
430 Current Genomics, 2009, 10, 430-445

 1389-2029/09 $55.00+.00 ©2009 Bentham Science Publishers Ltd.

Clustering Algorithms: On Learning, Validation, Performance, and
Applications to Genomics

Lori Dalton1,*, Virginia Ballarin2 and Marcel Brun2

1Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843-3128, USA
2Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina

Abstract: The development of microarray technology has enabled scientists to measure the expression of thousands of
genes simultaneously, resulting in a surge of interest in several disciplines throughout biology and medicine. While data
clustering has been used for decades in image processing and pattern recognition, in recent years it has joined this wave of
activity as a popular technique to analyze microarrays. To illustrate its application to genomics, clustering applied to
genes from a set of microarray data groups together those genes whose expression levels exhibit similar behavior
throughout the samples, and when applied to samples it offers the potential to discriminate pathologies based on their dif-
ferential patterns of gene expression. Although clustering has now been used for many years in the context of gene ex-
pression microarrays, it has remained highly problematic. The choice of a clustering algorithm and validation index is not
a trivial one, more so when applying them to high throughput biological or medical data. Factors to consider when choos-
ing an algorithm include the nature of the application, the characteristics of the objects to be analyzed, the expected num-
ber and shape of the clusters, and the complexity of the problem versus computational power available. In some cases a
very simple algorithm may be appropriate to tackle a problem, but many situations may require a more complex and pow-
erful algorithm better suited for the job at hand. In this paper, we will cover the theoretical aspects of clustering, including
error and learning, followed by an overview of popular clustering algorithms and classical validation indices. We also dis-
cuss the relative performance of these algorithms and indices and conclude with examples of the application of clustering
to computational biology.

Received on: March 03, 2009 - Revised on: April 20, 2009 - Accepted on: May 11, 2009

Key Words: Clustering, genomics, profiling, microarray, validation index.

1. INTRODUCTION

 Microarray technology has made available an incredible
amount of gene expression data, driving research in several
areas including the molecular basis of disease, drug discov-
ery, neurobiology, and others. Usually, microarray data is
collected with the goal of either discovering genes associated
with some event, predicting outcomes based on gene expres-
sion, or discovering sub-classes of diseases. While clustering
has been used for decades in image processing and pattern
recognition [1-3], in recent years it has become a popular
technique in genomic studies for extracting this kind of valu-
able information from massive sets of gene expression data.
 Clustering applied to genes from microarray data groups
together those whose expression levels exhibit similar be-
havior through the samples. In this context, similarity is
taken to indicate possible co-regulation between the genes,
but may also reveal other processes that relate their expres-
sion. In other words, the application of clustering in our first
goal listed above is founded by the concept of “guilty by
association”, where genes with similar expression across
samples are assumed to share some underlying mechanism.

*Address correspondence to this author at the Department of Electrical and
Computer Engineering, Texas A&M University, College Station, Texas
77843-3128, USA; E-mail: ldalton@tamu.edu

 On the other hand, clustering applied to samples may
help with our second and third goals, since when used this
way it offers the potential to discriminate pathologies, or
other conditions, based on their differential patterns of gene
expression. It may also provide clues to the existence of pre-
viously undetected groupings within the samples, or be used
to detect sub-groups in a non supervised manner.
 As a short historical review, we cite a few key reference
papers. In 1997, Somogyi et al. [4] applied the Fitch-
Margoliash clustering algorithm, used previously on phylo-
genetic trees, to display genes grouped by similarity in their
wiring and behavior (network trajectories). Subsequently,
Eisen et al. [5] described the use of hierarchical clustering,
combined with a color representation of the expression in-
tensity, to group and visualize genes with similar profile, or
expression patterns. In 1999, Ben-Dor, Shamir and Yakhini
proposed a new algorithm based on graph theory called
CAST and the visualization of the distance matrix as an in-
tensity matrix [6]. In the same year, we can find the works of
Goulub [7] and Tamayo [8] et al. which suggested the use of
self organizing maps (SOM) as a clustering algorithm for
gene expression, and the work of Tavazoie et al. [9], which
used the K-means algorithm to identify transcriptional regu-
latory sub-networks. Another graph based algorithm called
CLICK was introduced in 2000 by Sharan and Shamir [10].
In 2001, Yeung et al. [11] presented the use of model based
clustering, where the clusters are modeled as mixtures of

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 431

Gaussian distributions, and proposed the use of the BIC cri-
terion for selecting the number of clusters. Dougherty et al.
presented in 2002 [12] an algorithm to select the best cluster-
ing rule for a dataset, based on noise injection, replication,
and cluster accuracy. In 2003, Dembele and Kastner [13]
described a modified fuzzy c-means algorithm applied to
genomic data, which automatically selects the fuzziness pa-
rameter. Finally, the use of nonnegative matrix factorization
(NMF) was introduced in 2004 by Brunet et al. [14], with
the intent to alleviate some of the disadvantages of other
clustering techniques. A few review papers on clustering
algorithms applied to microarray data can also be found in
the literature, describing the advantages and shortcomings of
each algorithm and sometimes including validation tech-
niques in their analysis [15, 16].
 Although used for many years in the context of gene ex-
pression microarray data, clustering has remained highly
problematic [2, 12, 17]. Some criticisms raise the question as
to whether clustering can be used for scientific knowledge
[18]: how may one judge the relative worth of clustering
algorithms unless the assessment is based on their inference
capabilities? Although the ability of clustering algorithms to
make inferences has been addressed to some extent, a
mathematical foundation for clustering has been provided
only very recently [19, 20].
 In this paper we will cover a mathematical model of clus-
tering and review learning in section 2. We provide an over-
view of popular clustering algorithms in section 3 and vali-
dation indices in section 4, followed by a discussion on the
relative performance of these algorithms and indices in sec-
tion 5. Finally, we comment on the application of clustering
to genomics in section 6.

2. MATHEMATICAL MODEL OF CLUSTERING

 In the context of pattern recognition theory, each object
is represented by a vector of features, called a pattern. Clus-
tering can be defined as the process of partitioning a collec-
tion of vectors into subgroups whose members are similar
relative to some distance measure. A clustering algorithm
receives a set of vectors, and groups them based on a cost
criterion or some other optimization rule.
 The related field of pattern classification, which involves
simply assigning individual vectors to classes, has developed
a theory based on defining error criteria, designing optimal
classifiers, and learning. In comparison, clustering has his-
torically been approached heuristically; there has been al-
most no consideration of learning or optimization, and error
estimation has been handled indirectly via validation indices.
Only recently has a rigorous clustering theory been devel-
oped in the context of random sets [19]. Although we will
not go over the mathematical details of [19, 20], in this sec-
tion we summarize some essential points regarding cluster-
ing error, error estimation, and inference.

2.1. Model

 Within a probabilistic framework, objects to be clustered
are assumed to be described by vectors of numerical values.
These vectors are realizations of a random labeled point
process, which produces random sets in a multi-dimensional
space with unknown random labels associated with each

vector. Two vectors are properly in the same cluster if and
only if they have the same label produced by the random
process [19]. Thus, a clustering algorithm may be viewed as
an operator on random sets which partitions their elements
into groups by assigning labels to them.
 The labeling error of a clustering algorithm is the ex-
pected number of discrepancies between the labels it assigns
and the true labels generated by the labeling process. Since
the disagreement between two partitions should not depend
on the indices used for the labels, or the names assigned to
each cluster, we define the partitioning error to be the mini-
mum of the labeling errors for all possible permutations of
the labels. The partitioning error applies to a specific realiza-
tion of a random point labeling process, so we define the
clustering error (also called the misclassification error) of a
clustering algorithm with respect to a process to be the ex-
pected value of the partitioning error.
 Estimation of the clustering error is done in the usual
manner to assess the performance of a cluster operator ap-
plied to a given random process model. We generate inde-
pendent synthetic data consisting of a collection of sets, or
samples, representing realizations of the process, apply the
clustering algorithm to the samples, compute the partitioning
error for each realization of the cluster labels against the true
partitions, and average over the realizations to obtain an es-
timate of the clustering error [12]. See [19] for a more com-
plete and formal presentation on the probabilistic model.

2.2. Learning

 Clustering is usually considered to be the problem of
partitioning a single set of unlabeled points. All of the tradi-
tional algorithms covered in section 3 (K-means, fuzzy c-
means, hierarchical clustering, etc.) fall in this category. In
this setting, several clustering algorithms may be considered,
and the election of one could be based on their performance
on some internal or relative index. However, we may view
the problem of clustering or the selection of a best clustering
algorithm more generally as a problem of learning. Consider
observing training data consisting of a collection of N train-
ing sets, including their labels, where each set is a realization
of a point process and their label functions are realizations of
a random labeling process. A clustering rule maps this given
training data of size N to a label operator, which induces a
cluster operator that should approximate the partitions cre-
ated by the labeled point process.
 As with classification rules, both the label operator and
the cluster operator are random because they depend on the
training data. Also, as with classification where the investi-
gator may choose between different rules, the burden is on
the investigator to choose or develop a suitable clustering
rule to design the cluster operator from the training data. We
may proceed with an approach analogous to learning in clas-
sification theory [21], by first treating learning in the binary
setting and subsequently extending to an arbitrary finite label
set. There has been some previous work in learning cluster-
ing algorithms in the context of learning by examples. For
instance, researchers have applied learning for determining a
metric of the space, learning similarity matrices for spectral
clustering, utilizing local structure, and applying non-
parametric methods [22-25].

432 Current Genomics, 2009, Vol. 10, No. 6 Dalton et al.

 In classification, the simplest way to apply learning is to
select from a set of classifiers the one with the lowest ex-
pected error for a particular model. Similarly, the selection of
the best clustering algorithm can be done by empirical risk
minimization [21]: given training data consisting of realiza-
tions from a labeled point process, and given a collection of
clustering operators or algorithms, the best operator should
minimize the clustering error on the training data. Therefore,
if the underlying random labeled point process is unknown
but labeled samples are available, it is possible to select a
cluster operator that will be optimal relative to the family of
operators analyzed.
 Minimizing empirical risk is just a simple way to train
from sample data. In the case of classification, a more effi-
cient method is to apply rules to design classifiers from the
sample data, optimizing some predefined criteria. Examples
are the kNN, LDA, perceptron, and SVM classification rules.
The same approach is possible in clustering—we could cre-
ate a clustering rule designed to generate clustering operators
that optimize some criteria based on the training data, and
the behavior and design of these operators would be totally
different from any of the currently popular clustering algo-
rithms. However, while learning in clustering may be viewed
analogously to classification in this way, it presents a much
more complex problem since individual training points sam-
pled from a distribution in a D-dimensional space are each
replaced by entire sets drawn from a labeled point process.
 An example of this approach adapts the kNN classifica-
tion rule to an analogous clustering rule. When used in clas-
sification, the popular and non-parametric k-nearest neighbor
algorithm [26] decides the label of a new sample based on a
majority vote from the labels of the k closest, or most simi-
lar, training points. Work in [19, 27] proposes a similar
learning algorithm for clustering, where the training samples
are now labeled sets. Given a new set we wish to cluster, we
find the k most similar objects in the training data based on
Hausdorff distance, and use the labels of the chosen sets to
define a labeling, and therefore a clustering, for the new set.
 An example of the performance of a trained clustering
algorithm is provided in section 5.2, and additional details
and theory can be found in [19, 27].

3. CLUSTERING ALGORITHMS

 Clustering algorithms may be categorized by how they
form groups of clusters. Hierarchical algorithms work on

either successive splitting (divisive) or merging (agglomera-
tive) of groups to form a hierarchy of clusters based on a
specified measure of distance or similarity between objects.
Alternatively, partitioning algorithms search for a partition
of the data that optimizes a global measure of quality for the
groups, usually based on distance between objects.
 Hierarchical algorithms may also be subclassified by the
way the distances or similarities between objects are updated
after splitting or merging groups (linkage), which has a sig-
nificant influence on the structure of the resulting clusters.
Hierarchical algorithms are also extensively used to generate
multiple partitions of the data, since each level of the hierar-
chy is a different partition of the data.
 Another way to classify clustering algorithms is based on
their output: in hard clustering the output is a partition of the
data, while in soft clustering (i.e., fuzzy clustering) the out-
put is a membership function, so each pattern can belong to
more than one group with varying degrees of membership. A
fuzzy cluster defines a natural hard partition of the data from
the maximum membership of each object. Fig. (1) shows a
simple taxonomy of clustering algorithms [16].
 The selection of a particular algorithm should be based
on considerations of the problem at hand, including the ac-
ceptable level of error, the amount of computational re-
sources available, the type of clusters required, and needs on
visual representation. Each algorithm has its own strengths
and weakness and may be better suited than other algorithms
for particular tasks. For example, hierarchical clustering al-
gorithms are especially useful for exploratory data analysis
because they do not need prior specification of the number of
clusters and their outputs can be visualized in a tree struc-
ture.
 Most partitioning algorithms are based on the minimiza-
tion of an objective function, which is a measure of the qual-
ity of a partition of the data. The most common objective
function is the average of the squared distance to the centroid
of the clusters [2], as in the K-means algorithm described in
section 3.1. This particular objective function may be inter-
preted as a measure of how good the centers are as represen-
tatives of the clusters. Though it works well with similarly
sized compact clusters, it is limited by the need of each clus-
ter center to represent its points and often fails when the
shape of a grouping is more complex or when there is a large
difference between the number of points in each cluster. A
second major drawback of this objective function is that it

Fig. (1). A basic taxonomy of clustering algorithms.

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 433

decreases with the number of clusters in a nested sequence of
partitions, favoring a large number of small clusters.
 Most clustering algorithms are designed with an iterative
approximation approach which starts with an initial seed
partition and successively modifies it to reduce the objective
function in each step. This process is repeated until no
change is observed or the algorithm reaches a stop criterion.

 The following reference list is not exhaustive, though
other algorithms used for clustering gene expression data are
usually variations of these. Many good references regarding
clustering algorithms and their mathematical and algorithmic
aspects are available [28, 2, 29].

3.1. K-Means

 One of the most common iterative algorithms is the K-
means algorithm [2, 29], broadly used for its simplicity of
implementation and convergence speed. K-means also pro-
duces relatively high quality clusters considering the low
level of computation required.

 The algorithm is presented with a set of n sample vectors
and a number K for the expected number of clusters, and
produces K centroids that attempt to minimize the objective
function, which is the average distance of each sample vector
to their nearest centroid. A typical implementation of the
algorithm starts with a random election for the centroids,
iteratively assigns each vector to the nearest centroid, and
updates the new centroid positions until convergence is
reached [30, 31].
 K-means is one of the simplest algorithms known to per-
form well with many data sets, but its good performance is
limited mainly to compact groups. When the points are
drawn from a mixture of Gaussian distributions, the K-
means algorithm is a gradient descent algorithm that mini-
mizes the quantization error [32]. As with many gradient
descent algorithms, one drawback of K-means is that it can
reach a local minimum of the objective function instead of
the desired global minimum, meaning that convergence is
reached but the solution is not optimal. An analysis of this
problem is presented in Dougherty et al. [12]. One way to
overcome this is by running the algorithm multiple times
with different random seeds and selecting the partition that
appears with the highest frequency.

3.2. Fuzzy C-Means

 In the K-means algorithm, each vector is classified as
belonging to a single cluster (hard clustering), and the cen-
troids are updated based on the classified samples. In a varia-
tion of this approach known as fuzzy c-means [2, 29], all
vectors have a degree of membership for each cluster, and
the respective centroids are calculated based on these mem-
bership degrees.

 Whereas the K-means algorithm computes the average of
the vectors in a cluster as the center, fuzzy c-means finds the
center as a weighted average of all points, using the mem-
bership probabilities for each point as weights. Vectors with
a high probability of belonging to the class have larger
weights, and more influence on the centroid.

 As with K-means clustering, the process of assigning
vectors to centroids and updating the centroids is repeated
until convergence is reached.

3.3. Hierarchical

 Hierarchical clustering [2] creates a hierarchical tree of
similarities between the vectors, called a dendrogram. The
usual implementation is based on agglomerative clustering,
which initializes the algorithm by assigning each vector to its
own separate cluster and defining the distances between each
cluster based on either a distance metric (e.g., Euclidean) or
similarity (e.g., correlation). Next, the algorithm merges the
two nearest clusters and updates all the distances to the
newly formed cluster via some linkage method, and this is
repeated until there is only one cluster left that contains all
the vectors. Three of the most common ways to update the
distances are with single, complete or average linkages.
 This process does not define a partition of the system, but
a sequence of nested partitions, where each partition contains
one less cluster than the previous partition. To obtain a parti-
tion with K clusters, the process must be stopped K 1 steps
before the end.

 Different linkages lead to different partitions, so the type
of linkage used must be selected according to the type of
data to be clustered. For instance, complete and average
linkages tend to build compact clusters, while single linkage
is capable of building clusters with more complex shapes but
is more likely to be affected by spurious data [12].

3.4. Expectation Maximization

 Expectation maximization clustering [11, 33] estimates
the probability densities of the classes using the Expectation
Maximization (EM) algorithm. The result is an estimated set
of K multivariate distributions each defining a cluster, with
each sample vector assigned to the cluster with maximum
conditional probability.
 Different assumptions on the model correspond to differ-
ent constraints on the covariance matrices of each distribu-
tion. Examples of these constraints are modeling spherical
vs. elliptical densities and using the same vs. different prior
probabilities. The less strict the constraints the more flexible
the model, but at the same time more samples would be nec-
essary for good estimates of the additional parameters. As
always, the user of the algorithm is responsible for deciding
the level of constraints to apply based on the amount of data
available.

3.5. Self Organizing Maps

 By applying self organizing maps (SOM) to the data,
clusters can be defined by points on a grid adjusted to the
data [34, 35]. Usually the algorithm uses a 2-dimensional
grid in a higher dimensional space, but for clustering it is
typical to use a 1-dimensional grid.
 SOM clustering is very useful in data visualization since
the spacial representation of the grid, facilitated by its low
dimensionality, reveals a great amount of information on the
data.

434 Current Genomics, 2009, Vol. 10, No. 6 Dalton et al.

4. VALIDATION INDICES

 Historically, a host of “validity” measures have been
proposed for evaluating clustering results based on a single
realization of a random-point-set process [36-41]. No doubt
one would like to measure the accuracy of a cluster operator
based on a single application. But is this feasible? Clearly it
would be absurd to assess the validity of a classifier based on
a single point without knowledge of the true label of that
point. This is analogous to evaluating the validity of a cluster
operator on a single point set without knowledge of the true
partition, but there is a difference that provides hope. The
output of a cluster operator consists of a partition of a point
set with a spatial structure, and one can define measures for
different aspects of this structure, for instance, compactness.
It could be hoped that such measures assess the scientific
validity of a clustering algorithm, and for a validity measure
to assess scientific validity, ipso facto, it must be closely
related to the error rate of the cluster operator as that rate is
defined within a probabilistic theory of clustering.

 Validity measures proposed for clustering algorithms fall
broadly into three classes. The first type is based on calculat-
ing properties of the resulting clusters, such as compactness,
separation and roundness. This approach is called internal
validation because it does not require additional information
about the data. A second approach is based on comparisons
of partitions generated by the same algorithm with different
parameters or subsets of the data. This is called relative vali-
dation and also does not require additional information. The
third approach, called external validation, compares the par-
tition generated by the clustering algorithm to the true parti-
tion of the data. External validation corresponds to a kind of
error measurement, either directly or indirectly. Therefore,
we should expect external methods to be better correlated to
the true error [20], although they cannot be measured in
practice.
 In this section, we will cover several internal, relative,
and external validation indices, discuss their motivation, and
overview some of their advantages and disadvantages.

4.1. Internal Validation Indices

 Internal validation is the simplest way to evaluate a clus-
tering algorithm applied to a data set, since it uses only the
spacial distribution of the points and the cluster labels gener-
ated by the algorithm to compute properties of the clusters.
This family of techniques is based on the assumption that the
algorithms should search for clusters whose members are
close to each other and far from members of other clusters.
Some of these indices are described below.

4.1.1. Dunn’s Indices

 Dunn’s validation index is conceptually the simplest of
the internal validation indices: it compares the size of the
groups with the distances between groups. The further apart
the groups, relative to their size, the larger the index and the
“better” the clustering. This index, V(C), is computed as the
ratio between the minimum distance between two clusters
and the size of the largest cluster [42-44]:

)(max

),(min
)(

kk

hkCkh

C

CCd
V =C (1)

where dC(Ck,Ch) is the distance between two clusters (or
linkage) and (Ck) is the size of the cluster Ck. There are
many methods for computing both dC(Ck,Ch) and (Ck), and
every combination of these defines a different Dunn’s index.
For example, five measures for distance between clusters
(linkage) are the single, complete, average, average to cen-
troids, and Hausdorff metrics [44], and three possible meas-
ures for cluster size are the complete, average, and centroid
diameters [44]. More formal definitions of these cluster dis-
tances and sizes can be found in [20].
 The ability to mix and match distance and cluster-size
measures grants a large number of options that can be over-
whelming to the user. Usually, the combination of average to
centroid distance and centroid cluster size provides an index
simple to understand: compact circular clusters with well
separated centers tend to produce a higher Dunn’s index.
Another useful pair are the complete distance and complete
size measures [20].

4.1.2. Silhouette Index

 The silhouette of a cluster was first introduced as a dis-
play technique to evaluate visually which points lie well in-
side the cluster and which do not [45], based on the silhou-
ette width of their points.
 The silhouette width of a given point defines its proxim-
ity to its own cluster relative to its proximity to other clus-
ters. Mathematically, the silhouette width for each point x is
defined by

)](),(max[
)()()(
xx

xxx
ab

abS = (2)

where a(x) is the average distance between x and all other
points in its cluster, and b(x) is the minimum of the average
distances between x and the points in the other clusters.
 The silhouette of a cluster is defined as the average sil-
houette width of its points. Finally, aggregating information
from all points, the global silhouette index for a whole clus-
tering partition is the average silhouette of the clusters [43,
44].
 For a given point x, its silhouette width ranges from 1 to
1. If the value is close to 1, the point is on average closer to
another cluster than the one to which it belongs. If the value
is close to 1, then its average distance to its own cluster is
significantly smaller than that to any other cluster. Thus the
higher the silhouette, the more compact and separated the
clusters.
 In an interesting application to genomics, the silhouette
index was used successfully for SNP genotype calling [46]
to evaluate the separation of the clouds of points obtained by
the measurement of many samples.

4.2. Relative Validation Indices

 While internal indices evaluate a single realization of the
clustering algorithm, they can not sense the stability of the

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 435

algorithm against variations in the data, or consistency of the
results in the case of redundancy. A family of more complex
indices, called relative validation indices, attempts to meas-
ure the consistency of an algorithm by comparing the clus-
ters obtained by the same algorithm under different condi-
tions. These indices often attempt to exploit redundancy in
the data.

4.2.1. Figure of Merit

 The figure of merit (FOM) index [47] assumes redun-
dancy is imbedded in the sample data to measure consis-
tency. As an example, consider a clustering algorithm ap-
plied to microarray data, which should generate clusters rep-
resenting different biological groups. Therefore, samples in
the same cluster should possess similar pattern vectors (ex-
pression profiles) for additional features that were not con-
sidered in the clustering process. If we ignore a feature
(gene) when we cluster, will the resulting partition still have
nice properties in the neglected dimension?
 The FOM of a feature is computed by clustering the
samples after removing the given feature and measuring the
size of these clusters (i.e., the average distance between all
samples and their cluster’s centroids) specifically on the fea-
ture under inspection. If this average distance is small, then
the clustering algorithm partitioned the samples in compact
clusters even with the feature removed, suggesting that the
algorithm is consistent. The overall FOM for a clustering
algorithm is the sum of these values over all features, leaving
each one out one at a time.
 Heuristically speaking, a clustering algorithm that pro-
duces consistent clusters should be able to predict removed
features, and therefore would have a low FOM index. How-
ever the FOM performance based on simulated data is usu-
ally below that of simpler validation indices, including many
internal ones. This fact, coupled with the necessity of repeat-
ing clustering many times, makes this measure one of the
last choices for selecting a validation index [20].

4.2.2. Stability

 The instability index measures the ability of a clustered
data set to predict the clustering of another data set sampled
from the same source [48].
 Stability is measured by first dividing the set of points to
be clustered in two parts. The clustering algorithm under
examination is applied to the first part, and the labels ob-
tained over these points are used to train a classifier that par-
titions the whole space. Both the original clustering algo-
rithm and this classifier are applied to the second collection
of points, generating two sets of labels. The disagreement
between these labels, averaged over repeated random parti-
tions of the points, defines the instability of the clustering
algorithm.
 The instability index depends on the number of clusters,
and therefore needs to be normalized when used for model
selection [48]. The normalization is obtained by dividing by
the instability obtained when using a random estimator as the
classifier.
 Another issue affecting the instability index is the selec-
tion of the classification rule, which can strongly influence

the results [48, 20]. Also, simulation studies show that this
index does not perform better than other relative and internal
indices, though it is one of the most time consuming indices
since it involves the repeated application of a clustering al-
gorithm and training a classifier.

4.3. External Validation Indices

 The last family of indices, called external validation in-
dices, compares properties of an algorithm’s proposed clus-
ters against that of known true clusters.

4.3.1. Hubert’s Correlation

 The Hubert statistic measures the correlation between
the co-occurrence matrices (a matrix with entry I(i, j) = 1 if
objects i and j belong to the same cluster and I(i, j) = 0 oth-
erwise) of both the expected partition and the one obtained
by applying a clustering algorithm [39]. It essentially ex-
ploits the notion that similar partitions have similar co-
occurrence matrices, which in turn will have a high correla-
tion.
 One great advantage of this measure is that it does not
rely on permutations of the labels, since the co-occurrence
matrices are independent of the labels used to define the par-
titions. Furthermore, simulation studies have reported good
performance for this measure when predicting the error of
the clustering algorithm [20].

4.3.2. Rand Statistics, Jaccard Coefficient, and the Folkes
and Mallows Index

 These measures analyze the relationship between pairs of
points using the co-occurrence matrices for the expected
partition and the one generated by the clustering algorithm
[39]. For a given pair of points, x and y, there are four possi-
bilities: (a) x and y fall in the same cluster in both the ex-
pected and the computed partition, (b) x and y fall in the
same cluster in the computed partition, and in different clus-
ters in the expected partition, (c) x and y fall in the different
clusters in the computed partition, but in the same cluster in
the expected partition, or (d) x and y fall in different clusters
in both the expected and the computed partition.

 The measure of disagreement between the partitions is
quantified by the number of pairs of points that fall in each
category. Let a, b, c, and d be the numbers of pairs of differ-
ent points that belong to situations (a), (b), (c), and (d),
respectively, and let M = n(n 1)/2 be the number of pairs of
different points. Some indices to measure the agreement be-
tween the partitions based on these values are the Rand sta-
tistic, defined by R = (a + d)/M, the Jaccard coefficient, de-
fined by J = a/(a + b + c), and the Folkes and Mallows index,
defined by))/())(/((FM caabaa ++= .

 The Rand statistic measures the proportion of pairs of
vectors that agree by belonging either to the same cluster (a)
or to different clusters (d) in both partitions. The Jaccard
coefficient measures the proportion of pairs that belong to
the same cluster (a) in both partitions, relative to all pairs
that belong to the same cluster in at least one of the two par-
titions (a + b + c). Finally, the Folkes and Mallows index
measures the geometric mean of the proportion of pairs that
belong to the same cluster in both partitions (a) relative to

436 Current Genomics, 2009, Vol. 10, No. 6 Dalton et al.

the number of pairs that belong to the same cluster for at
least one partition, (a+b and a+c). In simulation studies these
measures perform well at predicting misclassification rate
[20].

5. COMPARATIVE ANALYSIS

 In sections 5.1 through 5.3, we review results from sev-
eral comparative studies on the performance of clustering
algorithms and validation indices. We also include results
from a new simulation study comparing the general perform-
ance of classical clustering algorithms in section 5.4.

5.1. Effect of Replicates on Clustering Error

 The goal of earlier work in [12] was to study how repli-
cation, or repeated realizations of an experiment, could be
used to reduce the error of clustering algorithms when ap-
plied to microarray data. The results were displayed as error
graphs, giving the misclassification rate as a function of the
number of replicates. Replicated data was averaged to reduce
variability, simulating technical or biological replicates used
in microarray based experiments.
 The amount of replication was varied from 1 to 20 repli-
cates. The algorithms tested were K-means, fuzzy c-means,
SOM and hierarchical (with both Euclidean distance and
correlation distance metrics). The basic design of each ex-
periment was to generate synthetic data with distributions
obtained from real microarray data, vary the amount of dis-
persion (variance) of the data, and measure the error of the
algorithms under the different amounts of replication.
 The article in [12] showed how the misclassification rate,
later formalized in [19], could be used to assert the perform-
ance of several algorithms under conditions similar to the
ones prevailing in microarray studies. Unsurprisingly, the
results demonstrated that lower variance and more replica-
tions tend to yield greater precision. It also provided a model
to evaluate and select the best algorithm for a particular data
set and find the amount of replication needed.
 Fig. (2) shows examples of the results of this analysis.
Example (a) illustrates how a low number of replicates re-
sults in a large number of clustering misclassifications, while

in example (b) a larger number of replicates improves per-
formance for the same clustering algorithm.

5.2. Using Learning to Improve Performance

 In [19, 27] the authors have presented a probabilistic the-
ory of clustering, including error estimation (testing) and
learning (training). As discussed in section 2.2, their key
insight is that while classification theory designs operators
on random variables, the theory of clustering should be
based analogously on operators over random sets. Thus the
clustering problem is best viewed as a problem of learning:
given a collection of labeled training data, where each train-
ing sample is now a whole set of data drawn from a labeled
point process rather than a single labeled point from a ran-
dom variable, we aim to design a cluster operator that can
use this training data effectively to estimate the partitions for
any new data sets we observe that are drawn from the same
point process.
 In these papers, the authors compare the kNN clustering
rule described in section 2.2 to traditional clustering algo-
rithms. They considered several models for the clusters and
showed that for a sufficiently large number of training sets,
the performance of trained cluster operators surpasses that of
all classical clustering algorithms considered. An example is
provided in Fig. (3), where error rate is graphed as function
of the number of training samples. In this example, the ran-
dom sets were generated by Gaussian and circular distribu-
tions with random translations. Without learning, the Fuzzy
C-means algorithm clearly outperforms the other classical
algorithms, but they all are outperformed by the trained clus-
ter operator when enough training sets are provided.

5.3. Association of Indices with Error Measure

 In [20], a number of proposed validity measures were
examined as to how well they correlate with clustering error
across a number of clustering algorithms and random-point-
set models. To quantify the degree of similarity between the
validation indices and the clustering errors, we used Ken-
dall’s rank correlation between their values.
 The results indicated that, overall, the performance of
validity indices is highly variable. For complex models or

Fig. (2). (a) Results from data simulated with high variability and no replicates. (b) Results from data simulated with high variability and
three replicates.

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 437

when a clustering algorithm yields complicated clusters, both
the internal and relative indices fail to predict the error of the
algorithm. Some external indices appeared to perform well,
whereas others did not.
 It was concluded that one should not put much faith in a
validity score unless there is evidence, either in terms of suf-
ficient data for model estimation or prior model knowledge,
that a validity measure is well-correlated with the error rate
of the clustering algorithm.
 Fig. (4) shows examples of scatter plots between a few
validation indices and the misclassification error [20]. In this
figure, we can see how bad the correlation is between the
clustering error and both the FOM (c) and stability (d) indi-
ces. It also shows differences between external indices: for
this model the Rand statistic (e) is excellent with a one to
one relationship with error, but the Folkes and Mallows in-
dex (f) starts to disagree with the error when the error is
large.

5.4. Performance of Classical Clustering Algorithms

 In this section we compare several classical clustering
algorithms relative to three measures of performance: mem-
ory usage, computational time, and error rate. The algo-
rithms considered in this study are K-means (KM), fuzzy c-
means (FCM), hierarchical with the Euclidian distance met-
ric and complete, single, and average linkages (HCEc,
HCEs, and HCEa, respectively), hierarchical with the cen-
tered correlation based metric and complete linkages (HCC),
SOM with a 1-dimensional grid using Euclidean distance
and Gaussian type neighbors, and the EM algorithm with an
equal spherical variance model.
 Our random process model uses simple Gaussian distri-
butions for each cluster, with the number of samples per
cluster as constant as possible. We use a fixed mean vector
template model for the centers of the clusters, meaning that
the center of each cluster is always fixed in the same location
for all realizations of the random point process. Furthermore,

each center was placed on a 2 dimensional grid. For exam-
ple, 8 classes were represented with the centers of each clus-
ter on a 2 4 rectangle, 16 classes by a 4 4 square, and 32
classes by a cross-shaped pattern extending the 4 4 square.
In this way, as we increase the number of clusters we are
simply expanding the number of nodes used in this grid. The
same grid is used in all experiments regardless of the number
of dimensions, thereby giving comparable results between
simulations with different numbers of clusters and dimen-
sions.
 We report how our three measures of performance scale
with the complexity of the problem to solve (the number of
dimensions, samples, clusters, and the variance of each clus-
ter). Each experiment was defined by a cluster model with
parameters selected from the following options:
• Number of dimensions: D = 2, 4, 8, 16, 32, 64, 128
• Total number of points: n = 50, 100, 200, 500, 1000,

2000, 5000
• Number of clusters: K = 2, 4, 8, 16, 32
• Variance within each cluster (compactness): 2 = 0.1,

0.25, 0.5, 1, 2.5, 5
 These results provide some insight on the strengths and
weaknesses of each algorithm, and their suitability in differ-
ent experimental conditions.

5.4.1. Maximum Memory Usage and Computational Time

 To study memory usage, we examined our source code
for each algorithm and calculated the maximum memory
allocated to defined variables. We exclude from the analysis
any input and output memory requirements that all algo-
rithms have in common, namely the input data (an n D ar-
ray), the number of samples (n), the number of dimensions
(D), the desired number of clusters (K), and the output clus-
ter labels (a length n vector). We assume 4 bytes are required
for integers and 8 bytes for floating point variables. To re-
port average computational time, all experiments were exe-
cuted on similar computers to obtain comparable results.
 Our implementation of FCM uses KM to initialize the
clusters, and EM calls FCM to initialize clusters, which adds
a bit of time and memory to each of these algorithms. A
summary of our memory results is presented in Table 1,
along with examples from a representative selection of ex-
periments. Run times for the same experiments and the cor-
responding values of K, D and n used in each experiment are
shown in Table 2 for comparison.
 The SOM algorithm usually requires the smallest amount
of memory, which is independent of the number of samples,
n. The KM and SOM algorithms are consistently among the
fastest algorithms, and they are especially fast when there are
a large number of clusters. See for example experiment 2 in
Table 2. However, we will see in the next section that the
clustering error of these algorithms can be relatively high in
this case. In high dimensions, the KM, SOM, and FCM algo-
rithms have comparable running times, although FCM is
more sensitive to the number of clusters.
 The EM algorithm tends to have high memory require-
ments to hold nK conditional probabilities and is generally a
middle performer with erratic results in terms of computa-

Fig. (3). A comparison of the error of classical clustering algo-
rithms vs. a trained cluster operator as a function of the number of
training samples.

438 Current Genomics, 2009, Vol. 10, No. 6 Dalton et al.

Fig. (4). Scatter plots between some validation indices and the misclassification error. (a) Dunn's validity index, (b) Silhouette index with
Euclidean distance, (c) Yeung's figure of merit, (d) Stability with 3NN, (e) Rand statistic, (f) Folkes and Mallows index.

Table 1. Equations for Maximum Memory Usage in Each Clustering Algorithm and Three Examples

Algorithm Memory Usage (in Bytes) Exp. 1 Exp. 2 Exp. 3

KM 4n + 8K(2D + 1) + 72 8152 8712 12184

FCM 4K(6n + 4D + 3) + 114 96202 768818 100234

SOM 8KD + 132 164 388 2180

HC 16n2 + 40n + 56 64080056 64080056 64080056

EM 4K(10n + 12D + 7) + 8D(n + 2D + 2) + 214 192558 1314294 2484750

Table 2. Average Run Times for Three Representative Experiments, in Milliseconds

Variance KM FCM SOM HCEc HCEs HCEa HCC EM

Experiment 1: K = 2, D = 2, n = 2000

0.25 0 0 20 4220 4280 4280 4360 0

1.0 0 20 0 4260 4180 4160 4260 140

5.0 0 80 0 4140 4140 4160 540

Experiment 2: K = 16, D = 2, n = 2000

0.25 16 184 8 5072 5128 5496 5920 592

1.0 16 840 0 5816 5872 6216 6440 936

5.0 24 944 0 6512 7576 6936 6904 1216

Experiment 3: K = 2, D = 128, n = 2000

0.25 142 114 114 5828 5800 5828 8057 742

1.0 142 171 114 5828 5828 5828 8057 5457

5.0 142 171 142 5828 5828 5828 8085 4828

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 439

tional time. This unpredictability may be exacerbated in our
implementation, which occasionally starts over to avoid as-
signing empty clusters.
 Memory allocation for the HC algorithm only depends on
n, and most notably it defines an n n sample distance matrix
and a size 3 n linkage tree matrix. Although usually the
slowest algorithm, not surprisingly it has a very predictable
execution time which depends almost entirely on the total
number of samples for all clusters. This is because it always
builds the same sized tree no matter the nature of the sam-
ples it is trying to cluster.

5.4.2. Clustering Error Results

 In this section, we report the clustering error between the
generated cluster labels and the true classes, as defined in
section 2.1. These results are provided in four sets of graphs.

Fig. (5) contains 12 plots of the error rate (y-axis) against the
variance of each cluster (x-axis), with each plot representing
a different fixed set of values for the parameters K, D, and N.
These best illustrate the effect of increasing the variance of
the clusters in various scenarios. Similarly, Figs. (6-8) each
contain several plots of the misclassification error against the
number of classes, dimensions, and samples, respectively.
All plots use a log scale on the x-axis.
 At the highest levels of variance where the true clusters
are highly mixed, for example with 2 = 2.5 and 2 = 5, there
is not much any algorithm can do to discern the classes. Per-
formance for all algorithms tends to converge to that of a
random cluster label assignment, which may be considered a
baseline for comparison and is represented by thick solid
lines in our plots.

Fig. (5). Performance with fixed templates and means in a planar grid, with respect to variance.

440 Current Genomics, 2009, Vol. 10, No. 6 Dalton et al.

Fig. (6). Performance with fixed templates and means in a planar grid, with respect to the number of clusters.

 For K = 2, D = 2, and n = 100, see the upper left plot in
Fig. (5). At low variance, the best algorithms are FCM,
SOM, KM, and EM, followed by HCEc and HCEa, and fi-
nally the HCEs and HCC algorithms trail behind. At higher
variances, the EM algorithm does a little more poorly than
FCM, SOM, and KM. Meanwhile, HCC starts to improve
and beats the Euclidean based HC algorithms to approach
the performance of the FCM, SOM, and KM algorithms.
Generally we’ve found that using the current model and ex-
cepting very extreme cases, the FCM algorithm tends to have
the lowest misclassification error with the KM, SOM, and
EM algorithms also performing competitively.

5.4.3. Clustering Error Discussion

 Our study revealed advantages and disadvantages for
each clustering algorithm we considered. The following dis-
cussion compares algorithms and covers our observations in
detail to give a general idea on which algorithm might be the
most suitable for a given set of experimental parameters.
 At least for simple Gaussian distributed models, it’s hard
to find a scenario where the HCEs algorithm should be used.
In the majority of cases we simulated, it has a higher error
rate than random cluster labels and should only be consid-
ered in very low variances. For example, in the left column

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 441

of Fig. (6) it achieves zero error for all K, along with all the
other Euclidean distance based hierarchical algorithms, while
KM, SOM, FCM, and EM have increasing errors as the
number of clusters grows. However in the second and third
columns of the same figure, which consider the same pa-
rameters with increased variance, the HCEs algorithm often
performs even worse than random labels, especially when
there are a small number of clusters. It should be noted that
with more complex cluster shapes and arrangements, the
KM, FCM, HCEc, and other usual methods may fail to dis-
criminate the clusters, while the HCEs algorithm with single
linkage may have an advantage (in low noise) because it is
the only one that does not look for circularly shaped clusters.

 With extremely low variances (2 = 0.1 or less—in this
case the clusters are almost not overlapping), the HCEc,
HCEs and HCEa algorithms are the best performers. This is
one exception where the KM, SOM, and EM algorithms, and
most notably the high performing FCM algorithm, do not do
so well, especially in high classes or dimensions. As seen in
the first column of Fig. (6), with any more than 4 classes
these algorithms perform relatively poorly while the Euclid-
ean distance based HC algorithms achieve a zero error rate
regardless of the number of classes. This may be due to the
difficulty in finding good initial seeds [12]. However, recall
that the HCEs algorithm fails even at moderately low vari-
ances, and also the HCEa algorithm breaks down quickly as

Fig. (7). Performance with fixed templates and means in a planar grid, with respect to the number of dimensions.

442 Current Genomics, 2009, Vol. 10, No. 6 Dalton et al.

we increase the number of dimensions; see Fig. (7) where in
almost all the plots the HCEs and HCEa algorithms approach
an error rate worse than that of random labels.
 Although the HCEc, HCEs, and HCEa algorithms per-
form well in low variance, the HCC algorithm should not be
used in this case. In almost all of the graphs in Fig. (5), on
the left edge of the plots where 2 = 0.1 this algorithm has a
very high error rate while most of the other algorithms have
nearly zero error. Also, HCC should be avoided when a high
number of clusters is expected, as demonstrated in the third
row of Fig. (5) where this algorithm is worse than random
labels for all variances. However, given a small or moderate

number of clusters (with high variance), the HCC algorithm
can rival FCM, SOM, and KM; see the top row of Fig. (5).
 For a fixed number samples, as we increase the number
of clusters the EM and FCM algorithms tend to do very
poorly. This is clear from the top row of Fig. (6). The situa-
tion seems to be a little better with more samples, as in the
last row of Fig. (6). In the second and third columns of the
same figure, note that in these moderate to high variances the
KM algorithm does very well for any number of clusters.
Meanwhile, FCM, EM, and SOM tend to do well only for a
small number of clusters, and HCEc and HCEa do well when
there are a large number of clusters.

Fig. (8). Performance with fixed templates and means in a planar grid, with respect to the total number of samples.

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 443

 In low dimensions, increasing the number of samples
usually does not improve the error rate. See for example the
top row of Fig. (8). However in higher dimensions, some
clustering algorithms can use a large number of samples to
overcome the difficulty of clustering with a large number of
features. To see this effect, consider the middle column of
Fig. (8). In the top plot we have D = 2 and here FCM has a
nearly constant error rate for all n, at a little below 20%. In
the next plot, we have D = 8 and we see that at least n = 200
samples are needed to achieve what appears to be an error
floor a bit below 20%. Finally, in the third plot we have an
extreme case with D = 128, where we need at least n = 2000
points, but with this many samples we can again achieve just
below 20% error. In contrast, the HC and SOM algorithms
seem to be poor at using additional samples to improve error
rate. See the third row, middle column of Fig. (8), where all
of the HC algorithms and the SOM algorithm actually have
increasing error as the number of samples is increased, while
the FCM and KM algorithms show significant improvement.
 The EM algorithm improves with increasing sample size
as well, in the safety of low variance or high dimensions.
Though strangely, in higher variance situations a high num-
ber of samples appears to become a disadvantage. This phe-
nomenon is illustrated in the upper right plot of Fig. (8) (K =
2, D = 2, 2 = 1), which reveals a weakness to large sample
size, and in the third row, middle column of the same figure
(K = 2, D = 128, 2 = 0.5), where it rivals the performance of
FCM at the highest number of samples. Generally, the EM
algorithm is excellent in high dimensions, especially in cases
with low variance. This is seen clearly in the first and middle
columns of Fig. (7).

6. CLUSTERING APPLIED TO GENOMICS

 Data clustering has many applications, but in the last
several years it has been applied increasingly to genomic
studies and gene expression data [5, 6, 49, 15]. Each mi-
croarray slide can provide expression measurements for
thousands of genes, and clustering is a useful exploratory
technique to analyze this data. Through “guilt by associa-
tion,” it can group similar genes together and aid biologists
in identifying potentially meaningful relationships between
them, while reducing the amount of information to analyze.
Genes grouped together potentially have related functions or
are co-regulated, as demonstrated by other evidence such as
common promoter regulatory sequences and experimental
verification. Often, there is the additional goal of identifying
a small subset of genes that are most diagnostic of sample
differences. Time-series clustering groups together genes
whose expression levels exhibit similar behavior through
time, with similarity considered suggestive of possible co-
regulation.
 Another common use of cluster analysis is the grouping
of samples (arrays) by similarities in expression patterns. An
expression pattern is effectively a complex phenotype, and
clustering analysis is used to identify samples with similar
and different phenotypes. In medical research, this approach
allows the discrimination between pathologies based on dif-
ferential patterns of gene expression, rather than relying on
traditional histological methods. For instance, Eisen et al. [5]
used cluster analysis to identify genes that show similar ex-

pression patterns over a wide range of experimental condi-
tions in yeast.
 The main assumption underlying unsupervised cluster
analysis for gene expression data is that genes belonging to
the same biological process or in the same pathway would
have similar expression over a set of arrays (be it time-series
or condition dependent). A large number of papers have been
published describing algorithms for microarray data cluster-
ing [5, 8, 11, 50], but few analyze the relationship between
the algorithms and the information that is supposed to be
derived from the analysis [42]. In addition, these approaches
are challenged by the large number of variables or genes to
study, a limited understanding of the complete function of
many genes, the small number of samples available, and a
lack of knowledge in the underlying classes or subclasses.
 Gene expression profiles refer to the expression values
for a particular gene across various experimental conditions,
or many genes under a single experimental condition. This
distinction is a key point in the analysis to either reveal the
responsiveness of genes (profiling), or discover new classes
of genes for classification taxonomy. A great number of pa-
pers apply clustering algorithms to gene expression profiles,
and in the following sections we provide examples of the
two most common applications: the detection of co-
expressed genes, and the discovery of sub-classes of dis-
eases.

6.1. Detection of Co-Expressed Genes

 Clustering genes is generally used to find groups of genes
with similar expression, across either samples or time series,
to generate hypotheses on the relationship between genes
inside the same groups.
 Johnson et al. [51] used a combination of statistical and
clustering methodologies to define genomic profiles for early
stages of the atherogenic response to benzo(a)pyrene, an
environmental hydrocarbon that initiates oxidative stress in
vascular smooth muscle cells. K-means, fuzzy cmeans, and
hierarchical clustering were applied to genes found to be
statistically significant (via ANOVA) to identify genes
modulated by atherogenic insult in a redox-sensitive manner.
These three non-supervised methods identified clones that
were highly up-regulated by pro-oxidant alone, unaffected
by antioxidant pretreatment, and neutralized by combined
chemical treatments.
 In [52], the authors proposed the use of Model Based
Clustering [11] to group similar sequences in time series
microarray data, with the goal of determining prototypes of
expression showing patters, e.g., cyclic patterns. Using this
technique, the authors were able to capture the qualitative
behavior of time series data, grouping together genes with
the same behavior.

6.2. Discovery of Sub-Classes of Diseases

 Clustering techniques may be used to identify unrecog-
nized tumor subtypes by, for example, applying a clustering
algorithm to the samples in a set of data to group them based
on similar gene expressions. If an initial partition agrees with
prior biological understanding, further refining (sub-
partitions) may reveal previously unknown sub-classes in

444 Current Genomics, 2009, Vol. 10, No. 6 Dalton et al.

cancer or other diseases. After a biological analysis of the
validity of the newly discovered classes, they can then be
used as input for the supervised training of a classifier used
to derive improved prognoses based on molecular profiles.
Some examples of this type of application are listed below.
 In [53], the authors report the discovery of a subset of
melanomas identified by clustering analysis of gene expres-
sion in a series of samples, and then identified genes that
discriminate the groups.

 The authors of [54] presented a study on the classifica-
tion of human cancers for three adult cancer types: diffuse
large B-cell lymphoma (DLBCL), follicular lymphoma (FL)
and chronic lymphocyte leukemia (CLL). Their goal was to
determine whether gene expression profiling could be used
to find cancer sub-types as molecularly distinct diseases,
with more homogeneous clinical behaviors. Hierarchical
clustering and gene profiling facilitated the sub-classification
of DLBCL into two groups, derived from different stages of
B-cell differentiation and activation. In this case, the cluster-
ing process and visualization helped to create relevant hy-
potheses.

 Two way hierarchical clustering was used in [55] to iden-
tify new molecular subtypes of acute myeloid leukemia
(AML), including two prognostically relevant subgroups in
AML with a normal karyotype. The unequal distribution of
some mutations and morphologic subtypes between groups
with different outcomes supported the concept that distinct
biological changes may underlie the clinical phenotype. The
authors also found that samples with two different mutations
separate into different subgroups, which may lead to the
identification of cooperating mutations and dysregulated
pathways that eventuate in leukemogenesis.

 In the same year, the authors of [56] used clustering on
tumor samples to support the concept that parathyroid ade-
noma and hyperplasia are distinct entities with different mo-
lecular profiles.
 Our final example is [57], where hierarchical clustering
was applied to the microarray profile of 177 primary conven-
tional renal cell carcinomas (cRCCs). The analysis segre-
gated cRCC into five gene expression subgroups that corre-
lated with survival in long-term follow up and was inde-
pendent of grade, stage, and performance status. From the
analysis, the authors identified a set of 259 genes that predict
survival after surgery independently from clinical prognostic
factors.

7. CONCLUSION

 The choice of a clustering algorithm and a validation
index is not a trivial one, more so when applying them to
biological or medical high throughput data. Clustering algo-
rithms should be chosen based on (a) the nature of the prob-
lem to solve (visualization, detection of sub-classes, etc.), (b)
characteristics of the objects to be analyzed and the expected
clusters, and (c) the size of the problem and computational
power available. Some problems can be tackled by simple K-
means clustering, while other situations may require more
complex algorithms with larger memory or time require-
ments.

 Regarding validation indices, in the absence of informa-
tion to apply external validation, intuitively it might seem
that relative indices should be more desirable than internal
indices since they try to exploit data redundancy. However,
most results have shown that even for simple models the
relative indices do not give substantial improvement over the
simpler internal indices, while at the same time potentially
increasing computational costs beyond the limits of a desk-
top PC.

8. ACKNOWLEDGEMENT

 We would like to acknowledge the Agencia Nacional de
Promocion Cientifica y Tecnologica (PICT2006-02313) for
supporting part of the work behind this paper. We would
also thank the reviewers for their helpful comments.

REFERENCES
[1] Andenberg, M.R. Cluster Analysis for Applications; Academic

Press: New York, 1973.
[2] Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: a review.

ACM Comput. Surveys, 1999, 31, 264-323.
[3] Jain, A.K.; Topchy, A.; Law, M.H.C.; Buhmann, J.M. Landscape

of clustering algorithms. In Proc. 17th Int. Conf. Pattern Recognit.
(ICPR ’04), 2004, 1, 260-263.

[4] Somogyi, R.; Fuhrman, S.; Askenazi, M.; Wuensche, A. The gene
expression matrix: towards the extraction of genetic network archi-
tectures. Nonlinear Anal., 1997, 30, 1815-1824.

[5] Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster
analysis and display of genome-wide expression patterns. Proc.
Natl. Acad. Sci. USA, 1998, 95, 14863-14868.

[6] Ben-Dor, A.; Shamir, R.; Yakhini, Z. Clustering gene expression
patterns. J. Comput. Biol., 1999, 6, 281-297.

[7] Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek,
M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri,
M.A.; Bloomfield, C.D.; Lander, E.S. Molecular classification of
cancer: class discovery and class prediction by gene expression
monitoring. Science, 1999, 286, 531-537.

[8] Tamayo, P.; Slonim, D.; Mesirov, J.; Zhu, Q.; Kitareewan, S.;
Dmitrovsky, E.; Lander, E.S.; Golub, T.R. Interpreting patterns of
gene expression with self-organizing maps: methods and applica-
tions to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA,
1999, 96, 2907-2912.

[9] Tavazoie, S.; Hughes, J.D.; Campbell, M.J.; Cho, R.J.; Church,
G.M. Systematic determination of genetic network architecture.
Nat. Genet., 1999, 22, 281-285.

[10] Sharan, R.; Shamir, R. CLICK: A clustering algorithm with appli-
cations to gene expression analysis. In Proc. Int. Conf. Intell. Syst.
Mol. Biol., 2000, 8, 307–316.

[11] Yeung, K.Y.; Fraley, C.; Murua, A.; Raftery, A.E.; Ruzzo, W.L.
Model-based clustering and data transformation for gene expres-
sion data. Bioinformatics, 2001, 17, 977-987.

[12] Dougherty, E.R.; Barrera, J.; Brun, M.; Kim, S.; Cesar, R.M.;
Chen, Y.; Bittner, M.L.; Trent, J.M. Inference from clustering with
application to gene-expression microarrays. J. Comput. Biol., 2002,
9, 105-126.

[13] Dembélé, D.; Kastner, P. Fuzzy c-means method for clustering
microarray data. Bioinformatics, 2003, 19, 973-980.

[14] Brunet, J.P.; Tamayo, P.; Golub, T.R.; Mesirov, J.P. Metagenes and
molecular pattern discovery using matrix factorization. Proc. Natl.
Acad. Sci. USA, 2004, 101, 4164-4169.

[15] Chipman, H.; Hastie, T.; Tibshirani, R. Clustering microarray data.
In Statistical Analysis of Gene Expression Microarray Data;
Speed, T., Ed.; Chapman & Hall/CRC: Boca Raton, FL, 2003; pp.
159-200.

[16] Brun, M.; Johnson, C.D.; Ramos, K.S. Clustering: revealing intrin-
sic dependencies in microarray data. In Genomic Signal Processing
and Statistics; Dougherty, E.R., Shmulevich, I., Chen, J., Wang,
Z.J., Eds.; EURASIP Book Series on Signal Processing and Com-
munications; Hindawi Publishing Corporation: New York, 2005,
pp. 129-162.

Clustering Algorithms Current Genomics, 2009, Vol. 10, No. 6 445

[17] Kalton, A.; Langley, P.; Wagstaff, K.; Yoo, J. Generalized cluster-
ing, supervised learning, and data assignment. In Proc. 7th Int.
Conf. on Knowl. Discov. and Data Min., 2001, 299-304.

[18] Kerr, M.K.; Churchill, G.A. Bootstrapping cluster analysis: assess-
ing the reliability of conclusions from microarray experiments.
Proc. Natl. Acad. Sci. USA, 2001, 98, 8961-8966.

[19] Dougherty, E.R.; Brun, M. A probabilistic theory of clustering.
Pattern Recognit., 2004, 37, 917-925.

[20] Brun, M.; Sima, C.; Hua, J.; Lowey, J.; Carroll, B.; Suh, E.;
Dougherty, E.R. Model-based evaluation of clustering validation
measures. Pattern Recognit., 2006, 40, 807-824.

[21] Devroye, L.; Györffi, L.; Lugosi, G. A Probabilistic Theory of
Pattern Recognition; Springer-Verlag: New York, 1996.

[22] Xing, E.P.; Ng, A.Y.; Jordan, M.I.; Russell, S. Distance metric
learning, with application to clustering with side-information. In
Adv. Neural. Inf. Process. Syst. 15; Becker, S., Thrun, S., Ober-
mayer, K., Eds.; MIT Press: Cambridge, MA, 2003, pp. 505-512.

[23] Bach, F.R.; Jordan, M.I. Learning spectral clustering. In Adv. Neu-
ral. Inf. Process. Syst. 16; Thrun, S., Saul, L.K., Scholkopf, B.,
Eds.; MIT Press: Cambridge, MA, 2004, pp. 305-312.

[24] Rosales, R.; Achan, K.; Frey, B. Learning to cluster using local
neighborhood structure. In Proc. of the 21st Int. Conf. Machine
Learning (ICML ’04), 2004.

[25] Kamishima, T.; Motoyoshi, F. Learning from cluster examples.
Mach. Learn., 2003, 53, 199-233.

[26] Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE
Trans. Inf. Theory, 1967, 13, 21-27.

[27] Brun, M.; Dougherty, E.R. Clustering algorithms do not learn, but
they can be learned. In Proc. SPIE, 2005, 5916, 283-291.

[28] Jain, A.K.; Dubes, R.C. Algorithms for Clustering; Prentice-Hall:
New Jersey, 1988.

[29] Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification and
Scene Analysis; John Wiley & Sons: New York, 2002.

[30] Gose, E.; Johnsonbaugh, R.; Jost, S. Pattern Recognition and Im-
age Analysis; Prentice Hall: New Jersey, 1996.

[31] Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Academic
Press: San Diego, 1999.

[32] Bottou, L.; Bengio, Y. Convergence properties of the K-means
algorithm. In Adv. Neural. Inf. Process. Syst. 7; Tesauro, G.,
Touretzky, D.S.; Leen, T.K.; Eds.; MIT Press: Cambridge, MA,
1995, pp. 585-592.

[33] Fraley, C.; Raftery, A.E. Model-based clustering, discriminant
analysis, and density estimation. J. Am. Stat. Assoc., 2002, 97, 611-
631.

[34] Toronen, P.; Kolehmainen, M.; Wong, G.; Castren, E. Analysis of
gene expression data using self-organizing maps. FEBS Lett., 1999,
451, 142-146.

[35] Wang, J.; Delabie, J.; Aasheim, H.C.; Smeland, E.; Myklebost, O.
Clustering of the SOM easily reveals distinct gene expression pat-
terns: results of a reanalysis of lymphoma study. BMC Bioinformat-
ics, 2002, 3, 36.

[36] Fisher, L.; Van Ness, J.W. Admissible clustering procedures. Bio-
metrika, 1971, 58, 91-104.

[37] Van Ness, J.W. Admissible clustering procedures. Biometrika,
1973, 60, 422-424.

[38] Guenter, S.; Bunke, H. Validation indices for graph clustering. In
Proc. 3rd IAPR-TC-15 Workshop on Graph-based Representations
in Pattern Recognit.; Jolion, J. M.; Kropatsch, W.; Vento, M.; Eds.;
2001, pp. 229-238.

[39] Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On clustering valida-
tion techniques. J. Intell. Inf. Syst., 2001, 17, 107-145.

[40] Lubovac, Z.; Olsson, B.; Jonsson, P.; Laurio, K.; Anderson, M.L.
Biological and statistical evaluation of clusterings of gene expres-
sion profiles. In Proc. Math. and Comput. in Biol. and Chem.;
D’Attellis, C.E.; Kluev, V.V.; Mastorakis, N.E.; Eds.; 2001, pp.
149-155.

[41] Roth, V.; Lange, T.; Braun, M.; Buhmann, J.M. A resampling
approach to cluster validation. In Proc. Intl. Conf. Comput. Stat.
(COMPSTAT 2002); Härdle, W.; Rönz, B.; Eds.; 2002, pp. 123-
128.

[42] Azuaje, F. A cluster validity framework for genome expression
data. Bioinformatics, 2002, 18, 319-320.

[43] Azuaje, F.; Bolshakova, N. Clustering genomic expression data:
design and evaluation principles. In A Practical Approach to Mi-
croarray Data Analysis; Berrar, D., Dubitzky, W., Granzow, M.,
Eds.; Kluwer Academic Publishers: Boston/Dordrecht/London,
2002, pp. 230-245.

[44] Bolshakova, N.; Azuaje, F. Cluster validation techniques for ge-
nome expression data. Signal Processing, 2003, 83, 825-833.

[45] Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math., 1987,
20, 53-65.

[46] Hua, J.; Craig, D.W.; Brun, M.; Webster, J.; Zismann, V.; Tembe,
W.; Joshipura, K.; Huentelman, M.J.; Dougherty, E.R.; Stephan,
D.A. SNiPer-HD: improved genotype calling accuracy by an ex-
pectation-maximization algorithm for high-density SNP arrays.
Bioinformatics, 2007, 23, 57-63.

[47] Yeung, K.Y.; Haynor, D.R.; Ruzzo, W.L. Validating clustering for
gene expression data. Bioinformatics, 2001, 17, 309-318.

[48] Roth, V.; Braun, M.; Lange, T.; Buhmann, J.M. Stability-based
model order selection in clustering with applications to gene ex-
pression data. In Lecture Notes in Computer Science; Dorronsoro,
J.R., Ed.; Springer: Heidelberg, 2002, Vol. 2415, pp. 607-612.

[49] Brazma, A.; Vilo, J. Gene expression data analysis. FEBS Lett.,
2000, 480, 17-24.

[50] Ramoni, M.F.; Sebastiani, P.; Kohane, I.S. Cluster analysis of gene
expression dynamics. Proc. Natl. Acad. Sci. USA, 2002, 99, 9121-
9126.

[51] Johnson, C.D.; Balagurunathan, Y.; Lu, K.P.; Tadesse, M.; Fala-
hatpisheh, M.H.; Carroll, R.J.; Dougherty, E.R.; Afshari, C.A.;
Ramos, K.S. Genomic profiles and predictive biological networks
in oxidant-induced atherogenesis. Physiol. Genomics, 2003, 13,
263-275.

[52] Schliep, A.; Schönhuth, A.; Steinhoff, C. Using hidden markov
models to analyze gene expression time course data. Bioinformat-
ics, 2003, 19, 255-263.

[53] Bittner, M.L.; Meltzer, P.; Chen, Y.; Jiang, Y.; Seftor, E.; Hendrix,
M.; Radmacher, M.; Simon, R.; Yakhini, Z.; Ben-Dor, A.; Sampas,
N.; Dougherty, E.R.; Wang, E.; Marincola, F.; Gooden, C.; Lued-
ers, J.; Glatfelter, A.; Pollock, P.; Carpten, J.; Gillanders, E.; Leja,
D.; Dietrich, K.; Beaudry, C.; Berens, M.; Alberts, D.; Sondak, V.
Molecular classification of cutaneous malignant melanoma by gene
expression profiling. Nature, 2000, 406, 536-540.

[54] Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.;
Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; Powell,
J.I.; Yang, L.; Marti, G.E.; Moore, T.; Hudson, Jr., J.; Lu, L.;
Lewis, D.B.; Tibshirani, R.; Sherlock, G.; Chan, W.C.; Greiner,
T.C.; Weisenburger, D.D.; Armitage, J.O.; Warnke, R.; Levy, R.;
Wilson, W.; Grever, M.R.; Byrd, J.C.; Botstein, D.; Brown, P.O.;
Staudt, L.M. Distinct types of diffuse large B-cell lymphoma iden-
tified by gene expression profiling. Nature, 2000, 403, 503-511.

[55] Bullinger, L.; Dohner, K.; Bair, E.; Frohling, S.; Schlenk, R.F.;
Tibshirani, R.; Dohner, H.; Pollack, J.R. Use of gene-expression
profiling to identify prognostic subclasses in adult acute myeloid
leukemia. N. Engl. J. Med., 2004, 350, 1605-1616.

[56] Morrison, C.; Farrar, W.; Kneile, J.; Williams, N.; Liu-Stratton, Y.;
Bakaletz, A.; Aldred, M.A.; Eng, C. Molecular classification of
parathyroid neoplasia by gene expression profiling. Am. J. Pathol.,
2004, 165, 565-576.

[57] Zhao, H.; Ljungberg, B.; Grankvist, K.; Rasmuson, T.; Tibshirani,
R.; Brooks, J.D. Gene expression profiling predicts survival in
conventional renal cell carcinoma. PLoS Med., 2006, 3, 13.

