL has a sub-branch called an artificial neural network that
is inspired by the living organisms’ natural visual perception
working (50). The CNNs are multi-layered neural networks
(NNs) stacked together that comprise mainly three types of
layers, such as convolutional layers, pooling layers, and fully
connected layers. The very first layer of each CNN model
is an input layer; the depth, height, and width of input
images are specified as input parameters. Instantly, after the
initial layer, some stacked convolutional layers are defined with
different configurations and parameters, such as hidden unit
size, number of filters, padding, stride, and activation functions.
The convolutional layers are responsible to extract significant
feature maps from the inputs by computing the weighted sum
(51, 52). The extracted feature maps are then passed through the
activation functions, and a bias is added to obtain an output.
Typically, the rectilinear unit (ReLU) is employed as an activation
function (53). Moreover, the pooling layers are employed for
reducing the size of the output from the lagging convolutional
layers. The output dimensionality increases exponentially with
the increase in the size of the model by increasing the number
of input parameters to the convolutional layers, which is
challenging for low computational cost machines. To avoid the
above problem, pooling layers are employed to minimize the
dimensions for simple and easy computation. The pooling layers
are also used to suppress the noise as well. There are numerous
pooling layers, such as max, avg, global, and spatial pooling
layers; however, the researchers employ the max-pooling layer
(54). Output is flattened to produce a single-array feature vector,
which is then passed into the fully connected layer. Finally, a
dense layer referred to as the classification layer is defined as
having an activation function, such as SoftMax, tanh, sigmoid,
etc. (55). The number of classes used for experimentation
purposes is specified in the last layer, and the feature maps
are combined into class scores. In the CNNs, there are batch
normalization layers that are employed after the initial layer
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FIGURE 13 | Proposed COVIDDetectorNet.

or just after an activation layer for standardizing the learning
process and minimizing the time of training (56). Moreover, a
significant parameter is a loss function that summarizes the error
during the training time and validation time in the predictions.
The loss of the model is backpropagated into the CNNs after
every epoch to optimize the process of learning (57).

Proposed COVIDDetectorNet Architecture
In this work, we proposed a CNN-based architecture, namely,
COVIDDetectorNet. The research community employs CNN-
based architectures for image analysis due to the improved
performance in the image processing field. The convolutional
layers and numerous filters, i.e., 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11
× 11, etc., assist to extract both the spatial and temporal features
from images. The convolutional layers comprise the weight-
sharing technique, which assists to reduce the computational
costs (58, 59). We fed the fused features, such as HOG and SIFT,
into the COVIDDetectorNet for classification purposes. The
proposed COVIDDetectorNet consists of three sections, namely,
blocks of convolutional layers, followed by the max-pooling
layers, and, finally, a dense layer, followed by a SoftMax layer.
The initial layers are utilized for extracting features from CXI;
max-pooling layers are employed for sub-sampling purposes,
which down-sample images and reduce the dimension, so they
minimize the computation costs and efforts, while the dense
layer classifies the images. Our COVIDDetectorNet architecture
has three convolutional layers, and we employed a max-pooling
layer after each convolutional layer. The first two convolutional
layers used kernels of 5 × 5, and the last convolutional layer
used a kernel of 3 × 3. Moreover, we employed three max-
pooling layers, and all have the same sizes of 2 × 2 as well as
a dropout layer of fives for reducing the overfitting problem.
After all, we utilized the dense layer, followed by a SoftMax layer
to classify the two classes (COVID and normal), tree classes
(COVID, normal, and VP), and four classes (COVID- normal,
VP, and other lungs infections). The architecture of the proposed
COVIDDetectorNet is illustrated in Figure 13.

RESULTS AND ANALYSIS

In this portion, we discussed the experimental outcomes as well
as the explanations of numerous experiments performed for
measuring the performance of the proposed system.

Detection Performance of COVID-19
We developed a multiphases experiment for the detection
of patients with COVID using CXI by employing the HOG
and SIFT features and fed the extracted features into the
proposed COVIDDetectorNet for classification. This experiment
comprises three stages, namely, (detection of normal vs.
COVID), (normal, COVID, and VP), and, finally, (normal,
COVID, VP, and extra lungs infections).

In the very first phase of this experiment, we evaluated the
performance of our method using two classes, namely, normal
and COVID for the detection of COVID-infected persons. To
achieve this goal, we utilized 10,192 and 3,616 CXI of normal
and COVID-19 infected persons for the detection of COVID-
19 individuals. Primarily, we split up all the CXI into 90
by 10, whereas, we used the 90% (12,431 CXI) to train the
COVIDDetectorNet and 10% (1,377 CXI) to test the trained
COVIDDetectorNet. Next, we employed HOG and SIFT to
extract prominent characteristics from CXI. Finally, we fed the
extracted HOG and SIFT features of both classes, i.e., normal and
patients with COVID-19 into the proposed COVIDDetectorNet.
The Table 1 shows the detailed results for the two classes.
We obtained an accuracy, precision, recall, F1-score of 96.51,
97.67, 97.73, and 97.20%, respectively. The above experimental
results show that our method (HOG-SIFT-COVIDDetectorNet)
performs exceptionally well to detect the COVID-19-infected
people and can be employed in real-time environments because
the precision rate of our method is greater than the standard
PT-PCR tests.

Next, we evaluated the performance of our method (HOG-
SIFT-COVIDDetectorNet) in the three-class scenario, namely,
normal, COVID, and VP, to detect VP patients along with
the patients with COVID-19. To accomplish this goal, we
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TABLE 1 | Detection performance of COVID-19 on 2, 3, and 4 classes.

No of classes Accuracy % Precision % Recall % F1-score %

2 96.51 97.67 97.73 97.20

3 92.62 91.09 91.95 91.52

4 86.53 87.19 86.34 86.22

TABLE 2 | Error matrix for two classes.

Predicted class Actual class

Normal Covid-19

Normal 1007 24

Covid-19 34 622

utilized 10,192 of normal, 1,345 of VP, and 3,616 CXI of
COVID-19-infected people. Furthermore, we split up the data
of three classes into 90/10 sizes and employed the 13,638
CXI for training the COVIDDetectorNet, while the 1,515
CXI for evaluating the trained COVIDDetectorNet. Again, we
employed HOG and SIFT on CXI of three classes to extract the
features. Next, the extracted features are fed into the proposed
COVIDDetectorNet for detection purposes of normal, COVID-
19, and VP patients. As illustrated in Table 1, our method
obtained an accuracy, precision, recall, and F1-score of 92.62,
91.09, 91.95, and 91.52%, respectively, for the three classes. These
results on the three classes show that fused sets of HOG and
SIFT features have ability to preserve most crucial characteristics
of an image and the proposed COVIDDetectorNet to effectively
classify the normal, COVID-19, and VP patients.

In the final phase of this experiment, we evaluated
the performance of HOG-SIFT-COVIDDetectorNet on four
different classes, namely, normal, COVID-19-infected, VP
patients, and other lung infections to demonstrate the robustness
in the multi-class problem of our method. To achieve this
goal, we added 6,012 x-ray images into the data of three
classes (normal, COVID, and VP) that were utilized in the
second phase of this experimentation. We again split up the
data into 90% (19,039 x-ray images) and 10% (2,128 x-ray
images). Moreover, we utilized 90% for training and 10% for
evaluating the COVIDDetectorNet. We extracted the HOG and
SIFT features from x-ray images of all the four classes and fed
the fused set of features into the proposed COVIDDetectorNet
for classification purposes. Table 1 illustrates the detailed results
of our technique in a multi-class scenario. More specifically, we
obtained an accuracy, precision, recall, and F1-score of 86.41,
87.19, 86.34s, and 86.22%, respectively. These experimental
outcomes reveal that our technique is capable to accurately detect
all the four classes.

Error Matrix Analysis
We developed an error matrix for representing the classification
evaluation of our technique to determine the accurate and wrong
prediction for all the four classes. Keeping in mind the fact
that error matrix shows the performance of each class, we also

TABLE 3 | Error matrix for three classes.

Predicted class Actual class

Normal Covid-19 VP

Normal 1003 31 5

Covid-19 61 283 2

VP 2 7 132

TABLE 4 | Error matrix for four classes.

Predicted class Actual class

Normal Covid-19 VP Lung infection

Normal 478 85 35 3

Covid-19 59 933 27 9

VP 15 30 319 0

Lung infection 5 8 3 119

developed three error matrices for three different experiments,
namely, two classes, three classes, and four classes for advanced
visualization of our technique.

In the first phase, we developed an error matrix to visualize
performance of HOG-SIFT-COVIDDetectorNet on two classes,
namely, normal and COVID, as illustrated in Table 2. We can
examine from the Table 2 that our technique correctly detected
1,994 and 622 x-ray images as normal and COVID, respectively,
while 64 and 74 x-ray images of normal as COVID and COVID
as normal, respectively. The FP and FN rates are 3.37 and
3.85%, respectively. These lower FP and FN rates signify that our
technique is much dependable than the standard PT-PCR tests
because the precision rate of PT-PCR is about 80–85%.

Next, we developed an error matrix for visualizing the
performance of our technique in a multi-class scenario, i.e., for
three classes, namely, normal, COVID, and VP, as illustrated
in Table 3. As illustrated in Table 3, we can examine that
our technique correctly detected 1,003, 283, and 122 x-ray
images of normal, COVID, and VP, respectively. Moreover,
our technique also incorrectly detected 128 x-ray images. The
detailed classification results of each class are given in Table 3.
The FP and FN rates are 2.67 and 4.93%, respectively. The
experimental outcomes clearly signify the superiority of our
technique to detect the presence of VP and COVID in people.

In the final phase, we developed an error matrix for visualizing
the performance of our technique on the four classes to
detect COVID-infected people in a multi-class environment, as
illustrated in Table 4. Table 4 reveals that our technique has
correctly detected 478, 933, 319, and 119 x-ray images of normal,
COVID, VP, and lung infection, respectively. The proposed
method also incorrectly detected 279 x-ray images. The details
of correct and incorrect classification for each class are given in
Table 4.

DISCUSSION AND CONCLUSION

The life-threatening novel COVID-19 has spread to more than
224 countries, and, by the end of February 2022, 439 million
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people are infected, and 5.96 million deaths are reported from
all over the world; however, some counties, namely, USA, Asia,
Europe, etc., are severely affected by this fatal virus. This work
focuses on designing, examination, and the simulation of a
novel robust technique to facilitate the in-depth assessment of
quick spread as well as the prevention of COVID globally.
The proposed technique comprises two tasks, such as infection
forecasting and COVID detection. For the COVID forecasting,
we proposed a Gaussian model that assists in unassuming
predictions of COVID infections. Moreover, we developed a very
first indication that the proposed forecasting model is smart
to capture the daily time evolution of fatalities as well as the
infections rate for each country. Appropriate simulations present
the past data and the data of China. Our developed Gaussian
model is very flexible, which can be simulated and performed
short of prior information of epidemiologic, data, or any
programs. Still, there are countries that are not badly exaggerated
by the pandemic and will change in next coming weeks. Hence,
our Gaussian model can be employed in the countries that are
not badly affected as soon as enough data become available for
forecasting. The monitoring authority of COVID can obtain
forecast for the shape of the Gaussian curve for their own
countries by employing the Gaussian model. Moreover, the
public bodies, as well as the governments, can employ our
forecasting model to calculate additional measures of interest,
i.e., forecasting the maximum possible number of machines
used for respiratory diseases and the deadline for the maximum
requirement. The total amount and circulation of SSPs can let the
health agencies and COVID administrative authority in countries
to improve the administration of pandemic waves by taking
drastic, effective, and time-limited measures. Furthermore,
fortunately, our assessment signifies here that the peak time of
each wave significantly varies from country to country. To predict
the peak times and relevant time frames assists other countries to
make an advantage from those who has witnessed the peak of the
wave, expectable duration with respiratory diseases equipment,
and medical experts at a marginally delayed time. In the COVID-

detection framework, we employed two feature descriptors, such
as HOG and SIFT, from the CXI. Moreover, we also designed
a CNN-based architecture, namely, COVIDDetectorNet for
the classification of two, three, and four classes. Our method
has shown remarkable performance to detect COVID-infected
people in binary classification, ternary classification, and
quaternary classification problems. The remarkable results of
all the classes show that HOG-SIFT-COVIDDetectorNet has
performed exceptionally well, and this can be employed in
emergency services, hospitals, airports for screening, and any
other organizations for screening patients with COVID-19. In
the near future, our aim is to perform experimentation on other
variants as the data become available.
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