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Abstract: The development of microarray technology has enabled scientists to measure the expression of thousands of 
genes simultaneously, resulting in a surge of interest in several disciplines throughout biology and medicine. While data 
clustering has been used for decades in image processing and pattern recognition, in recent years it has joined this wave of 
activity as a popular technique to analyze microarrays. To illustrate its application to genomics, clustering applied to 
genes from a set of microarray data groups together those genes whose expression levels exhibit similar behavior 
throughout the samples, and when applied to samples it offers the potential to discriminate pathologies based on their dif-
ferential patterns of gene expression. Although clustering has now been used for many years in the context of gene ex-
pression microarrays, it has remained highly problematic. The choice of a clustering algorithm and validation index is not 
a trivial one, more so when applying them to high throughput biological or medical data. Factors to consider when choos-
ing an algorithm include the nature of the application, the characteristics of the objects to be analyzed, the expected num-
ber and shape of the clusters, and the complexity of the problem versus computational power available. In some cases a 
very simple algorithm may be appropriate to tackle a problem, but many situations may require a more complex and pow-
erful algorithm better suited for the job at hand. In this paper, we will cover the theoretical aspects of clustering, including
error and learning, followed by an overview of popular clustering algorithms and classical validation indices. We also dis-
cuss the relative performance of these algorithms and indices and conclude with examples of the application of clustering 
to computational biology. 
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1. INTRODUCTION 

 Microarray technology has made available an incredible 
amount of gene expression data, driving research in several 
areas including the molecular basis of disease, drug discov-
ery, neurobiology, and others. Usually, microarray data is 
collected with the goal of either discovering genes associated 
with some event, predicting outcomes based on gene expres-
sion, or discovering sub-classes of diseases. While clustering 
has been used for decades in image processing and pattern 
recognition [1-3], in recent years it has become a popular 
technique in genomic studies for extracting this kind of valu-
able information from massive sets of gene expression data.  
 Clustering applied to genes from microarray data groups 
together those whose expression levels exhibit similar be-
havior through the samples. In this context, similarity is 
taken to indicate possible co-regulation between the genes, 
but may also reveal other processes that relate their expres-
sion. In other words, the application of clustering in our first 
goal listed above is founded by the concept of “guilty by 
association”, where genes with similar expression across 
samples are assumed to share some underlying mechanism.  
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 On the other hand, clustering applied to samples may 
help with our second and third goals, since when used this 
way it offers the potential to discriminate pathologies, or 
other conditions, based on their differential patterns of gene 
expression. It may also provide clues to the existence of pre-
viously undetected groupings within the samples, or be used 
to detect sub-groups in a non supervised manner.  
 As a short historical review, we cite a few key reference 
papers. In 1997, Somogyi et al. [4] applied the Fitch-
Margoliash clustering algorithm, used previously on phylo-
genetic trees, to display genes grouped by similarity in their 
wiring and behavior (network trajectories). Subsequently, 
Eisen et al. [5] described the use of hierarchical clustering, 
combined with a color representation of the expression in-
tensity, to group and visualize genes with similar profile, or 
expression patterns. In 1999, Ben-Dor, Shamir and Yakhini 
proposed a new algorithm based on graph theory called 
CAST and the visualization of the distance matrix as an in-
tensity matrix [6]. In the same year, we can find the works of 
Goulub [7] and Tamayo [8] et al. which suggested the use of 
self organizing maps (SOM) as a clustering algorithm for 
gene expression, and the work of Tavazoie et al. [9], which 
used the K-means algorithm to identify transcriptional regu-
latory sub-networks. Another graph based algorithm called 
CLICK was introduced in 2000 by Sharan and Shamir [10]. 
In 2001, Yeung et al. [11] presented the use of model based 
clustering, where the clusters are modeled as mixtures of 
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Gaussian distributions, and proposed the use of the BIC cri-
terion for selecting the number of clusters. Dougherty et al.
presented in 2002 [12] an algorithm to select the best cluster-
ing rule for a dataset, based on noise injection, replication, 
and cluster accuracy. In 2003, Dembele and Kastner [13] 
described a modified fuzzy c-means algorithm applied to 
genomic data, which automatically selects the fuzziness pa-
rameter. Finally, the use of nonnegative matrix factorization 
(NMF) was introduced in 2004 by Brunet et al. [14], with 
the intent to alleviate some of the disadvantages of other 
clustering techniques. A few review papers on clustering 
algorithms applied to microarray data can also be found in 
the literature, describing the advantages and shortcomings of 
each algorithm and sometimes including validation tech-
niques in their analysis [15, 16].  
 Although used for many years in the context of gene ex-
pression microarray data, clustering has remained highly 
problematic [2, 12, 17]. Some criticisms raise the question as 
to whether clustering can be used for scientific knowledge 
[18]: how may one judge the relative worth of clustering 
algorithms unless the assessment is based on their inference 
capabilities? Although the ability of clustering algorithms to 
make inferences has been addressed to some extent, a 
mathematical foundation for clustering has been provided 
only very recently [19, 20].  
 In this paper we will cover a mathematical model of clus-
tering and review learning in section 2. We provide an over-
view of popular clustering algorithms in section 3 and vali-
dation indices in section 4, followed by a discussion on the 
relative performance of these algorithms and indices in sec-
tion 5. Finally, we comment on the application of clustering 
to genomics in section 6.  

2. MATHEMATICAL MODEL OF CLUSTERING  

 In the context of pattern recognition theory, each object 
is represented by a vector of features, called a pattern. Clus-
tering can be defined as the process of partitioning a collec-
tion of vectors into subgroups whose members are similar 
relative to some distance measure. A clustering algorithm
receives a set of vectors, and groups them based on a cost 
criterion or some other optimization rule.  
 The related field of pattern classification, which involves 
simply assigning individual vectors to classes, has developed 
a theory based on defining error criteria, designing optimal 
classifiers, and learning. In comparison, clustering has his-
torically been approached heuristically; there has been al-
most no consideration of learning or optimization, and error 
estimation has been handled indirectly via validation indices. 
Only recently has a rigorous clustering theory been devel-
oped in the context of random sets [19]. Although we will 
not go over the mathematical details of [19, 20], in this sec-
tion we summarize some essential points regarding cluster-
ing error, error estimation, and inference.  

2.1. Model  

 Within a probabilistic framework, objects to be clustered 
are assumed to be described by vectors of numerical values. 
These vectors are realizations of a random labeled point 
process, which produces random sets in a multi-dimensional 
space with unknown random labels associated with each 

vector. Two vectors are properly in the same cluster if and 
only if they have the same label produced by the random 
process [19]. Thus, a clustering algorithm may be viewed as 
an operator on random sets which partitions their elements 
into groups by assigning labels to them.  
 The labeling error of a clustering algorithm is the ex-
pected number of discrepancies between the labels it assigns 
and the true labels generated by the labeling process. Since 
the disagreement between two partitions should not depend 
on the indices used for the labels, or the names assigned to 
each cluster, we define the partitioning error to be the mini-
mum of the labeling errors for all possible permutations of 
the labels. The partitioning error applies to a specific realiza-
tion of a random point labeling process, so we define the 
clustering error (also called the misclassification error) of a 
clustering algorithm with respect to a process to be the ex-
pected value of the partitioning error.  
 Estimation of the clustering error is done in the usual 
manner to assess the performance of a cluster operator ap-
plied to a given random process model. We generate inde-
pendent synthetic data consisting of a collection of sets, or 
samples, representing realizations of the process, apply the 
clustering algorithm to the samples, compute the partitioning 
error for each realization of the cluster labels against the true 
partitions, and average over the realizations to obtain an es-
timate of the clustering error [12]. See [19] for a more com-
plete and formal presentation on the probabilistic model.  

2.2. Learning  

 Clustering is usually considered to be the problem of 
partitioning a single set of unlabeled points. All of the tradi-
tional algorithms covered in section 3 (K-means, fuzzy c-
means, hierarchical clustering, etc.) fall in this category. In 
this setting, several clustering algorithms may be considered, 
and the election of one could be based on their performance 
on some internal or relative index. However, we may view 
the problem of clustering or the selection of a best clustering 
algorithm more generally as a problem of learning. Consider 
observing training data consisting of a collection of N train-
ing sets, including their labels, where each set is a realization 
of a point process and their label functions are realizations of 
a random labeling process. A clustering rule maps this given 
training data of size N to a label operator, which induces a 
cluster operator that should approximate the partitions cre-
ated by the labeled point process.  
 As with classification rules, both the label operator and 
the cluster operator are random because they depend on the 
training data. Also, as with classification where the investi-
gator may choose between different rules, the burden is on 
the investigator to choose or develop a suitable clustering 
rule to design the cluster operator from the training data. We 
may proceed with an approach analogous to learning in clas-
sification theory [21], by first treating learning in the binary 
setting and subsequently extending to an arbitrary finite label 
set. There has been some previous work in learning cluster-
ing algorithms in the context of learning by examples. For 
instance, researchers have applied learning for determining a 
metric of the space, learning similarity matrices for spectral 
clustering, utilizing local structure, and applying non-
parametric methods [22-25].  
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 In classification, the simplest way to apply learning is to 
select from a set of classifiers the one with the lowest ex-
pected error for a particular model. Similarly, the selection of 
the best clustering algorithm can be done by empirical risk 
minimization [21]: given training data consisting of realiza-
tions from a labeled point process, and given a collection of 
clustering operators or algorithms, the best operator should 
minimize the clustering error on the training data. Therefore, 
if the underlying random labeled point process is unknown 
but labeled samples are available, it is possible to select a 
cluster operator that will be optimal relative to the family of 
operators analyzed.  
 Minimizing empirical risk is just a simple way to train 
from sample data. In the case of classification, a more effi-
cient method is to apply rules to design classifiers from the 
sample data, optimizing some predefined criteria. Examples 
are the kNN, LDA, perceptron, and SVM classification rules. 
The same approach is possible in clustering—we could cre-
ate a clustering rule designed to generate clustering operators 
that optimize some criteria based on the training data, and 
the behavior and design of these operators would be totally 
different from any of the currently popular clustering algo-
rithms. However, while learning in clustering may be viewed 
analogously to classification in this way, it presents a much 
more complex problem since individual training points sam-
pled from a distribution in a D-dimensional space are each 
replaced by entire sets drawn from a labeled point process.  
 An example of this approach adapts the kNN classifica-
tion rule to an analogous clustering rule. When used in clas-
sification, the popular and non-parametric k-nearest neighbor 
algorithm [26] decides the label of a new sample based on a 
majority vote from the labels of the k closest, or most simi-
lar, training points. Work in [19, 27] proposes a similar 
learning algorithm for clustering, where the training samples 
are now labeled sets. Given a new set we wish to cluster, we 
find the k most similar objects in the training data based on 
Hausdorff distance, and use the labels of the chosen sets to 
define a labeling, and therefore a clustering, for the new set.  
 An example of the performance of a trained clustering 
algorithm is provided in section 5.2, and additional details 
and theory can be found in [19, 27]. 

3. CLUSTERING ALGORITHMS 

 Clustering algorithms may be categorized by how they 
form groups of clusters. Hierarchical algorithms work on 

either successive splitting (divisive) or merging (agglomera-
tive) of groups to form a hierarchy of clusters based on a 
specified measure of distance or similarity between objects. 
Alternatively, partitioning algorithms search for a partition 
of the data that optimizes a global measure of quality for the 
groups, usually based on distance between objects. 
 Hierarchical algorithms may also be subclassified by the 
way the distances or similarities between objects are updated 
after splitting or merging groups (linkage), which has a sig-
nificant influence on the structure of the resulting clusters. 
Hierarchical algorithms are also extensively used to generate 
multiple partitions of the data, since each level of the hierar-
chy is a different partition of the data. 
 Another way to classify clustering algorithms is based on 
their output: in hard clustering the output is a partition of the 
data, while in soft clustering (i.e., fuzzy clustering) the out-
put is a membership function, so each pattern can belong to 
more than one group with varying degrees of membership. A 
fuzzy cluster defines a natural hard partition of the data from 
the maximum membership of each object. Fig. (1) shows a 
simple taxonomy of clustering algorithms [16].  
 The selection of a particular algorithm should be based 
on considerations of the problem at hand, including the ac-
ceptable level of error, the amount of computational re-
sources available, the type of clusters required, and needs on 
visual representation. Each algorithm has its own strengths 
and weakness and may be better suited than other algorithms 
for particular tasks. For example, hierarchical clustering al-
gorithms are especially useful for exploratory data analysis 
because they do not need prior specification of the number of 
clusters and their outputs can be visualized in a tree struc-
ture.  
 Most partitioning algorithms are based on the minimiza-
tion of an objective function, which is a measure of the qual-
ity of a partition of the data. The most common objective 
function is the average of the squared distance to the centroid 
of the clusters [2], as in the K-means algorithm described in 
section 3.1. This particular objective function may be inter-
preted as a measure of how good the centers are as represen-
tatives of the clusters. Though it works well with similarly 
sized compact clusters, it is limited by the need of each clus-
ter center to represent its points and often fails when the 
shape of a grouping is more complex or when there is a large 
difference between the number of points in each cluster. A 
second major drawback of this objective function is that it 

Fig. (1). A basic taxonomy of clustering algorithms. 
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decreases with the number of clusters in a nested sequence of 
partitions, favoring a large number of small clusters.  
 Most clustering algorithms are designed with an iterative 
approximation approach which starts with an initial seed 
partition and successively modifies it to reduce the objective 
function in each step. This process is repeated until no 
change is observed or the algorithm reaches a stop criterion.  

 The following reference list is not exhaustive, though 
other algorithms used for clustering gene expression data are 
usually variations of these. Many good references regarding 
clustering algorithms and their mathematical and algorithmic 
aspects are available [28, 2, 29].  

3.1. K-Means  

 One of the most common iterative algorithms is the K-
means algorithm [2, 29], broadly used for its simplicity of 
implementation and convergence speed. K-means also pro-
duces relatively high quality clusters considering the low 
level of computation required.  

 The algorithm is presented with a set of n sample vectors 
and a number K for the expected number of clusters, and 
produces K centroids that attempt to minimize the objective 
function, which is the average distance of each sample vector 
to their nearest centroid. A typical implementation of the 
algorithm starts with a random election for the centroids, 
iteratively assigns each vector to the nearest centroid, and 
updates the new centroid positions until convergence is 
reached [30, 31].  
 K-means is one of the simplest algorithms known to per-
form well with many data sets, but its good performance is 
limited mainly to compact groups. When the points are 
drawn from a mixture of Gaussian distributions, the K-
means algorithm is a gradient descent algorithm that mini-
mizes the quantization error [32]. As with many gradient 
descent algorithms, one drawback of K-means is that it can 
reach a local minimum of the objective function instead of 
the desired global minimum, meaning that convergence is 
reached but the solution is not optimal. An analysis of this 
problem is presented in Dougherty et al. [12]. One way to 
overcome this is by running the algorithm multiple times 
with different random seeds and selecting the partition that 
appears with the highest frequency.  

3.2. Fuzzy C-Means  

 In the K-means algorithm, each vector is classified as 
belonging to a single cluster (hard clustering), and the cen-
troids are updated based on the classified samples. In a varia-
tion of this approach known as fuzzy c-means [2, 29], all 
vectors have a degree of membership for each cluster, and 
the respective centroids are calculated based on these mem-
bership degrees.  

 Whereas the K-means algorithm computes the average of 
the vectors in a cluster as the center, fuzzy c-means finds the 
center as a weighted average of all points, using the mem-
bership probabilities for each point as weights. Vectors with 
a high probability of belonging to the class have larger 
weights, and more influence on the centroid.  

 As with K-means clustering, the process of assigning 
vectors to centroids and updating the centroids is repeated 
until convergence is reached.  

3.3. Hierarchical  

 Hierarchical clustering [2] creates a hierarchical tree of 
similarities between the vectors, called a dendrogram. The 
usual implementation is based on agglomerative clustering, 
which initializes the algorithm by assigning each vector to its 
own separate cluster and defining the distances between each 
cluster based on either a distance metric (e.g., Euclidean) or 
similarity (e.g., correlation). Next, the algorithm merges the 
two nearest clusters and updates all the distances to the 
newly formed cluster via some linkage method, and this is 
repeated until there is only one cluster left that contains all 
the vectors. Three of the most common ways to update the 
distances are with single, complete or average linkages.  
 This process does not define a partition of the system, but 
a sequence of nested partitions, where each partition contains 
one less cluster than the previous partition. To obtain a parti-
tion with K clusters, the process must be stopped K  1 steps 
before the end.  

 Different linkages lead to different partitions, so the type 
of linkage used must be selected according to the type of 
data to be clustered. For instance, complete and average 
linkages tend to build compact clusters, while single linkage 
is capable of building clusters with more complex shapes but 
is more likely to be affected by spurious data [12].  

3.4. Expectation Maximization  

 Expectation maximization clustering [11, 33] estimates 
the probability densities of the classes using the Expectation 
Maximization (EM) algorithm. The result is an estimated set 
of K multivariate distributions each defining a cluster, with 
each sample vector assigned to the cluster with maximum 
conditional probability.  
 Different assumptions on the model correspond to differ-
ent constraints on the covariance matrices of each distribu-
tion. Examples of these constraints are modeling spherical 
vs. elliptical densities and using the same vs. different prior 
probabilities. The less strict the constraints the more flexible 
the model, but at the same time more samples would be nec-
essary for good estimates of the additional parameters. As 
always, the user of the algorithm is responsible for deciding 
the level of constraints to apply based on the amount of data 
available.  

3.5. Self Organizing Maps  

 By applying self organizing maps (SOM) to the data, 
clusters can be defined by points on a grid adjusted to the 
data [34, 35]. Usually the algorithm uses a 2-dimensional 
grid in a higher dimensional space, but for clustering it is 
typical to use a 1-dimensional grid.  
 SOM clustering is very useful in data visualization since 
the spacial representation of the grid, facilitated by its low 
dimensionality, reveals a great amount of information on the 
data.  
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4. VALIDATION INDICES  

 Historically, a host of “validity” measures have been 
proposed for evaluating clustering results based on a single 
realization of a random-point-set process [36-41]. No doubt 
one would like to measure the accuracy of a cluster operator 
based on a single application. But is this feasible? Clearly it 
would be absurd to assess the validity of a classifier based on 
a single point without knowledge of the true label of that 
point. This is analogous to evaluating the validity of a cluster 
operator on a single point set without knowledge of the true 
partition, but there is a difference that provides hope. The 
output of a cluster operator consists of a partition of a point 
set with a spatial structure, and one can define measures for 
different aspects of this structure, for instance, compactness. 
It could be hoped that such measures assess the scientific 
validity of a clustering algorithm, and for a validity measure 
to assess scientific validity, ipso facto, it must be closely 
related to the error rate of the cluster operator as that rate is 
defined within a probabilistic theory of clustering.  

 Validity measures proposed for clustering algorithms fall 
broadly into three classes. The first type is based on calculat-
ing properties of the resulting clusters, such as compactness, 
separation and roundness. This approach is called internal 
validation because it does not require additional information 
about the data. A second approach is based on comparisons 
of partitions generated by the same algorithm with different 
parameters or subsets of the data. This is called relative vali-
dation and also does not require additional information. The 
third approach, called external validation, compares the par-
tition generated by the clustering algorithm to the true parti-
tion of the data. External validation corresponds to a kind of 
error measurement, either directly or indirectly. Therefore, 
we should expect external methods to be better correlated to 
the true error [20], although they cannot be measured in 
practice.  
 In this section, we will cover several internal, relative, 
and external validation indices, discuss their motivation, and 
overview some of their advantages and disadvantages.  

4.1. Internal Validation Indices  

 Internal validation is the simplest way to evaluate a clus-
tering algorithm applied to a data set, since it uses only the 
spacial distribution of the points and the cluster labels gener-
ated by the algorithm to compute properties of the clusters. 
This family of techniques is based on the assumption that the 
algorithms should search for clusters whose members are 
close to each other and far from members of other clusters. 
Some of these indices are described below.  

4.1.1. Dunn’s Indices  

 Dunn’s validation index is conceptually the simplest of 
the internal validation indices: it compares the size of the 
groups with the distances between groups. The further apart 
the groups, relative to their size, the larger the index and the 
“better” the clustering. This index, V(C), is computed as the 
ratio between the minimum distance between two clusters 
and the size of the largest cluster [42-44]:  
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where dC(Ck,Ch) is the distance between two clusters (or 
linkage) and (Ck) is the size of the cluster Ck. There are 
many methods for computing both dC(Ck,Ch) and (Ck), and 
every combination of these defines a different Dunn’s index. 
For example, five measures for distance between clusters 
(linkage) are the single, complete, average, average to cen-
troids, and Hausdorff metrics [44], and three possible meas-
ures for cluster size are the complete, average, and centroid 
diameters [44]. More formal definitions of these cluster dis-
tances and sizes can be found in [20].  
 The ability to mix and match distance and cluster-size 
measures grants a large number of options that can be over-
whelming to the user. Usually, the combination of average to 
centroid distance and centroid cluster size provides an index 
simple to understand: compact circular clusters with well 
separated centers tend to produce a higher Dunn’s index. 
Another useful pair are the complete distance and complete 
size measures [20].  

4.1.2. Silhouette Index  

 The silhouette of a cluster was first introduced as a dis-
play technique to evaluate visually which points lie well in-
side the cluster and which do not [45], based on the silhou-
ette width of their points.  
 The silhouette width of a given point defines its proxim-
ity to its own cluster relative to its proximity to other clus-
ters. Mathematically, the silhouette width for each point x is 
defined by  
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where a(x) is the average distance between x and all other 
points in its cluster, and b(x) is the minimum of the average 
distances between x and the points in the other clusters.  
 The silhouette of a cluster is defined as the average sil-
houette width of its points. Finally, aggregating information 
from all points, the global silhouette index for a whole clus-
tering partition is the average silhouette of the clusters [43, 
44].  
 For a given point x, its silhouette width ranges from 1 to 
1. If the value is close to 1, the point is on average closer to 
another cluster than the one to which it belongs. If the value 
is close to 1, then its average distance to its own cluster is 
significantly smaller than that to any other cluster. Thus the 
higher the silhouette, the more compact and separated the 
clusters.  
 In an interesting application to genomics, the silhouette 
index was used successfully for SNP genotype calling [46] 
to evaluate the separation of the clouds of points obtained by 
the measurement of many samples.  

4.2. Relative Validation Indices  

 While internal indices evaluate a single realization of the 
clustering algorithm, they can not sense the stability of the 
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algorithm against variations in the data, or consistency of the 
results in the case of redundancy. A family of more complex 
indices, called relative validation indices, attempts to meas-
ure the consistency of an algorithm by comparing the clus-
ters obtained by the same algorithm under different condi-
tions. These indices often attempt to exploit redundancy in 
the data.  

4.2.1. Figure of Merit  

 The figure of merit (FOM) index [47] assumes redun-
dancy is imbedded in the sample data to measure consis-
tency. As an example, consider a clustering algorithm ap-
plied to microarray data, which should generate clusters rep-
resenting different biological groups. Therefore, samples in 
the same cluster should possess similar pattern vectors (ex-
pression profiles) for additional features that were not con-
sidered in the clustering process. If we ignore a feature 
(gene) when we cluster, will the resulting partition still have 
nice properties in the neglected dimension?  
 The FOM of a feature is computed by clustering the 
samples after removing the given feature and measuring the 
size of these clusters (i.e., the average distance between all 
samples and their cluster’s centroids) specifically on the fea-
ture under inspection. If this average distance is small, then 
the clustering algorithm partitioned the samples in compact 
clusters even with the feature removed, suggesting that the 
algorithm is consistent. The overall FOM for a clustering 
algorithm is the sum of these values over all features, leaving 
each one out one at a time.  
 Heuristically speaking, a clustering algorithm that pro-
duces consistent clusters should be able to predict removed 
features, and therefore would have a low FOM index. How-
ever the FOM performance based on simulated data is usu-
ally below that of simpler validation indices, including many 
internal ones. This fact, coupled with the necessity of repeat-
ing clustering many times, makes this measure one of the 
last choices for selecting a validation index [20].  

4.2.2. Stability  

 The instability index measures the ability of a clustered 
data set to predict the clustering of another data set sampled 
from the same source [48].  
 Stability is measured by first dividing the set of points to 
be clustered in two parts. The clustering algorithm under 
examination is applied to the first part, and the labels ob-
tained over these points are used to train a classifier that par-
titions the whole space. Both the original clustering algo-
rithm and this classifier are applied to the second collection 
of points, generating two sets of labels. The disagreement 
between these labels, averaged over repeated random parti-
tions of the points, defines the instability of the clustering 
algorithm.  
 The instability index depends on the number of clusters, 
and therefore needs to be normalized when used for model 
selection [48]. The normalization is obtained by dividing by 
the instability obtained when using a random estimator as the 
classifier.  
 Another issue affecting the instability index is the selec-
tion of the classification rule, which can strongly influence 

the results [48, 20]. Also, simulation studies show that this 
index does not perform better than other relative and internal 
indices, though it is one of the most time consuming indices 
since it involves the repeated application of a clustering al-
gorithm and training a classifier.  

4.3. External Validation Indices  

 The last family of indices, called external validation in-
dices, compares properties of an algorithm’s proposed clus-
ters against that of known true clusters.  

4.3.1. Hubert’s Correlation  

 The Hubert  statistic measures the correlation between 
the co-occurrence matrices (a matrix with entry I(i, j) = 1 if 
objects i and j belong to the same cluster and I(i, j) = 0 oth-
erwise) of both the expected partition and the one obtained 
by applying a clustering algorithm [39]. It essentially ex-
ploits the notion that similar partitions have similar co-
occurrence matrices, which in turn will have a high correla-
tion.  
 One great advantage of this measure is that it does not 
rely on permutations of the labels, since the co-occurrence 
matrices are independent of the labels used to define the par-
titions. Furthermore, simulation studies have reported good 
performance for this measure when predicting the error of 
the clustering algorithm [20].  

4.3.2. Rand Statistics, Jaccard Coefficient, and the Folkes 
and Mallows Index  

 These measures analyze the relationship between pairs of 
points using the co-occurrence matrices for the expected 
partition and the one generated by the clustering algorithm 
[39]. For a given pair of points, x and y, there are four possi-
bilities: (a) x and y fall in the same cluster in both the ex-
pected and the computed partition, (b) x and y fall in the 
same cluster in the computed partition, and in different clus-
ters in the expected partition, (c) x and y fall in the different 
clusters in the computed partition, but in the same cluster in 
the expected partition, or (d) x and y fall in different clusters 
in both the expected and the computed partition.  

 The measure of disagreement between the partitions is 
quantified by the number of pairs of points that fall in each 
category. Let a, b, c, and d be the numbers of pairs of differ-
ent points that belong to situations (a), (b), (c), and (d), 
respectively, and let M = n(n  1)/2 be the number of pairs of 
different points. Some indices to measure the agreement be-
tween the partitions based on these values are the Rand sta-
tistic, defined by R = (a + d)/M, the Jaccard coefficient, de-
fined by J = a/(a + b + c), and the Folkes and Mallows index,
defined by ))/())(/((FM caabaa ++= .

 The Rand statistic measures the proportion of pairs of 
vectors that agree by belonging either to the same cluster (a)
or to different clusters (d) in both partitions. The Jaccard 
coefficient measures the proportion of pairs that belong to 
the same cluster (a) in both partitions, relative to all pairs 
that belong to the same cluster in at least one of the two par-
titions (a + b + c). Finally, the Folkes and Mallows index 
measures the geometric mean of the proportion of pairs that 
belong to the same cluster in both partitions (a) relative to 
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the number of pairs that belong to the same cluster for at 
least one partition, (a+b and a+c). In simulation studies these 
measures perform well at predicting misclassification rate 
[20].  

5. COMPARATIVE ANALYSIS 

 In sections 5.1 through 5.3, we review results from sev-
eral comparative studies on the performance of clustering 
algorithms and validation indices. We also include results 
from a new simulation study comparing the general perform-
ance of classical clustering algorithms in section 5.4. 

5.1. Effect of Replicates on Clustering Error  

 The goal of earlier work in [12] was to study how repli-
cation, or repeated realizations of an experiment, could be 
used to reduce the error of clustering algorithms when ap-
plied to microarray data. The results were displayed as error 
graphs, giving the misclassification rate as a function of the 
number of replicates. Replicated data was averaged to reduce 
variability, simulating technical or biological replicates used 
in microarray based experiments. 
 The amount of replication was varied from 1 to 20 repli-
cates. The algorithms tested were K-means, fuzzy c-means, 
SOM and hierarchical (with both Euclidean distance and 
correlation distance metrics). The basic design of each ex-
periment was to generate synthetic data with distributions 
obtained from real microarray data, vary the amount of dis-
persion (variance) of the data, and measure the error of the 
algorithms under the different amounts of replication. 
 The article in [12] showed how the misclassification rate, 
later formalized in [19], could be used to assert the perform-
ance of several algorithms under conditions similar to the 
ones prevailing in microarray studies. Unsurprisingly, the 
results demonstrated that lower variance and more replica-
tions tend to yield greater precision. It also provided a model 
to evaluate and select the best algorithm for a particular data 
set and find the amount of replication needed. 
 Fig. (2) shows examples of the results of this analysis. 
Example (a) illustrates how a low number of replicates re-
sults in a large number of clustering misclassifications, while 

in example (b) a larger number of replicates improves per-
formance for the same clustering algorithm. 

5.2. Using Learning to Improve Performance  

 In [19, 27] the authors have presented a probabilistic the-
ory of clustering, including error estimation (testing) and 
learning (training). As discussed in section 2.2, their key 
insight is that while classification theory designs operators 
on random variables, the theory of clustering should be 
based analogously on operators over random sets. Thus the 
clustering problem is best viewed as a problem of learning: 
given a collection of labeled training data, where each train-
ing sample is now a whole set of data drawn from a labeled 
point process rather than a single labeled point from a ran-
dom variable, we aim to design a cluster operator that can 
use this training data effectively to estimate the partitions for 
any new data sets we observe that are drawn from the same 
point process.  
 In these papers, the authors compare the kNN clustering 
rule described in section 2.2 to traditional clustering algo-
rithms. They considered several models for the clusters and 
showed that for a sufficiently large number of training sets, 
the performance of trained cluster operators surpasses that of 
all classical clustering algorithms considered. An example is 
provided in Fig. (3), where error rate is graphed as function 
of the number of training samples. In this example, the ran-
dom sets were generated by Gaussian and circular distribu-
tions with random translations. Without learning, the Fuzzy 
C-means algorithm clearly outperforms the other classical 
algorithms, but they all are outperformed by the trained clus-
ter operator when enough training sets are provided.  

5.3. Association of Indices with Error Measure  

 In [20], a number of proposed validity measures were 
examined as to how well they correlate with clustering error 
across a number of clustering algorithms and random-point-
set models. To quantify the degree of similarity between the 
validation indices and the clustering errors, we used Ken-
dall’s rank correlation between their values.  
 The results indicated that, overall, the performance of 
validity indices is highly variable. For complex models or 

Fig. (2). (a) Results from data simulated with high variability and no replicates. (b) Results from data simulated with high variability and 
three replicates. 
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when a clustering algorithm yields complicated clusters, both 
the internal and relative indices fail to predict the error of the 
algorithm. Some external indices appeared to perform well, 
whereas others did not. 
 It was concluded that one should not put much faith in a 
validity score unless there is evidence, either in terms of suf-
ficient data for model estimation or prior model knowledge, 
that a validity measure is well-correlated with the error rate 
of the clustering algorithm. 
 Fig. (4) shows examples of scatter plots between a few 
validation indices and the misclassification error [20]. In this 
figure, we can see how bad the correlation is between the 
clustering error and both the FOM (c) and stability (d) indi-
ces. It also shows differences between external indices: for 
this model the Rand statistic (e) is excellent with a one to 
one relationship with error, but the Folkes and Mallows in-
dex (f) starts to disagree with the error when the error is 
large. 

5.4. Performance of Classical Clustering Algorithms  

 In this section we compare several classical clustering 
algorithms relative to three measures of performance: mem-
ory usage, computational time, and error rate. The algo-
rithms considered in this study are K-means (KM), fuzzy c-
means (FCM), hierarchical with the Euclidian distance met-
ric and complete, single, and average linkages (HCEc, 
HCEs, and HCEa, respectively), hierarchical with the cen-
tered correlation based metric and complete linkages (HCC), 
SOM with a 1-dimensional grid using Euclidean distance 
and Gaussian type neighbors, and the EM algorithm with an 
equal spherical variance model.  
 Our random process model uses simple Gaussian distri-
butions for each cluster, with the number of samples per 
cluster as constant as possible. We use a fixed mean vector 
template model for the centers of the clusters, meaning that 
the center of each cluster is always fixed in the same location 
for all realizations of the random point process. Furthermore, 

each center was placed on a 2 dimensional grid. For exam-
ple, 8 classes were represented with the centers of each clus-
ter on a 2 4 rectangle, 16 classes by a 4 4 square, and 32 
classes by a cross-shaped pattern extending the 4 4 square. 
In this way, as we increase the number of clusters we are 
simply expanding the number of nodes used in this grid. The 
same grid is used in all experiments regardless of the number 
of dimensions, thereby giving comparable results between 
simulations with different numbers of clusters and dimen-
sions.  
 We report how our three measures of performance scale 
with the complexity of the problem to solve (the number of 
dimensions, samples, clusters, and the variance of each clus-
ter). Each experiment was defined by a cluster model with 
parameters selected from the following options:  
• Number of dimensions: D = 2, 4, 8, 16, 32, 64, 128 
• Total number of points: n = 50, 100, 200, 500, 1000, 

2000, 5000 
• Number of clusters: K = 2, 4, 8, 16, 32 
• Variance within each cluster (compactness): 2 = 0.1, 

0.25, 0.5, 1, 2.5, 5 
 These results provide some insight on the strengths and 
weaknesses of each algorithm, and their suitability in differ-
ent experimental conditions.  

5.4.1. Maximum Memory Usage and Computational Time  

 To study memory usage, we examined our source code 
for each algorithm and calculated the maximum memory 
allocated to defined variables. We exclude from the analysis 
any input and output memory requirements that all algo-
rithms have in common, namely the input data (an n D ar-
ray), the number of samples (n), the number of dimensions 
(D), the desired number of clusters (K), and the output clus-
ter labels (a length n vector). We assume 4 bytes are required 
for integers and 8 bytes for floating point variables. To re-
port average computational time, all experiments were exe-
cuted on similar computers to obtain comparable results.  
 Our implementation of FCM uses KM to initialize the 
clusters, and EM calls FCM to initialize clusters, which adds 
a bit of time and memory to each of these algorithms. A 
summary of our memory results is presented in Table 1,
along with examples from a representative selection of ex-
periments. Run times for the same experiments and the cor-
responding values of K, D and n used in each experiment are 
shown in Table 2 for comparison.  
 The SOM algorithm usually requires the smallest amount 
of memory, which is independent of the number of samples, 
n. The KM and SOM algorithms are consistently among the 
fastest algorithms, and they are especially fast when there are 
a large number of clusters. See for example experiment 2 in 
Table 2. However, we will see in the next section that the 
clustering error of these algorithms can be relatively high in 
this case. In high dimensions, the KM, SOM, and FCM algo-
rithms have comparable running times, although FCM is 
more sensitive to the number of clusters.  
 The EM algorithm tends to have high memory require-
ments to hold nK conditional probabilities and is generally a 
middle performer with erratic results in terms of computa-

Fig. (3). A comparison of the error of classical clustering algo-
rithms vs. a trained cluster operator as a function of the number of 
training samples. 
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Fig. (4). Scatter plots between some validation indices and the misclassification error. (a) Dunn's validity index, (b) Silhouette index with 
Euclidean distance, (c) Yeung's figure of merit, (d) Stability with 3NN, (e) Rand statistic, (f) Folkes and Mallows index. 

Table 1. Equations for Maximum Memory Usage in Each Clustering Algorithm and Three Examples 

Algorithm Memory Usage (in Bytes) Exp. 1 Exp. 2 Exp. 3 

KM 4n + 8K(2D + 1) + 72 8152 8712 12184 

FCM 4K(6n + 4D + 3) + 114 96202 768818 100234 

SOM 8KD + 132 164 388 2180 

HC 16n2 + 40n + 56 64080056 64080056 64080056 

EM 4K(10n + 12D + 7) + 8D(n + 2D + 2) + 214 192558 1314294 2484750 

Table 2. Average Run Times for Three Representative Experiments, in Milliseconds 

Variance KM FCM SOM HCEc HCEs HCEa HCC EM 

Experiment 1: K = 2, D = 2, n = 2000 

0.25 0  0  20  4220  4280  4280  4360  0  

1.0 0  20  0  4260  4180  4160  4260  140  

5.0 0  80  0  4140  4140  4160   540  

Experiment 2: K = 16, D = 2, n = 2000 

0.25 16  184  8  5072  5128  5496  5920  592  

1.0 16  840  0  5816  5872  6216  6440  936  

5.0 24  944  0  6512  7576  6936  6904  1216  

Experiment 3: K = 2, D = 128, n = 2000 

0.25 142  114  114  5828  5800  5828  8057  742  

1.0 142  171  114  5828  5828  5828  8057  5457  

5.0 142  171  142  5828  5828  5828  8085  4828  
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tional time. This unpredictability may be exacerbated in our 
implementation, which occasionally starts over to avoid as-
signing empty clusters.  
 Memory allocation for the HC algorithm only depends on 
n, and most notably it defines an n n sample distance matrix 
and a size 3 n linkage tree matrix. Although usually the 
slowest algorithm, not surprisingly it has a very predictable 
execution time which depends almost entirely on the total 
number of samples for all clusters. This is because it always 
builds the same sized tree no matter the nature of the sam-
ples it is trying to cluster.  

5.4.2. Clustering Error Results  

 In this section, we report the clustering error between the 
generated cluster labels and the true classes, as defined in 
section 2.1. These results are provided in four sets of graphs. 

Fig. (5) contains 12 plots of the error rate (y-axis) against the 
variance of each cluster (x-axis), with each plot representing 
a different fixed set of values for the parameters K, D, and N.
These best illustrate the effect of increasing the variance of 
the clusters in various scenarios. Similarly, Figs. (6-8) each 
contain several plots of the misclassification error against the 
number of classes, dimensions, and samples, respectively. 
All plots use a log scale on the x-axis.  
 At the highest levels of variance where the true clusters 
are highly mixed, for example with 2 = 2.5 and 2 = 5, there 
is not much any algorithm can do to discern the classes. Per-
formance for all algorithms tends to converge to that of a 
random cluster label assignment, which may be considered a 
baseline for comparison and is represented by thick solid 
lines in our plots.  

Fig. (5). Performance with fixed templates and means in a planar grid, with respect to variance. 
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Fig. (6). Performance with fixed templates and means in a planar grid, with respect to the number of clusters.

 For K = 2, D = 2, and n = 100, see the upper left plot in 
Fig. (5). At low variance, the best algorithms are FCM, 
SOM, KM, and EM, followed by HCEc and HCEa, and fi-
nally the HCEs and HCC algorithms trail behind. At higher 
variances, the EM algorithm does a little more poorly than 
FCM, SOM, and KM. Meanwhile, HCC starts to improve 
and beats the Euclidean based HC algorithms to approach 
the performance of the FCM, SOM, and KM algorithms. 
Generally we’ve found that using the current model and ex-
cepting very extreme cases, the FCM algorithm tends to have 
the lowest misclassification error with the KM, SOM, and 
EM algorithms also performing competitively.  

5.4.3. Clustering Error Discussion  

 Our study revealed advantages and disadvantages for 
each clustering algorithm we considered. The following dis-
cussion compares algorithms and covers our observations in 
detail to give a general idea on which algorithm might be the 
most suitable for a given set of experimental parameters.  
 At least for simple Gaussian distributed models, it’s hard 
to find a scenario where the HCEs algorithm should be used. 
In the majority of cases we simulated, it has a higher error 
rate than random cluster labels and should only be consid-
ered in very low variances. For example, in the left column 
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of Fig. (6) it achieves zero error for all K, along with all the 
other Euclidean distance based hierarchical algorithms, while 
KM, SOM, FCM, and EM have increasing errors as the 
number of clusters grows. However in the second and third 
columns of the same figure, which consider the same pa-
rameters with increased variance, the HCEs algorithm often 
performs even worse than random labels, especially when 
there are a small number of clusters. It should be noted that 
with more complex cluster shapes and arrangements, the 
KM, FCM, HCEc, and other usual methods may fail to dis-
criminate the clusters, while the HCEs algorithm with single 
linkage may have an advantage (in low noise) because it is 
the only one that does not look for circularly shaped clusters.  

 With extremely low variances ( 2 = 0.1 or less—in this 
case the clusters are almost not overlapping), the HCEc, 
HCEs and HCEa algorithms are the best performers. This is 
one exception where the KM, SOM, and EM algorithms, and 
most notably the high performing FCM algorithm, do not do 
so well, especially in high classes or dimensions. As seen in 
the first column of Fig. (6), with any more than 4 classes 
these algorithms perform relatively poorly while the Euclid-
ean distance based HC algorithms achieve a zero error rate 
regardless of the number of classes. This may be due to the 
difficulty in finding good initial seeds [12]. However, recall 
that the HCEs algorithm fails even at moderately low vari-
ances, and also the HCEa algorithm breaks down quickly as 

Fig. (7). Performance with fixed templates and means in a planar grid, with respect to the number of dimensions. 
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we increase the number of dimensions; see Fig. (7) where in 
almost all the plots the HCEs and HCEa algorithms approach 
an error rate worse than that of random labels.  
 Although the HCEc, HCEs, and HCEa algorithms per-
form well in low variance, the HCC algorithm should not be 
used in this case. In almost all of the graphs in Fig. (5), on 
the left edge of the plots where 2 = 0.1 this algorithm has a 
very high error rate while most of the other algorithms have 
nearly zero error. Also, HCC should be avoided when a high 
number of clusters is expected, as demonstrated in the third 
row of Fig. (5) where this algorithm is worse than random 
labels for all variances. However, given a small or moderate 

number of clusters (with high variance), the HCC algorithm 
can rival FCM, SOM, and KM; see the top row of Fig. (5).  
 For a fixed number samples, as we increase the number 
of clusters the EM and FCM algorithms tend to do very 
poorly. This is clear from the top row of Fig. (6). The situa-
tion seems to be a little better with more samples, as in the 
last row of Fig. (6). In the second and third columns of the 
same figure, note that in these moderate to high variances the 
KM algorithm does very well for any number of clusters. 
Meanwhile, FCM, EM, and SOM tend to do well only for a 
small number of clusters, and HCEc and HCEa do well when 
there are a large number of clusters.  

Fig. (8). Performance with fixed templates and means in a planar grid, with respect to the total number of samples. 
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 In low dimensions, increasing the number of samples 
usually does not improve the error rate. See for example the 
top row of Fig. (8). However in higher dimensions, some 
clustering algorithms can use a large number of samples to 
overcome the difficulty of clustering with a large number of 
features. To see this effect, consider the middle column of 
Fig. (8). In the top plot we have D = 2 and here FCM has a 
nearly constant error rate for all n, at a little below 20%. In 
the next plot, we have D = 8 and we see that at least n = 200 
samples are needed to achieve what appears to be an error 
floor a bit below 20%. Finally, in the third plot we have an 
extreme case with D = 128, where we need at least n = 2000 
points, but with this many samples we can again achieve just 
below 20% error. In contrast, the HC and SOM algorithms 
seem to be poor at using additional samples to improve error 
rate. See the third row, middle column of Fig. (8), where all 
of the HC algorithms and the SOM algorithm actually have 
increasing error as the number of samples is increased, while 
the FCM and KM algorithms show significant improvement.  
 The EM algorithm improves with increasing sample size 
as well, in the safety of low variance or high dimensions. 
Though strangely, in higher variance situations a high num-
ber of samples appears to become a disadvantage. This phe-
nomenon is illustrated in the upper right plot of Fig. (8) (K = 
2, D = 2, 2 = 1), which reveals a weakness to large sample 
size, and in the third row, middle column of the same figure 
(K = 2, D = 128, 2 = 0.5), where it rivals the performance of 
FCM at the highest number of samples. Generally, the EM 
algorithm is excellent in high dimensions, especially in cases 
with low variance. This is seen clearly in the first and middle 
columns of Fig. (7).  

6. CLUSTERING APPLIED TO GENOMICS  

 Data clustering has many applications, but in the last 
several years it has been applied increasingly to genomic 
studies and gene expression data [5, 6, 49, 15]. Each mi-
croarray slide can provide expression measurements for 
thousands of genes, and clustering is a useful exploratory 
technique to analyze this data. Through “guilt by associa-
tion,” it can group similar genes together and aid biologists 
in identifying potentially meaningful relationships between 
them, while reducing the amount of information to analyze. 
Genes grouped together potentially have related functions or 
are co-regulated, as demonstrated by other evidence such as 
common promoter regulatory sequences and experimental 
verification. Often, there is the additional goal of identifying 
a small subset of genes that are most diagnostic of sample 
differences. Time-series clustering groups together genes 
whose expression levels exhibit similar behavior through 
time, with similarity considered suggestive of possible co-
regulation.  
 Another common use of cluster analysis is the grouping 
of samples (arrays) by similarities in expression patterns. An 
expression pattern is effectively a complex phenotype, and 
clustering analysis is used to identify samples with similar 
and different phenotypes. In medical research, this approach 
allows the discrimination between pathologies based on dif-
ferential patterns of gene expression, rather than relying on 
traditional histological methods. For instance, Eisen et al. [5] 
used cluster analysis to identify genes that show similar ex-

pression patterns over a wide range of experimental condi-
tions in yeast.  
 The main assumption underlying unsupervised cluster 
analysis for gene expression data is that genes belonging to 
the same biological process or in the same pathway would 
have similar expression over a set of arrays (be it time-series 
or condition dependent). A large number of papers have been 
published describing algorithms for microarray data cluster-
ing [5, 8, 11, 50], but few analyze the relationship between 
the algorithms and the information that is supposed to be 
derived from the analysis [42]. In addition, these approaches 
are challenged by the large number of variables or genes to 
study, a limited understanding of the complete function of 
many genes, the small number of samples available, and a 
lack of knowledge in the underlying classes or subclasses.  
 Gene expression profiles refer to the expression values 
for a particular gene across various experimental conditions, 
or many genes under a single experimental condition. This 
distinction is a key point in the analysis to either reveal the 
responsiveness of genes (profiling), or discover new classes 
of genes for classification taxonomy. A great number of pa-
pers apply clustering algorithms to gene expression profiles, 
and in the following sections we provide examples of the 
two most common applications: the detection of co-
expressed genes, and the discovery of sub-classes of dis-
eases.  

6.1. Detection of Co-Expressed Genes  

 Clustering genes is generally used to find groups of genes 
with similar expression, across either samples or time series, 
to generate hypotheses on the relationship between genes 
inside the same groups.  
 Johnson et al. [51] used a combination of statistical and 
clustering methodologies to define genomic profiles for early 
stages of the atherogenic response to benzo(a)pyrene, an 
environmental hydrocarbon that initiates oxidative stress in 
vascular smooth muscle cells. K-means, fuzzy cmeans, and 
hierarchical clustering were applied to genes found to be 
statistically significant (via ANOVA) to identify genes 
modulated by atherogenic insult in a redox-sensitive manner. 
These three non-supervised methods identified clones that 
were highly up-regulated by pro-oxidant alone, unaffected 
by antioxidant pretreatment, and neutralized by combined 
chemical treatments.  
 In [52], the authors proposed the use of Model Based 
Clustering [11] to group similar sequences in time series 
microarray data, with the goal of determining prototypes of 
expression showing patters, e.g., cyclic patterns. Using this 
technique, the authors were able to capture the qualitative 
behavior of time series data, grouping together genes with 
the same behavior.  

6.2. Discovery of Sub-Classes of Diseases  

 Clustering techniques may be used to identify unrecog-
nized tumor subtypes by, for example, applying a clustering 
algorithm to the samples in a set of data to group them based 
on similar gene expressions. If an initial partition agrees with 
prior biological understanding, further refining (sub-
partitions) may reveal previously unknown sub-classes in 
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cancer or other diseases. After a biological analysis of the 
validity of the newly discovered classes, they can then be 
used as input for the supervised training of a classifier used 
to derive improved prognoses based on molecular profiles. 
Some examples of this type of application are listed below.  
 In [53], the authors report the discovery of a subset of 
melanomas identified by clustering analysis of gene expres-
sion in a series of samples, and then identified genes that 
discriminate the groups.  

 The authors of [54] presented a study on the classifica-
tion of human cancers for three adult cancer types: diffuse 
large B-cell lymphoma (DLBCL), follicular lymphoma (FL) 
and chronic lymphocyte leukemia (CLL). Their goal was to 
determine whether gene expression profiling could be used 
to find cancer sub-types as molecularly distinct diseases, 
with more homogeneous clinical behaviors. Hierarchical 
clustering and gene profiling facilitated the sub-classification 
of DLBCL into two groups, derived from different stages of 
B-cell differentiation and activation. In this case, the cluster-
ing process and visualization helped to create relevant hy-
potheses.  

 Two way hierarchical clustering was used in [55] to iden-
tify new molecular subtypes of acute myeloid leukemia 
(AML), including two prognostically relevant subgroups in 
AML with a normal karyotype. The unequal distribution of 
some mutations and morphologic subtypes between groups 
with different outcomes supported the concept that distinct 
biological changes may underlie the clinical phenotype. The 
authors also found that samples with two different mutations 
separate into different subgroups, which may lead to the 
identification of cooperating mutations and dysregulated 
pathways that eventuate in leukemogenesis.  

 In the same year, the authors of [56] used clustering on 
tumor samples to support the concept that parathyroid ade-
noma and hyperplasia are distinct entities with different mo-
lecular profiles.  
 Our final example is [57], where hierarchical clustering 
was applied to the microarray profile of 177 primary conven-
tional renal cell carcinomas (cRCCs). The analysis segre-
gated cRCC into five gene expression subgroups that corre-
lated with survival in long-term follow up and was inde-
pendent of grade, stage, and performance status. From the 
analysis, the authors identified a set of 259 genes that predict 
survival after surgery independently from clinical prognostic 
factors.  

7. CONCLUSION  

 The choice of a clustering algorithm and a validation 
index is not a trivial one, more so when applying them to 
biological or medical high throughput data. Clustering algo-
rithms should be chosen based on (a) the nature of the prob-
lem to solve (visualization, detection of sub-classes, etc.), (b) 
characteristics of the objects to be analyzed and the expected 
clusters, and (c) the size of the problem and computational 
power available. Some problems can be tackled by simple K-
means clustering, while other situations may require more 
complex algorithms with larger memory or time require-
ments.  

 Regarding validation indices, in the absence of informa-
tion to apply external validation, intuitively it might seem 
that relative indices should be more desirable than internal 
indices since they try to exploit data redundancy. However, 
most results have shown that even for simple models the 
relative indices do not give substantial improvement over the 
simpler internal indices, while at the same time potentially 
increasing computational costs beyond the limits of a desk-
top PC.  
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