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Abstract: This study proposes a novel multi-network architecture consisting of a multi-scale
convolution neural network (MSCNN) with fully connected graph convolution network (GCN),
named MSCNN-GCN, for the detection of musculoskeletal abnormalities via musculoskeletal
radiographs. To obtain both detailed and contextual information for a better description of the
characteristics of the radiographs, the designed MSCNN contains three subnetwork sequences (three
different scales). It maintains high resolution in each sub-network, while fusing features with different
resolutions. A GCN structure was employed to demonstrate global structure information of the
images. Furthermore, both the outputs of MSCNN and GCN were fused through the concat of the two
feature vectors from them, thus making the novel framework more discriminative. The effectiveness
of this model was verified by comparing the performance of radiologists and three popular CNN
models (DenseNet169, CapsNet, and MSCNN) with three evaluation metrics (Accuracy, F1 score,
and Kappa score) using the MURA dataset (a large dataset of bone X-rays). Experimental results
showed that the proposed framework not only reached the highest accuracy, but also demonstrated
top scores on both F1 metric and kappa metric. This indicates that the proposed model achieves high
accuracy and strong robustness in musculoskeletal radiographs, which presents strong potential for a
feasible scheme with intelligent medical cases.
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1. Introduction

Musculoskeletal diseases are common in medicine and severely affect the health and daily life of
more than 1.7 billion people worldwide [1]. Musculoskeletal diseases are often accompanied by pain in
muscles, bones, or joints and may be a precursor of more severe diseases [2]. Typically, doctors require
information about patients’ symptoms to determine whether further examinations are necessary.
Medical images play an important role in the diagnosis of musculoskeletal diseases. Medical images
are currently analyzed by doctors to determine abnormalities in patients. However, this procedure
might be impacted because heavy workload was imposed on doctors every day. With the accelerated
digitization of modern hospitals, computer-aided diagnostic systems based on medical images provide
an effective means to assist doctors to obtain a more objective judgement and decrease the burden on
doctors. Digital image technology is increasingly wide-spread in the field of medical imagery, among
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which radiographs, computed tomography (CT), and magnetic resonance imaging (MRI) are mostly
used for musculoskeletal diseases [3].

X-ray imaging is a painless method to obtain pictures inside the body using radiation [4].
Specifically, different tissues of the human body have different absorption and transmittance of X rays,
and corresponding data are obtained and processed to obtain the image [5]. CT is another diagnostic
method developed for X-ray; to be specific, absorption and transmission of X-rays are conducted
through the head at a multitude of angles and are then analyzed on a computer. The calculated
results are presented as a series of pictures of slices of the measured object [6]. Magnetic resonance
imaging (MRI) is a type of tomographic investigation, which uses magnetic resonance to obtain
electro-magnetic signals from the human body and could be used to reconstruct the three-dimensional
(3D) structural information of the body in specific clinical situations [7]. Among the three medical
imaging methods, CT offers unique advantages: a large display field, high density resolution, and fast
imaging velocity; however, it also has deficiencies such as the large amount of radiation and its high
cost [8]. MRI can be used to perform 3D reconstruction of body tissues without exposure to radiation;
however, it suffers from low sensitivity to fractures and it is the most expensive among the available
methods [9]. The MRI actually has the highest sensitivity, specificity and accuracy for the detection
of musculoskeletal diseases. However, radiographs have been widely used for the examination of
musculoskeletal diseases since it is sensitive to the musculoskeletal system and has a lower price
compared with both CT and MRI [10]. Moreover, it uses a lower radiation lever than CT [11]. Therefore,
it is a promising, yet challenging, prospect to develop an effective and automatic computer-aided
medical diagnosis method via X-ray imaging with higher accuracy for the detection of abnormalities.

Abnormality detection in musculoskeletal radiographs is treated as a problem of medical image
classification. Various types of machine learning methods have been proposed to address the problem
of medical image classification [12]. Deep learning, using multiple processing layers to learn multiple
levels of representations from data [13], is an advanced, flexible and effective method, and the most
important way to assist doctors in disease diagnosis. Convolution neural network (CNN) [14] is one of
the deep learning methods that has achieved sound performance in medical image classification with
the help of large medical image datasets [15]. CNN has become a standard method for medical image
classification [16], and various deeper network structures have been proposed and applied for medical
image classification.

The residual neural network (ResNet) [17] architecture is one of the best-performing deep
architectures [18]. It introduced a unique module, named residual block, which directly connects the
input to the output, and passes through two convolution layers to maintain information integrity.
The authors of Reference [19] trained ResNet50 [17] for the classification of fundus diseases and
achieved 75% accuracy. The densely connected neural network (DenseNet) [20] is a densely connected
network architecture inspired by ResNet. Each layer of the network is connected to every other layer
to enhance feature propagation and reuse features of different levels. The authors of Reference [21]
trained a 169-layer DenseNet to detect abnormalities in musculoskeletal radiographs. The authors
of Reference [22] trained their own network on a small data set of 1000 images to detect skin
lesions and achieved a best mean average precision (MAP) of 61.6%. High resolution neural network
(HRNet) [23], which was originally designed for human pose estimation, absorbs the characteristics
of ResNet and DenseNet. It uses multiple network branches in parallel and performs feature fusion
between these through skip connections. It achieved impressive results for the task of human pose
estimation. However, convolution layers use local connections and weight sharing to decrease
parameters [24]. Furthermore, this technique ignores the relationships between pixels that are far from
each other [25]. However, when each pixel is considered as a node in a graph, the pixels far from
each other can be connected. The graph convolution network (GCN) [26] is used to integrate node
features and graph topologic information to represent data. Therefore, it not only captures feature
information of nodes but also represents the structural information between nodes. The authors of
Reference [27] developed a variant of graph convolution based on the spectral graph theory and
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achieved state-of-the-art performance on a graph-like data set. However, the training and inference
procedure is time-consuming. The authors of Reference [28] proposed improvements based on the
work of Reference [27] and accelerated the speed of graph convolution by a factor of eight. However,
this is still seven times slower than the classic CNN network, which limits the size of graph data.
Therefore, graph convolution is typically conducted on small graph data for quick convergence [27,28].
This method is not capable to represent significant details in images, which may affect the overall
accuracy of the module.

This paper presents an effective approach for the detection of musculoskeletal abnormalities with
radiographs based on a novel deep learning framework. This framework consists of a multi-scale
two-dimensional (2D) CNN, a fully connected graph convolution neural network, and a fusion module
with the following main contributions:

1. A preprocessing scheme of radiographs is proposed to create an identity map from the original
image to the expected input image, utilizing an image padding method [29] to pad the original
image with square proportions and then zooming it to the appropriate size;

2. The network structure of the CNN is deeply analyzed and a multi-scale network structure with
powerful discriminating ability and characteristics of high-resolution feature map is proposed.
Three different resolution subnetwork sequences are adopted and each sequence is connected to
all other sequences through upsampling or downsampling to perform salient feature fusion;

3. A graph convolutional neural network is employed, with the aim to extract global structure
information and context information of radiographs, while utilizing the embedding method [28]
to abstract the image into graph data. Graph convolution is then conducted on the data to extract
structure features and the context relationship, which is hidden in the graph data;

4. The high accuracy and strong robustness of the proposed framework are demonstrated.
This structure combines the two network streams via concatenation on the flat layer to perform
structure feature and salient feature fusion. It can maintain high-resolution representations, while
obtaining effective representations of the structural features.

The following consists of four parts: Section 2 describes related literature. Section 3 illustrates
the proposed method. Section 4 shows the experiments results and discussion. Section 5 presents
conclusion.

2. Related Works

Generally, medical image processing is an important problem of the application of computer
vision in the medical field. Machine learning, especially deep learning, has played an important role in
medical image representation and classification. To improve model performance, various network
structures are proposed. Here, examples are chosen that are most relevant to introduce this work.

2.1. High Resolution Neural Network (HRNet)

HRNet is a CNN network with the ability to maintain high-resolution information over the
whole course [23]. The entire network block is decomposed into several subnetworks. Let (Ns,r) be a
subnetwork, where s represents the current depth, and r represents the resolution. The subnetwork in
the first resolution is a network sequence that can be defined as:

(N1,1)→ (N2,1)→ (N3,1)→ ...→ (Nn,1), (1)

where n represents the length of the network sequence. A lower resolution subnetwork is added to
gradually and in parallel extend the full network at axis scale. This can be defined as:

(N1,1)→ (N2,2)→ (N3,3)→ ...→ (Nn,n). (2)

Repeated multi-scale fusions are performed through upsampling and downsampling.
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2.2. Graph Convolutional Network (GCN)

Inspired by the significant success of CNN in computer vision, many studies recently redefined the
concept of convolution for graph data. These methods belong to the category of GCN [25]. The authors
of Reference [27] proposed the first important study on GCN and developed a variant of graph
convolution based on the spectral graph theory. This method transfers the filter and graph signal
of the convolution network to the Fourier domain for processing at the same time. However, many
parameters need to be adjusted in the training of the graph convolution method based on spectral
graph theory. The authors of Reference [28] proposed a fast-localized spectral filtering method to
perform convolution on graphs.

3. Proposed Method

The proposed abnormality detection method consists of four main components—a radiograph
preprocessing method to generate the proper input, a 2D CNN that repeatedly fuses multi-scale salient
features, a fully connected GCN that extracts structural features from the downsampled data, and a
fusion module that concats the flattened layer of each network stream. The main contributions of this
work are described in detail in the following.

3.1. Method of Radiographs Preprocessing

In general, radiographs have variable size due to differences in equipment and the acquisition
environment [5]. Therefore, images need to be preprocessed to meet the input of the proposed network.
Improper image preprocessing methods may affect model performance. Therefore, an effective data
preprocessing method is very important for the task of abnormality detection via musculoskeletal
radiographs. The aspect ratio of pixels in the radiographs reflects the proportion of body tissues and
usually contains useful information. To maintain the aspect ratio information without changing the
data distribution of the image, a feasible preprocessing method is proposed, which contains four main
steps. The original image is defined as a matrix IW∗H , where W represents the vertical dimension of
the matrix, and H represents the horizontal dimension of the matrix. A matrix transformation function
is defined to transform the image:

Tf (ImW∗H) =

{
MH∗W ∗ ImW∗H , if W < H

MW∗H ∗ ImH∗W , if W > H,
(3)

where MH∗W represents a matrix with the vertical dimension of H and the horizontal dimension of W.
Columns values of MH∗W range from column (H-W) to column H are all zero, and the rest are all one.
This transforms the original image to a square with L as the edge value. Then, a shrink function is
defined as follows:

Imp = R(Tf (ImW∗H)), (4)

where R(•) represents the resize function to shrink the image to the appropriate size. The method
with an equivalent pseudocode is summarized and listed in the following:

1. Calculate the maximum value between the width and height as L.
2. Create a new square image with L as the edge and 0 as each pixel value.
3. Align the original image with the top left corner of the newly created image and merge both.
4. Shrink the merged image expected size.

An abnormal case was chosen to intuitively demonstrate the algorithm process as shown in
Figure 1. During the whole process, an origin aspect ratio of 512:413 is maintained.
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Figure 1. Preprocessing of images (a) Original image, (b) Padded image, and (c) Resized image.

3.2. Proposed Multi-Scale Convolution Neural Network (MSCNN)

Part I is the MSCNN, which can be described as follows: The MSCNN contains three subnetwork
sequences. Nrd was used to represent each subnetwork. Where r represents the resolution of current
subnetwork, and d represents the depth of current subnetwork. Subnetworks with the same resolution
form a network sequence. Subnetworks with different resolutions are connected by up-sampling or
down-sampling. Convolution kernels in the convolution unit of the three subnetwork sequences are of
different numbers with 64,128,256, respectively. Each kernel is a 3 × 3 filter with a stride size of 1 and a
pad size of 1. Sizes of the corresponding feature maps are defined as W × H × 64, W/2 × H/2 × 128,
and W/4 × H/4 × 256, where W represents the width of input image, and H represents the height of
the input image. Inputs of each are defined as a feature map: X1,X2,. . . ,Xs. The outputs are s response
map: Y1,Y2,. . . ,Ys. The multi-scale fusion process can be defined as:

Yk = ∑s
i=1 a(Xi, k), (5)

where the a(•) function is defined as downsampling or upsampling. k represents from ith resolution
to kth resolution. The downsampling unit is a 2-strided or 4-strided 3 × 3 convolution kernel with
a pad size of 1 according to the target resolution. The upsampling unit contains two parts, firstly,
simple nearest neighbor sampling is adopted to improve the resolution of feature maps with a factor
of either two or four, depending on the target resolution. Then, 1 × 1 convolution are performed to
align the number of channels between subnetworks with different resolutions. The output of MSCNN
is flattened into a feature vector with size 1 × 1 × 512 as input into the fusion module.

3.3. Proposed Graph Convolution Network (GCN)

The second part is GCN and can be described as follows—for the GCN, nearest neighbor
interpolation downsampling is adopted to downsample the original image to the size of W/8 × H/8,
where W represents the width of input image, and H represents the height of the input image. The
corresponding image is then converted to graph data as input g = (V, ε, w), where V represents
vertices in the graph, ε represents a set of edges, and w represents a weighted adjacency matrix that
describes the connection weight between each two vertices while all values in the matrix are set to 1.
The GCN stream contains three main modules, graph convolution module, graph coarsening module,
and graph pooling module. The combined stack of these three modules constitutes the network flow.
The convolution operation on the graph is defined as:

x ∗ gy = U((UTx)
⊙

(UTy), (6)

where
⊙

represents the element-wise Hadamard product, U represents a matrix of eigenvectors,
x represents the feature of the whole graph, and y represents the output of the convolution.
Global average pooling is used as pooling operation on the graph. The GCN block contains six
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convolution units. Furthermore, the output of GCN is then flattened into a feature vector with size of
1 × 1 × 512 as the input into the fusion module.

3.4. Proposed Fusion Module

Output of multi-level fusion convolution network is concatenated with the output of the GCN
to generate the final output. Here, VMSCNN was used to represent the feature vector generated by
MSCNN and VGCN as the feature vector generated by GCN. The concat function was defined as
VOUT = C(VMSCNN ,VGCN), where VOUT represents the feature vector after both vectors have been
joined in sequential order. VOUT is then passed into a fully connected layer to generate the 2D vector.
This procedure can be seen in Figure 2. The final output is generated by the softmax function, which is
defined as:

Pc(x) = exp(y(x))/∑call
c=1 exp(y(x)), (7)

where x represent the classes. Pc(x) represents the probablity of the output to be class x.

Figure 2. Proposed network architecture.

3.5. Proposed Framework

The whole network architecture is shown in Figure 3.
The overall pipeline of the proposed MSCNN-GCN framework is described in Figure 3.

The network is trained through the batch training method. The loss function used in each network
branch is the cross entropy, which can be defined as:

L = − 1
B ∑B

i=1 log(P(Y = ci|Mi, θ)), (8)

where B represents the batch size used for training, Y represents the output of current batch, (Mi, ci)

represents a pair of input data and label of current batch, and θ represents parameters in the network
that need to be adjusted. The total loss of the entire network is a weighted sum of both MSCNN and
GCN losses and the default value of each weight is set to 0.5. The stochastic gradient descent (SGD)
method is used as optimizer. The proposed network is trained in an end-to-end manner.
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Figure 3. The proposed architecture consists of four blocks. Block I shows the preprocessing procedure
for the original image. Block II shows a multi-scale convolution neural network (MSCNN) block,
consisting of three branches, which obtains more detailed information from the preprocessed image.
Block III shows a graph convolution network (GCN) block to extract global structure information
from the downsampled image. Block IV shows a fusion block to demonstrate the classification results
through the concat of the two feature vectors from MSCNN and GCN, respectively.

4. Experiments and Discussion

4.1. MURA Dataset

The MURA dataset (MURA) is a large and representative dataset of musculoskeletal radiographs,
collected by the Stanford ML group with the aim to lead to significant advances in medical imaging
technologies, which can diagnose at the level of experts [30]. MURA contains 40,895 multi-view
radiographic images, including seven body tissues (elbow, finger, hand, humerus, forearm, shoulder,
and wrist), from 14,656 studies (12,173 patients) [21]. Each study was labeled as either normal or
abnormal by radiologists [21]. As shown in Table 1 (showing the details of the MURA), the data set
was separated into two parts, including training set (TS) and validation set (VS). The TS contains
13457 studies with 8280 normal cases and 5177 abnormal cases. The VS contains 1199 studies with 661
normal cases and 538 abnormal cases.

Table 1. Distribution of the MURA data set.

Study
Train Validation

Total
Normal Abnormal Normal Abnormal

Elbow 1094 660 92 66 1912
Finger 1280 655 92 83 2110
Hand 1497 521 101 66 2185

Humerus 321 271 68 67 727
Forearm 590 287 69 64 1010
Shoulder 1364 1457 99 95 3015

Wrist 2134 1326 140 97 3697
Total 8280 5177 661 538 14656

4.2. Evaluation Metrics

F1 score, accuracy, balanced accuracy and Cohen-kappa score were used as metrics in the task.
F1 score is an indicator used to measure the accuracy of dichotomous model in statistics, and can be
considered as a harmonic average of model precision and recall, with a maximum value of 1 and a
minimum value of 0 [29]. The accuracy metric directly reflects the performance of the model while



Sensors 2020, 20, 3153 8 of 14

the Cohen-kappa score is a more robust metric that measures inter-rater agreement for qualitative or
categorical items [31]. The F1 score can be defined as follow:

F1 = 2PR/(P + R), (9)

where P represents precision, R represents recall while P and are defined as follows:

P = TP/(TP + FP), (10)

R = TP/(TP + FN). (11)

Accuracy is defined as:

ACC = (TP + TN)/(TP + TN + FP + FN), (12)

where TP represents true positive, TN represents true negative, FP represents false positive, and FN
represents false negative.

Balanced accuracy is defined as:

BalancedACC = (TPR + TNR)/2, (13)

where TPR represents true positive rate and TNR represents true negative rate.
The Cohen-kappa score [31] is defined as:

k = (PO − Pe)/(1− Pe), (14)

where PO is equal to the accuracy defined above, and Pe represents the hypothetical probability of
chance agreement; to be specific, suppose the true sample number of each class is (a1, a2, . . . , ac),
and the number of samples predicted for each category is (b1, b2, . . . , bc). Then, c represents the total
number of class and the total number of samples is n. Pe can be described as:

Pe = (a1 ∗ b1 + a2 ∗ b2 + · · ·+ ac ∗ bc)/n2. (15)

4.3. Results and Discussion

In this study, two sets of experiments were conducted: experiment A and experiment B, to evaluate
the performance of our proposed framework. The same framework structure was applied to each
category in the MURA dataset. All experiments were conducted with the MURA dataset and performed
on four Nvidia GTX 2080Ti GPUs and Intel Xeon E5-2600 v4 3.60GHz CPU using the Pytorch
framework.

4.3.1. Experiment A: F1 score (MSCNN-GCN, DenseNet169, Radiologists)

DenseNet169 is a 169-layer densely connected convolutional network which was developed
to detect abnormalities in musculoskeletal radiographs in the MURA dataset by the Standford ML
group [21]. In this experiment, DenseNet169, radiologists, and MSCNN-GCN were compared with F1
score on the MURA. The TS was split into 10 folds for each type of musculoskeletal radiographs based
on a stratified sampling method to train the developed model. A 10-fold cross-validation approach
was adopted to evaluate the performance of the trained model. Samples in VS were employed to verify
the performance of the proposed framework.
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As shown in Table 2, radiologists [21], DenseNet169 [21], and the proposed model were compared
with regard to the F1 metric. The performance of the proposed model outperformed not only the
DenseNet169, but even the radiologists which can be seen from Figure 4.

Table 2. Accuracy and balanced accuracy obtained by the proposed framework.

Image Train-Validation Accuracy Validation Accuracy Validation Balanced Accuracy

Finger 93.90% 87.08% 87.53%
Humerus 93.51% 92.19% 92.06%

Elbow 93.19% 89.25% 89.70%
Forearm 94.19% 89.82% 90.24%

Hand 93.72% 91.88% 92.47%
Shoulder 94.89% 93.12% 93.36%

Wrist 96.94% 95.20% 95.27%

Figure 4. F1 scores of radiologists, DenseNet169 and the proposed model.

The feature vectors obtained by graph convolution and the feature vectors obtained by
high-resolution multi-branch CNN were combined. In this manner, the global structural features
and local significant features of the image were well fused, to obtain a more sufficient and effective
representation of the image. Experimental results showed that this model achieved an accurate and
robust diagnosis effect for abnormality detection of musculoskeletal diseases with an overall score
of 90.9%, which is 2.5% higher than that achieved by radiologists and 5% higher than that of the
DenseNet169 model. Besides, as shown in Figure 5, we also randomly selected two samples (one
abnormal sample and one normal sample) of shoulder from the VS and visualized the salient features
that contributed the most to the prediction output of the MSCNN-GCN given a target category in
a heatmap manner. The Figure 5a is the abnormal sample which was predicted as abnormal by the
MSCNN-GCN while the Figure 5b is the normal sample which was predicted as abnormal by the
MSCNN-GCN. From where we can obtained that the MSCNN-GCN is sensitive to the joints of bones.
The accuracy metrics of the proposed framework are listed in Table 3. Train-validation accuracy is the
average accuracy of the 10-fold cross validation result while Validation accuracy is the result of VS.
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Figure 5. Examples of heatmaps for the shoulder’s radiographys predicted by the proposed framework.
(a) is an abnormal sample where the green arrow on the right pointed to the salient features
corresponding to model’s correct prediction. (b) is a normal sample where the red arrow on the
right pointed to the salient features corresponding to the model’s wrong prediction.

Table 3. Kappa statistic score obtained by DenseNet169, CapsNet and MSCNN-GCN.

Image DenseNet169 (95% CI) CapsNet (95% CI) MSCNN-GCN (95% CI)

Finger 0.389 (0.446, 0.332) 0.735 (0.959, 0.512) 0.744 (0.806, 0.682)
Humerus 0.600 (0.642, 0.558) 0.754 (0.896, 0.612) 0.843 (0.936, 0.749)

Elbow 0.710 (0.745, 0.674) 0.733 (0.754, 0.713) 0.774 (0.831, 0.717)
Forearm 0.737 (0.766, 0.707) 0.785 (0.795, 0.775) 0.837 (0.912, 0.762)

Hand 0.851 (0.871, 0.830) 0.835 (0.856, 0.881) 0.855 (0.897, 0.814)
Shoulder 0.729 (0.760, 0.697) 0.856 (0.876, 0.836) 0.862 (1.000, 0.678)

Wrist 0.931 (0.940, 0.922) 0.908 (0.917, 0.898) 0.936 (0.948, 0.924)
Average 0.705 (0.700, 0.710) 0.801 (0.865, 0.738) 0.836 (0.911, 0.761)

4.3.2. Experiment B-Kappa Score (MSCNN-GCN, CapsNet and DenseNet169)

CapsNet was proved to be capable of determining the abnormality in musculoskeletal radiography
with good accuracy on the MURA dataset by authors in this work [32]. To ensure the fairness in the
comparison experiments, the same dataset split method was used in both TS and VS as that applied by
the authors in this work [32]. The Cohen-kappa scores are listed in Table 4. The figures in brackets are
kappa scores for two categories (normal and abnormal) and those outside the brackets are means of
the two kapa scores. As shown in Figure 6, these results were compared with those of two models
(DenseNet169 [21], CapsNet [32]) that have been published on each type in MURA dataset.
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Figure 6. Kappa score of DenseNet169, CapsNet and MSCNN-GCN.

Table 4. F1 score obtained by radiologists, DenseNet169, and MSCNN-GCN.

Image Radiologists(95% CI) DenseNet169(95% CI) MSCNN-GCN(95% CI)

Finger 0.781 (0.638, 0.871) 0.792 (0.588, 0.933) 0.871 (0.842, 0.900)
Humerus 0.895 (0.774, 0.976) 0.862 (0.709, 0.968) 0.919 (0.875, 0.968)

Elbow 0.858 (0.707, 0.959) 0.848 (0.691, 0.955) 0.892 (0.865, 0.920)
Forearm 0.899 (0.804, 0.960) 0.814 (0.633, 0.942) 0.903 (0.777, 0.989)

Hand 0.854 (0.676, 0.958) 0.858 (0.658, 0.978) 0.882 (0.833, 0.952)
Shoulder 0.925 (0.811, 0.989) 0.857 (0.667, 0.974) 0.931 (0.838, 1.000)

Wrist 0.958 (0.908, 0.988) 0.968 (0.889, 1.000) 0.969 (0.912, 0.991)
Average 0.884 (0.843, 0.918) 0.859 (0.804, 0.905) 0.909 (0.849, 0.960)

Experiments were conducted to compare the performance of single MSCNN and MSCNN-GCN
to demonstrate the benefits of combining GCN with MSCNN. As shown in Figure 7, the performance
of MSCNN-GCN was higher than that that of MSCNN because of the contributions of GCN.

Figure 7. Comparison between MSCNN and MSCNN-GCN.
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The MSCNN branch in the proposed model can obtain the local feature representation of an
image with different sizes of receptive fields and fuses multi-scale features via skip-connection,
thus improving the reusing of features. Different sizes of receptive fields are activated at the same
resolution in the proposed MSCNN branch so that more abundant local features are obtained. In this
manner, the detailed information of the radiographs is better preserved. The GCN branch in the
proposed framework can abstract images into graph data and extract features of graphs at low
resolution; thus, the relationship between faraway pixel nodes could be identified. The overall
structural features of the image are also well described.

5. Conclusions

This study presents a multi-network framework (MSCNN-GCN), which consists of a multi
branch 2D CNN and a fully connected GCN, for the detection of automatic abnormalities in
musculoskeletal radiographs. The performance of the developed framework surpasses that of
current state-of-the-art models on the MURA with three evaluation metrics (accuracy, F1 score,
and kappa score). The abnormalities-detection-level of the proposed model is also not worse than
that of radiologists. The benefits of using multi-scale salient features in 2D CNNs were analyzed,
which allowed the combination of both the detail information and contextual information to better
describe the characteristics of radiographs. The advantages of using global structure information
in GCNs are discussed, which enables the capture of additional feature information of nodes and
connection relationships between nodes. Furthermore, an efficient feature-fusion architecture was
proposed, which is designed to transform different types of features into a uniform feature space and
concat operation was used to complete feature fusion, for the processing of bone radiographs. In the
future, the potential of this method will be explored on more challenging tasks (such as lesion location
or segmentation) for other diseases such as pulmonary nodules, arteriosclerosis, and lymph nodes on
CT images to expand the application of the proposed framework. We have an optimistic expectation
that the framework has a promising potential for the applications of deep learning methods in the field
of intelligent medical cases.
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