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ABSTRACT
The ‘Retinoic Acid-Inducible G-protein-coupled receptors’ or RAIG are a group 

comprising the four orphan receptors GPRC5A, GPRC5B, GPRC5C and GPRC5D. As the 
name implies, their expression is induced by retinoic acid but beyond that very little is 
known about their function. In recent years, one member, GPRC5A, has been receiving 
increasing attention as it was shown to play important roles in human cancers. As 
a matter of fact, dysregulation of GPRC5A has been associated with several cancers 
including lung cancer, breast cancer, colorectal cancer, and pancreatic cancer. Here 
we review the current state of knowledge about the heterogeneity and evolution of 
GPRC5A, its regulation, its molecular functions, and its involvement in human disease. 

INTRODUCTION

The G protein-coupled receptor, class C, group 
5, member A (GPRC5A), also known as Retinoic acid-
induced gene 3 (RAI3) or Retinoic acid-induced gene 1 
(RAIG1) was first cloned in 1998 [1]. GPRC5A is primarily 
expressed in lung and lowly expressed or absent in other 
tissues (Figure 1A). In normal tissues the GPRC5A protein 
mainly locates at plasma membrane, perinuclear vesicle, 
endoplasmic reticulum, Golgi apparatus and extracellular 
vesicular exosomes [1-5] – see also the Human Protein 
Atlas at www.proteinatlas.org. Previous GPRC5A 
studies indicated that it plays important roles and that 
its dysregulation could result in many different types of 
cancer in humans (Figure 1B) as well as other diseases [5-
13]. To better understand the field of GPRC5A research, 
here we summarize and discuss what is currently known 
about this gene and its protein.

Heterogeneity and Evolution of GPRC5A gene

GPRC5A is expressed in different mammals and 
other tetrapods as well as in birds, reptiles, amphibians, 
and fish [14]. Phylogenetic analysis shows that the amino 
acid sequence of human GPRC5A shares a high percentage 
of sequence identity with orthologues from other species, 
indicating that it has been conserved in evolution: 99% 
with Pan troglodytes, 76% with Mus musculus, 55% with 

Columba livia, 52% with Ophiophagus Hannah, and 46% 
with Xenopus laevis. See also Figure 2A. In addition to 
GPRC5A, there are three more members in this group 
of receptors, each with different degrees of evolutionary 
conservation. Amino acid sequence alignment of the four 
members shows that GPRC5A shares 31%~42% sequence 
identity with the other three members [15, 16] – see 
also Figure 2B. The four members of group 5 receptors 
have high sequence identity within the transmembrane 
segments while the major difference occurs at N-terminus. 
The N-termini of GPRC5A and GPRC5D are shorter than 
those of GPRC5B and GPRC5C. On the other hand, 
both GPRC5B and GPRC5C contain highly conserved 
cysteines in the first and second extracellular loops 
(highlighted in Figure 2B), but GPRC5A and GPRC5D 
lack this residue [15]. In the absence of a long N-terminus, 
it’s unlikely that GPRC5A can bind an agonist at its 
amino-terminus domain. Instead, agonists may bind to the 
7 transmembrane (TM) of GPRC5A, GPRC5B, GPRC5C 
and GPRC5D, similarly to class A GPCRs [15, 17, 18]. 
Currently, no ligand is known for any of the members of 
RAIG. The human GPRC5A gene contains many Single 
Nucleotide Polymorphisms (SNPs) in its 5´ untranslated 
regions (5´UTR), its coding region, and its 3´UTR (listed 
in Additional file 1): whether these variants have any 
functional impact (through post-transcriptional effects 
or changes in the amino acid sequence) is not currently 
known.
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Transcriptional Regulation of GPRC5A

GPRC5A was first identified as a retinoic acid-
induced gene and its locus contains a novel retinoic acid 
response element (RARE) at its proximal 5´ upstream 
region (Figure 3) [19]. In the absence of retinoic acid, 
retinoic acid receptors bind to the RARE as RAR/RXR 
heterodimers [20, 21], recruiting co-repressor proteins 
and repressing GPRC5A gene transcription. Binding of 
agonist ligands to RAR/RXRs results in dissociation of co-
repressor and recruitment of co-activator proteins, which 
in turn promotes GPRC5A gene transcription (Figure 4) 
[19, 22-26].

The GPRC5A gene locus also contains p53 
consensus DNA binding sequences in the promoter 
region (Figure 3 and Figure 4) [27]. Overexpression of 
wild-type p53 represses GPRC5A expression in 2774qw1 
human ovarian tumor cell line [27]. Both microarray and 
quantitative RT-PCR in MDA-MB-468, BT-20, BT-549, 

and SK-BR-3 cells which contain mutant p53 and in 
T47D, MCF7, ZR-75-1, and BT474 cells which contain 
wild type p53 show that GPRC5A mRNA is up-regulated 
in p53 mutated cell lines [27]. Besides p53 and retinoid 
acid, GPRC5A could be regulated by cAMP as there is a 
cAMP-responsive element (CRE) in its promoter region 
and GPRC5A’s expression could be induced by cAMP 
signaling (Figure 3 and Figure 4). Interestingly, cAMP 
and retinoic acid might synergistically regulate GPRC5A 
expression [28]. In addition to these three regulatory 
elements in promoter region, the ENCODE project has 
identified several additional transcription factors that bind 
to GPRC5A promoter region (Figure 3 and Additional file 
2 and http://genome.ucsc.edu/). 

The GPRC5A gene locus contains multiple BRCA1 
binding sites (Figure 3). BRCA1 could work either as an 
activator or as a repressor by association with different 
other transcription factors [13, 29-37]. A previous study 
showed that knockdown of BRCA1 results in down-

Figure 1: GPRC5A expression. A. Levels of expression of mRNA in different organs and tissues. mRNA expression is measured 
by using RNA-seq. The expression levels are plotted as number of Fragments Per Kilobase of Exon Per Million Fragments Mapped. B. 
Expression of protein in different organs and tissues in both normal and cancer. Protein levels are measured by using immunohistochemistry. 
Different intensities indicate different expression levels. The Figure was compiled using data is from The Human Protein Atlas http://www.
proteinatlas.org/. 
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regulation of GPRC5A expression [13], suggesting that 
BRCA1 may work as a positive activator of GPRC5A 
expression. The locus also contains FOS and JUN binding 
sites (Figure 3). FOS and JUN are encoded by proto-
oncogenes and bind to each other to form the Activator 
Protein-1 (AP-1) complex, which could in turn activate 
gene transcription [38-40]. AP-1 activity is usually 
induced by stimulations such as growth factors, pro-
inflammatory cytokines and is UV-radiation-dependent 
on the MAPK cascade, JNK and p38 [38, 41-43]. As 
GPRC5A expression could be induced by serum in cell 
culture [27, 44], it is very likely that FOS and JUN binding 
sites within GPRC5A gene are functional. 

Another transcription factor MYC also binds to 
GPRC5A promoter region in some cancer cells like HeLa 
and HepG2 cells (Figure 3), whereas not in embryonic 
stem (ES) cells [45]. GPRC5A expression level is lower in 
ES cells than trophoblast and overexpression of MYC in 
ES cells down-regulate GPRC5A mRNA [45]. 

Post-transcriptional Regulation of GPRC5A

MicroRNAs (miRNAs) are small non-coding RNAs 
that function as transcriptional and post-transcriptional 

regulators of gene expression [46] and would be among 
the first candidates to post-transcriptionally regulate 
GPRC5A. However, very little is currently known in this 
regard. In a recent report, GPRC5A mRNA was shown to 
be targeted at its 5´UTR by miR-103a-3p in pancreatic 
cells [47]. This is a very interesting finding considering 
that currently only a handful of examples are known in the 
literature where targeting of a 5´UTR by a miRNA leads to 
the down-regulation of the respective mRNA (Figure 4). 
In this particular case, it was shown that overexpression of 
miR-103a-3p reduces both GPRC5A mRNA and protein 
in cells. In addition to miR-103a-3p, computational 
predictions (Table 1) using the rna22 algorithm [48, 49] 
suggest that many other putative miRNA target sites are 
present along the length of GPRC5A’s mRNA. 

Among the important post-transcriptional regulators 
are also RNA binding proteins (RBPs) [50] as well as long 
non-coding RNAs (lncRNAs) [51-54]. Both are suspected 
of playing roles in post-transcriptionally regulating 
GPRC5A but no data are available at this time [55-57]. 

Figure 2: A. Alignment of human GPRC5A across several species. Identical (*) and conservatively substituted (:) amino acids are 
indicated. Gaps are shown with “-” whereas putative TM segments are over-lined. B. Alignment of the four receptors from the human 
class C group 5. Identical (*) and conservatively substituted (:) amino acids are indicated. Gaps are shown with “-” whereas putative TM 
segments are over-lined.
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Molecular function of GPRC5A

As stated above, GPRC5A’s short N terminus 
makes it unlikely that it binds ligands through that region 
[15]. Chimeric receptors with the N-terminus of the 
metabotropic glutamate receptor 1 (mGluR1) and the 
7 TM region of GPRC5A could bind mGluR1 ligands 
[40], but is not activated [15]. This indicates that the 
signaling transduction cascade may differ in the case 
of GPRC5A from other class C GPCRs. Interestingly, 

overexpression of GPRC5A in Nthy-ori 3-1 cells down-
regulated Gsα expression and reduced intracellular cAMP 
levels compared to cells transfected with the empty vector 
[28]. In turn, cAMP signaling could mediate GPRC5A 
expression by cAMP-responsive element (CRE) motif 
close to GPRC5A gene’s transcription initiation site [28]. 
The results indicate GPRC5A may form a feedback loop 
in regulating cAMP signaling. 

In addition to cAMP signaling, GPRC5A is also 
involved in the NF-κB and STAT3 signaling pathways 
[58, 59] – see also Figure 4. Knockout of GPRC5A in 

Table 1: Number of distinct miRBase miRNAs and target sites that rna22 predicts target GPRC5A 
(P‑val ≤ 0.05). 

Region Number of targeting miRNAs
(predicted)

Number of
Targeting sites
(predicted)

5´UTR 343 98
CDS 595 223

3´UTR 1170 922

Figure 3: Chromosomal locus, gene architecture and transcription factor binding information. A. GPRC5A gene 
(ENSG00000013588) location is chromosome 12:13,030,138-13,084,449. B. RAR/RXR binding site, CREB binding site, TP53 binding 
sites, BRCA1 binding sites, FOS/JUN binding sites, and MYC binding site are located between 13,043,716 and 13,044,596. C. GPRC5A 
mRNA (ENST00000014914) is spliced from the region between 13,043,716 and 13,070,871. Τranscription factor information was compiled 
using data from the ENCODE project predictions from JASPAR [92].
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mouse lung cells inhibits SOCS3 expression, which leads 
to persistent STAT3 activation under stimulation and 
up-regulation of STAT3-regulated cell survival genes, 
resulting in cell transformation and resistance to cell death 
[58, 60-62]. Besides, in GPRC5A knockout mouse lung 
cells, both basal NF-κB activation and lipopolysaccharide-
induced NF-κB activation are elevated [59]. Enhanced 
NF-B activation up-regulates multiple NF-κB target genes 
in cells, leading to increased inflammation [42, 59, 63]. 

Besides STAT3 and NF-κB signaling pathway, 
GPRC5A is involved in regulating the cell cycle. It 
probably achieves this through FEN1, MCM2, CCND1 
and UBE2C as the expression of these genes is up-
regulated following loss of GPRC5A expression in lung 
adenocarcinoma [64]. But a detailed understanding of the 

regulatory mechanism is still lacking. 
The GPRC5A protein is also post-translationally 

modified. For example, it is known that the amino acid 
residues S301 and S345 are phosphorylated during mitosis 
[65-68] – see also Figure 4. Phosphorylation of GPRC5A 
may play a role during cell cycle progression. Besides 
phosphorylation, N-linked glycosylation probably occurs 
at R158. Recent studies show that GPRC5A could also 
be ubiquitinated at K285, K333, K348 and K353 [69-74], 
but detailed mechanisms and functional roles of GPRC5A 
ubiquitination are not yet available. 

GPRC5A also interacts with multiple proteins 
in vivo. Among the probable interacting partners of 
GPRC5A are EIF4A1 and HSPA9 [75]. In addition, it 
has been shown that GPRC5A is co-fractionated with 

Figure 4: A systemic view of GPRC5A’s activity. In the nucleus, TP53 inhibits GPRC5A gene transcription by binding to GPRC5A’s 
promoter region. On the other hand, cAMP promotes GPRC5A’s transcription by binding to the latter’s promoter region along with cAMP 
receptor protein (CRP). RA binding to RAR/RXRs results in dissociation of co-repressor and recruitment of co-activator proteins that 
in turn promotes GPRC5A gene transcription. In the cytosol, GPRC5A mRNA is targeted by miR-103a-3p, resulting mainly in mRNA 
degradation. GPRC5A protein is phosphorylated at S301 and S345 during mitosis by cyclin-dependent kinases. In addition, R158 in 
GPRC5A is likely glycosylated in vivo. Also, L285, L333, L348 and L353 at the C-terminus of GPRC5A might be ubiquitinated by the 
HRD1/Cullin-Ring E3 ligase complex. With regard to downstream signaling pathways, GPRC5A could promote SOCS3 and BRCA1 
expression while inhibiting NF-κB and Gsα expression, but details of this mechanism are lacking. GPRC5A may also inhibit UBE2C, 
FEN1, MCM2 and CCND1 expression based on previously reported indirect evidence [64]. Arrows in this diagram represent up-regulation 
or activation. T-joints indicate down-regulation or inhibition (direct evidence) whereas dashed T-joints indicates the available evidence is 
indirect. Interrupted lines indicate a connection that involves one or more intermediate pathways.
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GTF2F2, MPV17, NOLC1, and SLC25A3 under certain 
experimental conditions. In other experiments, GPRC5A 
was shown to interact with TRIM69 or UBC [69-74, 76, 
77].

GPRC5A and its elucidated roles in diseases

We next review the current body of literature 
regarding the involvement of GPRC5A in various diseases 
(Table 2). 

• GPRC5A and non-small cell lung carcinoma: 
In non-small cell lung carcinoma (NSCLC), GPRC5A 
mRNA levels are lower than in adjacent normal tissues 
[78]. Ectopic overexpression of GPRC5A in NSCLC 
cell line H1792 reduces cells’ growth in soft agar. In 
addition, homozygous GPRC5A knockout mice are much 
more prone to develop lung tumors at 1-2 years of age 
than heterozygous or wild type mice. But deficiency 
of GPRC5A does not cause significant developmental 
defects in the lungs of mice [79]. Other parallel studies 
have shown that knockout of GPRC5A in mice leads to 
activation of NF-κB, promoting lung inflammation and 
tumorigenesis, and enhances the transformed phenotype 
in normal and malignant lung epithelial cells through 
STAT3 signaling pathway [58, 59]. Studies also show that 
lung tumorigenesis in the GPRC5A-KO mouse model is 
augmented by nicotine-derived nitrosamine ketone (NNK) 
and that gene expression changes are induced by tobacco 
carcinogens [64].

• GPRC5A and oral squamous cell carcinoma: 
GPRC5A expression level is very high in normal oral 
tissue, especially in differentiated areas whereas in 
oral squamous cell carcinoma (OSCC) its expression 
is repressed [10]. In OSCC, GPRC5A expression is 
negatively correlated to OSCC’s differential level. In vitro 
experiments revealed that overexpression of GPRC5A 
in OSCC CAL27 cells suppresses the cells’ anchorage-
independent growth activity, indicating that GPRC5A 
plays a tumor suppressor role in oral tissue. 

• GPRC5A and breast cancer: The evidence so 
far regarding GPRC5A’s role in breast cancer has been 
conflicting. In one breast cancer study [80] it was shown 
that GPRC5A mRNA is up-regulated in 19 of 25 primary 
breast cancers and in 6 of 11 breast cancer cell lines 
examined, compared with normal mammary gland tissue. 
Moreover, knockdown of GPRC5A by small interfering 
RNA (siRNA) in breast cancer cell lines MCF7 and T47D 
suppressed cancer cells’ growth [80]. Another group 
found that in breast cancer, the expression of GPRC5A 
along with that of PYCARD and FXYD3 can serve as a 
good predictor of treatment outcome and enhances the 
predictive power of tumor size [81]. However, another 
study [82] reported that although GPRC5A expression 
is up-regulated in breast cancer, its expression level is 
not associated with tumor stage, lymph node status, 
histological grading or histological tumor type, or with 
overall and recurrence-free survival. Another recent study 
showed that the germline inactivating mutation c.183delG 
of GPRC5A is enriched in breast cancer patients carrying 
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the 5382insC allele of BRCA1 [13]. Lastly, in vitro 
experiments revealed that GPRC5A is involved in forming 
radiation-induced BRCA1 and RAD51 DNA repair foci 
and that knockdown of GPRC5A attenuates DNA repair 
foci in cells following radiation [13].

• GPRC5A and colorectal cancer: In normal 
colon tissue, GPRC5A is expressed at low levels [1]. 
The majority of colon epithelium is negative or weak 
for GPRC5A expression, while only neuroendocrine 
cells within the colonic crypts show high expression 
level on plasma membrane [5]. In colorectal cancer, 
GPRC5A is abundantly present in tumor epithelium with 
the neuroendocrine cells showing strong staining on the 
plasma membrane [5]. Within neoplastic epithelium, its 
localization pattern is variable with most colorectal cancer 
tissues displaying diffuse cytoplasmic expression. Strong 
cytoplasmic expression of GPRC5A in colorectal cancer 
tissues is significantly associated with disease recurrence 
in Dukes’ A-C (stage 1-3) patients when compared to low 
or negative expression of GPRC5A in cancer tissues. In 
another study, 33 cases of primary colorectal cancer and 
16 colon polyps were subjected to LC-MS/MS analysis 
[12]. In these samples, GPRC5A level is higher in both 
metastatic and non-metastatic colorectal cancer than it 
is in polyps indicating that GPRC5A could be used as a 
biomarker in the diagnosis of colorectal cancer. 

• GPRC5A and gastric cancer: In normal small 
intestine, GPRC5A is expressed at very low levels whereas 
in gastric cancer tissues GPRC5A is elevated significantly 
[7]. The pattern of GPRC5A expression in gastric cancer 
tissues is quite different from that of normal mucosa and 
of adjacent noncancerous lesion samples. This raises 
the possibility that GPRC5A can be used as a potential 
biomarker and a treatment target for gastric cancer based 
on its membrane localization and its association with 
cancer cell proliferation.

• GPRC5A and hepatocellular carcinoma: Based 
on the currently available evidence it is not clear whether 
in liver GPRC5A acts an oncogene or as tumor suppressor. 
In one study, it was reported that GPRC5A expression is 
higher in hepatocellular carcinoma (HCC) than in para-
tumor or in normal liver tissues [83]. Higher expression 
of GPRC5A is associated with lower overall and disease-
free survival rate in HCC patients [83]. However, in 
another study researchers reported that GPRC5A mRNA 
levels are lower in seven newly established cell lines from 
patient derived tumor xenografts [84]. Yet another study 
showed that GPRC5A mRNA levels are higher in HCC 
patients after 8-week treatment with peretinoin and that 
the expression of 233 genes including GPRC5A could 
classify patients into one of two groups, recurrence vs. 
non-recurrence, with a prediction accuracy rate of 79.6% 
[8].

• GPRC5A and other diseases: In chronic 
obstructive pulmonary disease (COPD) patients, the 
levels of GPRC5A protein were significantly lower 

in normal bronchial epithelia (NBE) compared with 
healthy controls [85]. As the levels of GPRC5A mRNA 
decrease from normal people to patients with either 
COPD or adenocarcinoma it is likely that in this context 
GPRC5A acts as a tumor suppressor. On the other hand, in 
intrahepatic cholangiocarcinoma (ICC), GPRC5A mRNA 
levels are higher than in normal tissue [11] suggesting 
that they could serve as a novel biomarker for classifying 
and diagnosing this highly fatal type of carcinoma. In 
myelodysplastic syndrome (MDS), GPRC5A mRNA 
levels were found to be lower in CD34+ cells, which could 
explain these cells’ susceptibility to cell damage [86].

CONCLUSION

The GPRC5A gene is conserved from mammals to 
fish [14]. In the disease context, GPRC5A was originally 
reported as a tumor suppressor in non-small cell lung 
carcinoma. Later its tumor suppressor ability was also 
shown in oral squamous cell carcinoma. Subsequent 
reports indicated that in breast cancer, colorectal cancer 
and pancreatic cancer GPRC5A could also behave as 
an oncogene. This dual behavior makes GPRC5A a 
very interesting gene to study. Nonetheless, its likely 
interactions with many other factors some of which may 
be present in some cell types and absent in other cell types 
suggest that a lot more research work will be required 
to understand how this dual behavior arises. Recent 
research efforts revealed that mRNA transcripts could play 
additional important roles, besides their protein coding 
ability, by decoying miRNAs [87-91]. As the GPRC5A’s 
mRNA contains many putative miRNA-binding sites it is 
conceivable that some of its functional roles are effected 
through the decoying of one or more miRNAs. To prove 
this hypothesis and to elucidate the regulatory roles of 
GPRC5A mRNA and protein additional research is needed.

Not surprisingly considering that GPRC5A was 
originally identified as a retinoid acid induced molecule, 
GPRC5A contains a RAR/RXR binding site [1]. In 
addition, GPRC5A’s expression is suppressed by p53 and 
mutation of p53 leads to increased levels of GPRC5A 
in p53-mutant breast cancer cells [27]. Furthermore, 
as the GPRC5A locus is favored by multiple other 
transcription factors such as BRCA1, FOS, JUN and 
MYC, dysregulation of one or more of these transcription 
factors may lead to abnormal expression of GPRC5A [13, 
29, 38, 45]. 

With respect to post-transcriptional regulation, 
we recently reported that miR-103a-3p can regulate 
GPRC5A protein expression by targeting the 5´UTR 
of GPRC5A’s mRNA. This finding suggests that to 
understand GPRC5A’s post-transcriptional regulation 
one needs to consider miRNA targets beyond its mRNA’s 
3´UTR. Moreover, RBPs and possibly lncRNAs might 
also be involved in regulating GPRC5A. However, no such 
interactions are currently known. 
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With respect to post-translational modification, 
several articles report that GPRC5A protein is 
phosphorylated at S301 and S345 during mitosis [65-
68]. N-glycosylation and uniquitination also occur but 
the physiological functions of these modifications remain 
unclear. 

With respect to its participation in signaling 
pathways relatively little information is currently 
available. One line of work reported that GPRC5A 
expression impacts on the cAMP signaling pathway [28]. 
In another line of work it was shown that knocking out 
GPRC5A leads to the activation of the NF-κB and STAT3 
signaling pathways and results in cell proliferation and 
resistance to cell death [58, 59]. Additionally, loss of 
GPRC5A could result in up-regulation of FEN1, MCM2, 
CCND1 and UBE2C, all of who are involved in cell cycle 
regulation [64]. However, it is still unknown how exactly 
GPRC5A interacts these pathways. 

Some of the previous studies attempted to find a 
potential ligand for GPRC5A [15, 28, 58] but without 
success. In addition, it is unclear how GPRC5A is 
activated. As this gene is found to be dysregulated in 
many cancers we expect that further studies will provide 
additional insights about its post-transcriptional and 
post-translational regulation and function. In turn these 
findings will help advance the diagnosis and eventually 
the treatment of cancers through the manipulation of key 
stages of this protein’s lifecycle. 
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