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ABSTRACT

Acute kidney injury (AKI), either of pre-renal, renal or post-renal origin, is an important complication in cancer patients,
resulting in worse prognosis, withdrawal from effective oncological treatments, longer hospitalizations and increased
costs. The aim of this article is to provide a literature review of general and cause-specific treatment strategies for AKI,
providing a helpful guide for clinical practice. We propose to classify AKI as patient-related, cancer-related and
treatment-related in order to optimize therapeutic interventions. In the setting of patient-related causes, proper
assessment of hydration status and avoidance of concomitant nephrotoxic medications is key. Cancer-related causes
mainly encompass urinary compression/obstruction, direct tumoural kidney involvement and cancer-induced
hypercalcaemia. Rapid recognition and specific treatment can potentially restore renal function. Finally, a pre-treatment
comprehensive evaluation of risks and benefits of each treatment should always be performed to identify patients at
high risk of treatment-related renal damage and allow the implementation of preventive measures without losing the
potentialities of the oncological treatment. Considering the complexity of this field, a multidisciplinary approach is
necessary with the goal of reducing the incidence of AKI in cancer patients and improving patient outcomes. The
overriding research goal in this area is to gather higher quality data from international collaborative studies.

Keywords: acute kidney injury, cancer, CAR T-cells, checkpoint inhibitors, chemotherapy, multiple myeloma, renal
replacement therapy

INTRODUCTION

Acute kidney injury (AKI) is the most common renal complica-
tion in cancer patients, resulting in a worse prognosis, interrup-
tion or cessation of active anti-cancer treatment, longer hospi-
talizations and increased healthcare costs [1].AKI alters both the
pharmacokinetics and pharmacodynamics of anti-cancer drugs,
resulting in suboptimal treatment or increased risk for drug-
associated toxicities. It is important to recognize risk factors
and causes of AKI in cancer patients in order to initiate specific

AKI treatment in a timely manner. The causes of AKI in can-
cer patients are often multifactorial, including pre-renal, renal
and post-renal causes or, alternatively, patient-related causes,
cancer-related causes and treatment-related causes [2]. Care-
ful identification of the underlying causes of AKI is important
to allow for specific treatment when available. The continu-
ous and rapid introduction of novel oncological therapies is
particularly challenging, as novel treatments can be associated
with ill-defined renal toxicities. Adequate management of AKI
is crucial to improve outcomes in this patient population and
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will allow patients to enjoy the benefits of novel cancer treat-
ments. In this review, a diagnostic approach to patients with AKI
and general and cause-specific AKI treatment strategies will be
discussed.

THE DEFINITION OF AKI

Kidney Disease: Improving Global Outcomes (KDIGO) defines
AKI as any of the following: an increase in serum creatinine to
1.5 times baseline or by ≥0.3 mg/dL (26.5 μmol/L) within 48 h or
urine output <0.5 mL/kg/h for ≥6 h [3]. The KDIGO diagnostic
criteria for AKI are based on the risk, injury, failure, loss, ESRD
(RIFLE) and Acute Kidney Injury Network (AKIN) criteria.

THE EPIDEMIOLOGY OF AKI IN CANCER
PATIENTS

The incidence of AKI is significantly increased in cancer patients
as a consequence of the cancer itself, its treatment or severe
complications [2]. In aDanish population observational study in-
cluding 1.2 million people followed from 1999 to 2006, the 1- and
5-year risks of AKI (defined by the RIFLE criteria) and AKI failure
(tripling of serumcreatinine or absolute increase>4mg/dL)were
17.5% and 27% and 4.5% and 7.6%, respectively [4]. As this is an
observational study, no conclusion regarding the causality be-
tween cancer (type) and the development of AKI can be made.
The risk of developing AKI was highest in the first year after
the diagnosis of cancer, especially in elderly patients. Malignan-
cies most commonly associated with AKI were renal cell carci-
noma (RCC) (44%), multiple myeloma (MM) (33%), liver cancer
(32%) and leukaemia (28%). Also, patients with metastatic dis-
ease had an increased risk of developing AKI [4]. AKI requiring
dialysis within 1 year of AKI onset occurred in 5.1% of cancer
patients with any AKI stage [4]. In 163 071 cancer patients re-
ceiving systemic treatment (chemotherapy or targeted agents),
the rate of AKI was 27/1000 person-years with an overall cumu-
lative incidence of 9.3% [5]. In this study, malignancies carry-
ing the highest 5-year AKI risk were MM (26.0%), bladder cancer
(19.0%) and leukaemia [5]. Additional risk factors for AKI were
advanced cancer stage, chronic kidney disease (CKD), diabetes
mellitus (DM) and, in patients ≥66 years of age, the use of diuret-
ics and angiotensin-converting enzyme inhibitor or angiotensin
receptor blocker [5]. In a recent study by Péron et al. [6], 2872
patients with metastatic disease receiving systemic treatment
from nine European Organization for Research and Treatment
of Cancer (EORTC)-sponsored trialswere evaluated for the occur-
rence of AKI. RIFLE events occurred in 40% of patients, and most
RIFLE events occurred early during the course of treatment. The
occurrence of a first RIFLE event was associated with reduced
progression-free survival (PFS), while the impact on overall sur-
vival (OS) was heterogeneous [6]. Notably, AKI was not associ-
ated with an increased rate of treatment discontinuation but
was associated with reduced treatment dose intensity [6]. In a
study by Salahudeen et al. [1], including 3558 hospitalized cancer
patients, 12% developed AKI (using the modified RIFLE criteria)
during admission compared with 5–8% in the non-cancer popu-
lation. In hospitalized patients, the occurrence of AKI was asso-
ciated with longer hospital stays (2-fold), higher costs (2.1-fold)
and a higher risk of death (4.5-fold) [1]. Also, in the intensive care
unit, the incidence of AKI is higher in cancer patients and is as-
sociated with worse survival rates [7]. The 28-day mortality of
cancer patients who require dialysis has been estimated to be
66–88% [1]. Increased mortality has also been observed in can-

cer patients who developed AKI on top of pre-existing CKD [8].
We can conclude that AKI is a common complication not only in
hospitalized cancer patients, but also in outpatient clinics, and
is associated with an increased morbidity and mortality.

CAUSES OF AKI IN CANCER PATIENTS

In general, AKI in cancer patients can be patient, tumour or
treatment related (Figure 1). Most of the time, AKI in cancer pa-
tients is multifactorial.

Patient-related causes

Patient-related causes of AKI in cancer patients include age,
sepsis, hypovolaemia (vomiting, diarrhoea), use of nephrotoxic
medications and comorbid conditions such as pre-existing CKD,
DM, heart failure and cirrhosis [9].

Cancer-related causes

Cancer-related causes include urinary compression/obstruction,
direct tumour kidney involvement, multiple myeloma–
associated nephropathies, cancer-induced hypercalcaemia,
cancer-related thrombotic microangiopathy (TMA) and para-
neoplastic glomerulopathies. Glomerular diseases associated
with malignancies are rare, heterogeneous (including, among
others, membranous nephropathy, minimal change disease,
anti-neutrophil cytoplasmic antibody-associated vasculitis
and Henoch–Schönlein purpura) and beyond the scope of the
current review [10].

Compression and obstruction of the urinary tract can be
caused by the primary tumour or by metastases. In most in-
stances, the course of renal function decline in these patients is
gradual [11].Direct tumoural infiltration of the kidney is frequent
in lymphoma and leukaemia patients and is more commonly
encountered in patients with aggressive and disseminated dis-
ease [12]. Up to 90% of patients with lymphoma show evidence
of renal involvement in autopsy studies, resulting in increased
renal size on radiographic imaging and bilateral interstitial in-
filtration by lymphoma cells [13]. In leukaemia patients, 60–90%
have renal involvement in autopsy studies [14–16]. AKI in the
setting of tumour infiltration is the result of tubular compres-
sion and disruption of the renal microcirculation [14–16].

Cast nephropathy is an important manifestation of MM
and the most common cause of AKI in these patients. In MM
patients, free light chains (FLCs) are filtered in the glomerulus
and enter the urine at high concentrations, overwhelming the
resorptive capacity of the proximal tubules. As a consequence,
FLCs arrive in the distal tubules and interact with Tamm–
Horsfall protein to form myeloma casts. Both the physical
blockage of the distal tubules and the FLC-mediated injury to
the proximal tubules contribute to the occurrence of AKI [17, 18].

Cancer-induced hypercalcaemia occurs in 10–30% of all pa-
tients with malignancies (most common in MM and squamous
cell carcinoma of the lung) [9]. The signs and symptoms of hyper-
calcaemia are non-specific and therefore its diagnosis is often
delayed. Symptoms can include nausea, vomiting, constipation,
abdominal pain, anorexia, bone pain,polyuria, fatigue,weakness
and, in severe cases, neurologic symptoms such as confusion
and coma [19]. Different mechanisms of malignancy-associated
hypercalcaemia have been described: secretion of humoral fac-
tors (such as parathyroid-related hormone), local osteolysis due
to tumour bone invasion and absorptive hypercalcaemia due to
excess vitamin D production by malignant cells.
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FIGURE 1: ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ATIN, acute tubulointerstitial nephritis.

The differential diagnosis of TMA in cancer patients is broad.
Cancer-induced TMA and drug-induced TMA are the two main
aetiologies, but it is important to not rule out the possibility
of a separate incidental diagnosis of thrombocytopenic purpura
(TTP) or complement-mediated haemolytic uraemic syndrome
[or atypical haemolytic uraemic syndrome (aHUS)]. Coombs neg-
ative microangiopathic haemolytic anaemia and thrombocy-
topenia are the typical biochemical features of TMA, character-
ized by endothelial cell activation.Cancer-induced TMA could be
due to systemic microvascular metastases or widespread bone
infiltration [20]. Back or bone pain is common [21]. Most cases
are secondary to solid organ tumours. Patients with cancer-
induced TMA have a poor prognosis. There is no beneficial role
for plasmapheresis or immunosuppressive agents [20].

Treatment-related causes

A number of oncologic treatments may induce AKI, either
through direct injury to the kidney (as in the case of surgical
therapy or post-renal AKI due to fibrosis secondary to radiother-
apy or chemotherapy-induced AKI) or through indirect effects,
as in the cytokine release syndrome (CRS), tumour lysis syn-
drome (TLS) and drug-induced TMA [22] (Tables 1 and 2).

Mechanical injury due to surgical interventions is especially
seen in the treatment of RCC. In a study of 253 046 RCC patients,
5.5% (14 303 in radical and 3505 in partial nephrectomy) experi-
enced AKI [23].

Among classical cytotoxic chemotherapeutic agents, the
ones most commonly related to the development of AKI are
cisplatin, mitomycin-C, gemcitabine, methotrexate (MTX), ifos-
famide and pemetrexed (Table 1). In an Indonesian retrospec-
tive study, Prasaja et al. [24] reported the occurrence of cisplatin-
associated nephrotoxicity in 88 patients treated with cisplatin
≥60 mg/m2. Kidney injury was observed after the first cycle and
the degree of renal impairment worsened with the increasing
number of chemotherapy cycles. In a recent study by Motwani
et al. [25], the incidence of cisplatin-associated AKI was 12%.

High-dose intravenous MTX, defined as a dose of
≥500 mg/m2, is a standard treatment for cancers such as

acute lymphoblastic leukaemia. MTX and its metabolites pre-
cipitate in acid urine (pH < 5.5) within the renal tubules, causing
crystal nephropathy, resulting in significant nephrotoxicity in
2–12% of patients [26].

Immune checkpoint inhibitors (ICIs) induce potent anti-
cancer effects by unleashing anti-cancer T-cell immunity and
have revolutionized cancer treatment in recent years. ICI-
associated immune-related adverse events most commonly in-
volve the skin, endocrine organs or gastrointestinal system,
while kidneys are rarely affected. In the biggest case–control
study to date, Cortazar et al. [27] identified lower baseline es-
timated glomerular filtration rate (eGFR), use of proton pump
inhibitors and combination ICI therapy as risk factors for ICI-
associated AKI. In this study, ICI-associated AKI occurred at
a median of 14 weeks (interquartile range 6–37) after ICI ini-
tiation, and most patients had subnephrotic proteinuria and
pyuria [27]. Acute tubulointerstitial nephritis is most often seen
in biopsies. In a recent large Spanish cohort of cancer patients
receiving ICI, Garcia-Carro et al. [28] reported an AKI in-
cidence of 15.5% (at an average time of 3.5 months after
treatment initiation). In that study, the occurrence of a sin-
gle episode of AKI was associated with an increased risk of
mortality [28].

Chimeric antigen receptor (CAR) T-cell therapies use genet-
ically engineered T cells specifically targeting tumour antigens
and are mainly used in the treatment of haematologic malig-
nancies [29]. After recognition of their cognate antigen, CAR
T-cells rapidly proliferate, producing large amounts of inflam-
matory cytokines, possibly resulting in CRS. Severe CRS can
result in capillary leak syndrome, multi-organ system dysfunc-
tion and pre-renal AKI. Three case series have recently been re-
ported on the characteristics of AKI during CAR T-cell treatment
[30–32]. Axicabtagene ciloleucel (Yescarta) is more often associ-
ated with the development of AKI as compared with tisagenle-
cleucel (Kymriah) (19–30% versus 5%, respectively). The differ-
ent rate and severity of AKI in patients receiving different CAR
T-cell products are explained by differences in the induction of
CRS. The magnitude of cell proliferation and inflammatory cy-
tokine secretion are dependent on the distinct co-stimulatory
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Table 1. Anti-cancer agents associated with AKI

Medication Main mechanism of action

Classic chemotherapeutics
High incidence of AKI

Cisplatin
Ifosfamide
Pemetrexed
MTX

Inhibition of DNA replication
Induction of DNA strand-breaks
Inhibition of dihydrofolate reductase
Inhibition of dihydrofolate reductase

Moderate/low incidence of AKI
Carboplatin/oxaliplatin
Diaziquone/melphalan/procarbazine/
temozolomide/trabectedin
Azacitidine, cladarabine, clofarabine,
cytarabine, deoxycofymycin, fludarabine,
5-fluorouracil, gemcitabine, mercaptopurine,
thioguanine

Chloroethylnitrosourea
Irinotecan

Inhibition of DNA replication
Inhibition of RNA production

Inhibition of DNA production by incorporation of chemically altered
nucleotides or by depletion of nucleotides

Interstrand cross-linking of DNA
Single-strand DNA breaks

Targeted agents
Anti-VEGF treatment
Tyrosine kinase or multikinase inhibitors
BRAF inhibitors
ALK inhibitors

Antibody to VEGF or VEGF-R, inhibition of VEGF signalling
Inhibition of tyrosine kinase or multikinase signalling
Inhibition of mutated BRAF V600E kinase
Inhibition of mutated ALK

Immunotherapeutic agents
Immune checkpoint inhibitors
CAR T-cells

T-cell activation by inhibition of negative co-stimulatory signals
T-cell targeting of specific tumour cell antigens

VEGF, vascular endothelial growth factor; VEGF-R, vascular endothelial growth factor receptor; ALK, anaplastic lymphoma kinase.

Table 2. Cancer treatments and TMA causes

Cancer treatment Potential cause of TMA and solution

Checkpoint inhibitors (e.g. ipilimumab) ADAMTS13 deficiency; responds to plasmapheresis
Lenalidomide ADAMTS13 deficiency; responds to plasmapheresis
Gemcitabine Dose-dependent toxicity; may respond to complement inhibition
Mitomycin-C Dose-dependent toxicity; may respond to complement inhibition
VEGF inhibitors (e.g. bevacizumab, aflibercept) and tyrosine-kinase
inhibitors (dasatinib, sunitinib, ponatinib, etc.)

Dose-dependent toxicity

Proteasome inhibitors (e.g. bortezomib, carfilzomib) Underlying cause is not known; may respond to complement
inhibition or plasmapheresis

Pentostatine Dose-dependent toxicity
EGFR inhibitor (e.g. cetuximab, gefitinib, erlotinib) Renal TMA
Calcineurin inhibitor (e.g. ciclosporin, tacrolimus) Renal TMA
mTOR inibitors (e.g. sirolimus, everolimus, temsirolimus) Renal TMA
Platinum-based agents (e.g. oxaliplatin) Drug-induced antibodies
Hormone therapies (e.g. tamoxifen, aromatase inhibitors) Precipitation of TTP
Allogenic haematopoietic stem cell transplantation-associated TMA Multifactorial endothelial cell injury + complement activation;

Eculizumab? Narsoplimab?

Based on Thomas and Scully [20]. VEGF, vascular endothelial growth factor; mTOR, mammalian target of rapamycin.

domains of the CAR T-cell products [30–32]. Besides AKI, elec-
trolyte disturbances are frequently observed in patients receiv-
ing CAR T-cell therapy and most notably hypophosphataemia,
hypokalaemia and hyponatraemia. The underlyingmechanisms
include cortisol release, volume depletion and an interleukin-6
(IL-6)-mediated increase in vasopressin secretion [24].

The risk of TLS is higher in patients with aggressive cancers
with a great tumour bulk treated with highly effective treat-
ments such as targeted treatment, monoclonal antibodies, ICI
and CAR T-cells.

Drug-induced TMA is rare, but is increasingly recognized as
a complication of cancer treatment. If there is slow progres-
sive renal failure, TMA is caused by cumulative dose-dependent
toxicity, but if symptoms appear acute with the initiation of
the drug, TMA is caused by drug-induced antibodies [21]. Rare
cases have shown anti-ADAMTS13 (a disintegrin and metal-
loproteinase with thrombospondin motifs) antibody-mediated
TTP. Finally, transplant-associated TMA is a well-known compli-
cation of allogenic haematopoietic cell transplantation (HSCT),
with high morbidity and mortality. Various factors in the
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FIGURE 2: IF, immunofixation; SPEP, serum protein electrophoresis.

transplant process can lead to endothelial injury and com-
plement activation [20, 33], including a number of anti-cancer
agents (Table 2).

DIAGNOSIS OF AKI IN CANCER PATIENTS

In our opinion, it is important to identify risk factors of AKI, and
to make a distinction between patient-related, cancer-related
and treatment-related risk factors (Figure 1). This approach will
increase the awareness of AKI, possibly resulting in an earlier di-
agnosis. When a significant decrease in kidney function occurs,
renal imaging and urinalysis should be performed. Renal ultra-
sound (or computed tomography) allows for the identification of
post-renal causes of AKI as well as the evaluation of kidney size
and vascular structures. Urinalysis should include both analysis
of the urine sediment and quantification of urinary protein
content. Urinary proteinuria with a negative dipstick analysis
is seen in the context of monoclonal gammopathy–associated
kidney diseases with urinary loss of FLCs [34]. In 2012, the Kid-
ney and Monoclonal Gammopathy Research Group introduced
the term monoclonal gammopathy of renal significance (MGRS)
to describe disorders characterized by direct or indirect kidney
injury caused by a monoclonal immunoglobulin produced by a
B cell or plasma cell clone that does not meet current haema-
tologic criteria for therapy [35]. When an MGRS-associated
kidney disease is suspected, identification and quantification
of paraprotein should be performed by using serum protein
electrophoresis, serum and urine immunofixation and serum
FLC measurement. It has been suggested that the diagnosis
of cast nephropathy can be made in a patient with AKI and
serum FLC levels >50 mg/dL [36]. In a recent study by the Mayo
Clinic, the likelihood of diagnosing an MGRS-associated kidney
disease in patients with a monoclonal gammopathy increased
in patients with proteinuria ≥1.5 g/day, haematuria and an ele-
vated FLC ratio [37]. Besides urinalysis, biochemical tests should
be performed, including tests evaluating the presence of TMA
and TLS. TTP has to be ruled out (measurement of ADAMTS13
activity), as it has a different treatment. It can be difficult to
differentiate between cancer-induced TMA, drug-induced TMA
and aHUS, as all are diagnoses of exclusion. Finally, we would
suggest considering a kidney biopsy whenever the cause of
AKI remains unclear or when a cancer-associated glomerular
disease is suspected. Kidney biopsy is a safe procedure (also in
cancer patients) and allows for the diagnosis of various renal

causes of AKI due to cancer itself or its treatment. Moreover,
it may help to know the rate of irreversible loss of kidney
function. Currently there are no guidelines for performing a
biopsy in cancer patients. We propose a simple flowchart for
the diagnosis of AKI in cancer patients (Figure 2).

TREATMENT OF AKI IN CANCER PATIENTS

To improve the prognosis of cancer patients, AKI should be
treated without delay and specific treatment should be initiated
when available [11].

Patient-related AKI

The treatment of patient-related AKI is beyond the scope of this
review, but generally consists of adequate hydration, and there-
fore weight, blood pressure and urine output should be mon-
itored regularly in cancer patients. Nephrotoxic medications
and radiocontrast agents should be used cautiously (Figure 3).
The risk of AKI as a consequence of radiocontrast is often over-
estimated, but not non-existent. In a study by Wilhelm-Leen
et al. [38], the incidence of AKI in patients to whom radiocontrast
was and was not administered was 5.5% and 5.6%, respectively.
Therefore, the risk of contrast-induced AKI should be weighed
against the consequences of an incomplete diagnostic work-up
by avoiding contrast administration. In concordance with the
flowchart of Vanmassenhove et al. [39], we recommend pre-
ventive measures, including intravenous volume expansion
with isotonic saline in patients with an eGFR <30 mL/min, in
patients with DM or heart failure and an eGFR <45 mL/min or
in patients with monoclonal gammopathy. In our practice, we
use a regimen of isotonic saline at a rate of 200 mL/h 2 h before
and 3 h after the procedure (for a patient of 75–100 kg).Weisbord
et al. [40] showed no superiority of intravenous isotonic sodium
bicarbonate over intravenous isotonic sodium chloride.

Cancer-related AKI

Treatment of post-renal nephropathy. The treatment of
ureteral compression/obstruction consists of the placement
of a nephrostomy tube or a ureteric stent or an open surgical
procedure.Nephrostomy tubes are placed percutaneously under
local anaesthesia. Tubes are an efficacious treatment options
but require an external collection bag. Double J stents are placed
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FIGURE 3: CI-AKI, contrast-induced acute kidney injury; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration.

under general anaesthesia and are associated with a higher
failure rate [41]. In one study, the use of ureteral stents in cancer
patients was effective to maintain renal function but not to
restore it [11]. Treatment of AKI due to direct tumour renal in-
volvement consists of the initiation of appropriate and effective
chemotherapy. As renal involvement occurs more commonly
in patients with aggressive and disseminated disease, these
patients are also at risk for the development of TLS and this
should be managed simultaneously (see below).

Treatment of cast nephropathy. Treatment of cast nephropathy
in patients with MM consists of adequate hydration in combina-
tion with early initiation of cytotoxic chemotherapy to rapidly
reduce serum FLC levels. Nowadays, chemotherapy regimens
used in this setting include proteasome inhibitors such as borte-
zomib in combination with thalidomide, corticosteroids, vin-
cristine and adriamycin [42–45]. These regimens have been as-
sociated with high rates of improvement in renal function as
well as significantly improved survival. Bortezomib is the cor-
nerstone in the treatment of cast nephropathy, as it has been
demonstrated to be associated with a rapid improvement in the
GFR [46]. The addition of bendamustine to prednisone and borte-
zomib has also increased renal response rates to >80%, with the
majority of responses occurring within 6 weeks [47].

Attempts have been made to improve the outcome of cast
nephropathy by using extracorporeal therapies to rapidly reduce
the serum FLC concentration, but the results are controversial
at best [48]. As far as plasmapheresis is concerned, randomized
controlled trials (involving only a limited number of patients)
have been performed and generated conflicting results [49]. Case
reports and case series generated interest in the use of highly
permeable dialysis membranes in patients with cast nephropa-
thy [high cut-off haemodialysis (HCO-HD)]. Recently the results
of two phase 2 randomized trials have been reported (MYRE
and EuLITE) (Table 3). In the EuLITE trial, there was no benefit
noted with HCO-HD over conventional therapy with high-flux
HD (HF-HD) in patients who also received a bortezomib-based

chemotherapy regimen [50]. In the MYRE trial, some benefit
was assigned to the HCO-HD group as dialysis independence at
6months increased to 56.5% in the HCO-HD arm, comparedwith
35.4% in the conventional arm (P = 0.04) [51]. However, this was
a secondary outcome and there was no significant difference in
the primary outcome (discontinuation of dialysis at 3months) in
both studies [52, 53]. To date, the benefit of HCO-HD remains un-
proven and, in our opinion, this treatment approach should only
be used in the context of clinical trials and should not delay the
initiation of effective cytotoxic chemotherapy [52, 53].

Treatment of hypercalcaemia-induced AKI. An essential step in
the initial treatment of hypercalcaemia-induced AKI is intra-
venous hydration with isotonic saline to improve renal perfu-
sion and allow for increased urinary calcium excretion. Loop di-
uretics should be avoided unless hypervolaemia is present [19].
Electrolytes need to be monitored because of the possibility of
hypernatraemia due to nephrogenic diabetes insipidus [19, 54].
Furthermore, it is important to discontinue any medication that
can lead to hypercalcaemia, including a.o. calcium-containing
medication, vitamin D, vitamin A, thiazide diuretics, lithium and
teriparatide.

Bisphosphonates lower the serum calcium concentration
over a period of 2–4 days and prevent recurrent hypercalcaemia.
In clinical practice, pamidronate up to 60 mg is infused over 4 h
[19, 54]. Pamidronate is more effective in patients with hypercal-
caemia due to bone metastasis and less effective in those with
humoral hypercalcaemia [19, 54].However, bisphosphonates can
result in nephrotoxicity, and zolendronate should be avoided in
patients with a creatinine clearance <30 mL/min. Ibandronate
has minimal nephrotoxicity but has not yet been approved for
the treatment of hypercalcaemia in cancer patients [19, 54].
Denosumab is also effective and can be safely used in pa-
tients with reduced kidney function. The main side effect is
hypocalcaemia. Cinacalcet has not been extensively used in the
treatment of malignancy-associated hypercalcaemia other than
parathyroid carcinoma [55]. Calcitonin is useful in the acute
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Table 3. Phase 2 randomized trials with HCO-HD in cast nephropathy

Characteristics EuLITE MYRE

Demographics
Number of patients
Female

43 in the HCO group, 47 in the HF-HD group
40% in the HCO group, 47% in the HF-HD group

46 in the HCO group, 48 in the HF-HD group
50% in the HCO group, 40% in the HF-HD group

Multiple myeloma
LC only MM
Cast nephropathy
chemotherapy

53% in the HCO group, 51% in the HF-HD group
Biopsy-proven
Bortezomib (1 mg/m2 on days 1, 4, 8, 11 and 21),
doxorubicin and
dexamethasone

50% in the HCO group; 46% in the HF-HD group
Biopsy-proven
Bortezomib (1 × 3 mg/m2 on days 1, 4, 8 and 11) and
dexamethasone

Intervention: comparison with
conventional therapy with HF-HD

Two 1 × 1 m2 filter in series (HCO1100; Gambro); 6-h
session at baseline, then 8-h sessions on days 2, 3, 5,
6, 7, 9 and 10; from day 12, 8 h sessions on alternate
days, reducing to 6-h sessions on alternate days
from day 21; 60 g albumin was perfused at each
session

Single membrane 2 × 1 m2 dialyser (Theralite;
Gambro); 5 h per session; eight sessions for 10 days,
and thereafter three sessions per week if needed,
until completion of three cycles of chemotherapy
5 h/session; if serum albumin is <25 g/L before HD,
20 g albumin was perfused after dialysis

Primary outcome:
Discontinuation of dialysis at
3 months

56% in the HCO group; 51% in the HF-HD group;
P = 0.81

41.3% in the HCO group; 33.3% in the HF-HD group;
P = 0.42

Secondary outcomes:
Discontinuation of dialysis at
6 months
Discontinuation of dialysis at
12 months
Haematologic response at
6 months
Haematologic response at
12 months

58% in the HCO group; 66% in the HF-HD group;
P = 0.76
58% in the HCO group; 66% in the HF-HD group;
P = 0.76
67% in the HCO group; 73% in the HF-HD group;
P = 0.46
42% in the HCO group; 68% in the HF-HD group;
P = 0.02

56.5% in the HCO group; 35.4% in the HF-HD;
P = 0.04
60.9% in the HCO group; 37.5% in the HF-HD group;
P = 0.02
78.3% in the HCO group; 60.4% in the HF-HD group;
P = 0.06
Not reported

Mortality At 24 months: 37% in the HCO group; 19% in the
HF-HD group; P = 0.03

At 12 months: 20% in the HCO group; 21% in the
HF-HD group; P = 0.46

setting, but the calcium-lowering effect is transient due to tachy-
phylaxis [55]. Calcitonin is given at a dose of 4–8 IU/kg sub-
cutaneously every 6–12 h. Glucocorticoids (hydrocortisone 300–
400 mg/day for 3–5 days) are an effective treatment of hypercal-
caemia due to the overproduction of calcitriol. Finally, renal re-
placement therapy (RRT)may be required in the setting of severe
hypercalcaemia and AKI with oliguria.

Treatment-related AKI

The decision to temporarily or permanently discontinue on-
cological treatment depends on several nephrological and
oncological factors. The severity of AKI and the extent of renal
function recovery, the treatment setting (adjuvant, i.e. curative
versus palliative), the possible availability of alternative active
treatment options and patients’ expected outcome should
be taken into account. This further underpins the need for
frequent and thorough interactions between nephrologists
and oncologists, i.e. the rational basis of the subspecialty of
onco-nephrology.

Mechanical injury. Mechanical injury due to surgical inter-
vention is a common complication during radical and partial
nephrectomy for RCC. Preoperative assessment of renal function
with the identification of risk factors for CKD is important. Fur-
thermore, perioperative awareness about the volume status of
the patient and avoidance of nephrotoxic medication are neces-
sary.

The surgical procedure itself is beyond the scope of this ar-
ticle, but the collaboration before surgery and post-operatively
between surgeon andnephrologist is essential in preventing kid-
ney injury, and recommendations for pre-surgery evaluation to
prevent post-operative AKI and CKD have been recently pub-
lished [56].

Cisplatin. There is no specific treatment for cisplatin-induced
nephropathy at this moment and therefore the prevention of
cisplatin-induced nephropathy is key (but beyond the scope of
the current review). Amifostine is the only US Food and Drug
Administration (FDA)-approved treatment for the prevention of
cumulative cisplatin-induced nephrotoxicity [57]. To the best of
our knowledge, it is not authorized in Europe. Amifostine is a
prodrug of free thiol that interacts with metabolites of cisplatin.
Because of important side effects, cost and concerns that it also
diminishes the anti-tumour effect, amifostine is rarely used in
clinical practice.

MTX. High-dose MTX causes nephrotoxicity, and AKI impairs
the renal clearance of MTX, resulting in prolonged exposure
to toxic serum levels. Vigorous hydration and urine alkaliniza-
tion (pH > 7) are mandatory before starting treatment. Fur-
thermore, folinic acid is used to prevent the extrarenal conse-
quences of MTX accumulation. Leucovorin should be started
24 h after completion of each high-dose MTX infusion, and
initiation should not be delayed beyond 42–48 h [26]. At the
same time, medications that inhibit the folate metabolism (e.g.
trimethoprim/sulfamethoxazole), exhibit intrinsic renal toxicity
[e.g. non-steroidal anti-inflammatory drugs (NSAIDs), contrast
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FIGURE 4: ULN, upper limit of normal.

agents] or decrease the fraction of MTX bound to albumin (e.g.
aspirin) should be avoided [26].

After infusion of high-dose MTX, therapeutic drug monitor-
ing and serial measurements of serum creatinine, urine output
and urine pH are essential to monitor nephrotoxicity. A decline
in kidney function is a medical emergency and requires hyper-
hydration, high-dose leucovorin and, finally, co-administration
of glucarpidase when available [26]. Glucarpidase, a recom-
binant bacterial enzyme that rapidly metabolizes and inacti-
vates MTX, has been demonstrated to reduce MTX plasma lev-
els >98% within 15 min after administration [58]. If the 36-h
MTX concentration is >30 μM, the 42-h MTX concentration
is >10 μM or the 48-h MTX concentration is >5 μM, and the
serumcreatinine is significantly elevated relative to the baseline,
glucarpidase must be considered. Glucarpidase administration
should optimally occur within 48–60 h after the start of high-
doseMTX, as glucarpidase is only efficacious intravascularly and
life-threatening toxicities may not be preventable beyond this
time point [59]. Recently, Truong et al. [60] reported five adult
lymphoma patients with toxic MTX levels and AKI successfully
treated with a single dose of glucarpidase of 1000 U. As far as
dialysis is concerned, multiple daily and long dialysis sessions
(daily, 4–6 h sessions using HF-HD membranes) are necessary to
remove MTX effectively, as MTX is highly protein bound [60]. As
MTX has a high intracellular distribution, an important rebound
of MTX levels after the cessation of HD is expected.

ICIs. There are currently no evidence-based recommendations
regarding the treatment of ICI-associated AKI. Currently avail-
able recommendations/guidelines recommend discontinuation
of the ICI in cases of significant renal impairment and considera-
tion of systemic corticosteroid therapy (e.g.methylprednisolone

1–2 mg/kg/day). Specific recommendations regarding the dose
and duration of corticosteroid treatment cannot be provided at
thismoment (Figure 4) [27, 61].A recentmeta-analysis suggested
that corticosteroid use might hinder the efficacy of ICIs in non-
small cell lung cancer patients [62]. Furthermore, the cessation
of proton pump inhibitors,NSAIDs and antimicrobials is an inte-
gral part of the treatment of ICI-induced AKI [63–65]. The patho-
physiology of the toxicity of proton pump inhibitors to renal
cells is unknown. It may be due to the oxidative stress caused
by necrotic tubular cells [66].

In a multicentre study of 138 patients by Cortazar et al. [27],
most patients (86%) were treated with steroids and complete,
partial or no kidney recovery occurred in 40%, 45% and 15% of
patients, respectively. Concomitant tubulointerstitial nephritis–
causing medications and treatment with steroids were each as-
sociated with improved renal prognosis. Finally, the absence of
kidney recovery after ICI-associated AKI was independently as-
sociated with higher mortality. ICI was restarted in 22% of pa-
tients, and recurrence of ICI-associated AKI only occurred in 23%
of rechallenged patients [27].

According to the guidelines, the need and timing of kidney
biopsy should be discussed with the nephrologist in difficult
cases [63–65]. In our opinion, kidney biopsy is of utmost impor-
tance in order to make the correct diagnosis and to guide ther-
apy, because clinical findings and biochemical tests are subopti-
mal in predicting the underlying kidney lesion [61, 67]. A kidney
biopsy should be performed on every patient treated with ICI
experiencing AKI when no alternative cause of AKI can be read-
ily identified. Furthermore, proteinuria >3 g/day also warrants a
kidney biopsy, as this suggests the presence of an ICI-induced
glomerular disorder. Acute tubular interstitial nephropathy is
most commonly described on biopsy, but there are multiple
causes of kidney injury in cancer patients. If there are no signs
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Table 4. TLS risk and management

Cancer type Low risk (<1%) Intermediate risk (1–5%) High risk (>5%)

Lymphoma Cutaneous TCL, follicular, HL,
MALT lymphoma, MCL, MZL

Burkit or lymphoblastic
lymphoma: early stage

Burkit or lymphoblastic
lymphoma: advanced stage

Acute leukaemia ALL: low WBCs and LDH ALL: intermediate WBCs and
low LDH

ALL: high WBCs and high LDH

Chronic leukaemia, MM and
solid tumours

CML/CLL: chronic phase

MM and solid tumours

CML/CLL: treated with
targeted/biologic therapies
Chemosensitive, bulky solid
tumours

Prevention/treatment
Diagnostic measures No specific measures Daily labs before and 7 days

during therapy
Twice daily labs before and
7 days during therapy

Preventive measures Moderate hydration Vigorous hydration
Allopurinol/febuxostat to be
started >24 h before initiation
of therapy and continued until
normalization of UA levels and
absence of large tumour mass

Vigorous hydration
Single 6 mg dose of rasburicase
(repeated if needed)

Treatment of established TLS Admission to ICU for cardiac and biochemical monitoring
RRT if necessary (early initiation)
Correction of electrolyte abnormalities
Vigorous hydration
Single 6 mg dose of rasburicase

TCL, T-cell lymphoma; HL, Hodgkin lymphoma; MALT, mucosa-associated lymphoid tissue; MZL, marginal zone lymphoma; ALL, acute lymphocytic lymphoma; WBC,
white blood cell; LDH, lactate dehydrogenase; CML, chronic myeloid leukaemia; CLL, chronic lymphocytic leukaemia; ICU, intensive care unit.

of immune-mediated lesions, ICI could be continued and admin-
istration of steroids could be avoided. Re-exposure to ICI in pa-
tients with proven immune-mediated nephritis is an unresolved
issue. The approach will depend on the recuperation of the kid-
ney function and the treatment options for the patient.

CAR T-cells. CAR T-cell therapy can cause CRS, but it is also as-
sociated with TLS [68]. General treatment strategies are prevent-
ingmeasures and supportive care. Patient selection is important,
and in the presence of significant disease burden, TLS prophy-
laxis is warranted. In the setting of severe CRS, an IL-6 recep-
tor blocker and/or steroids may reduce adverse effects. It is still
unclear if immunosuppressive treatment might impair the anti-
cancer treatment.

TLS. The prevention and treatment of TLS is important, espe-
cially in patients with aggressive cancers and great tumour bulk
treated with highly effective treatments such as targeted treat-
ment, monoclonal antibodies, ICI and CAR T-cells [69]. Identi-
fying patients at high risk of developing TLS on the basis of
the presence or absence of cancer- or patient-specific risk fac-
tors is important (Table 4) [69, 70]. Rasburicase is approved by
both the FDA and the European Medicines Agency (EMA) for
the treatment of TLS. It metabolizes uric acid to soluble al-
lantoin, which is rapidly excreted by the kidney, resulting in
a rapid and dramatic decrease in serum uric acid levels [71].
A single course of rasburicase is indicated in paediatric and
adult patients with leukaemia, lymphoma and solid tumourma-
lignancies who are receiving anti-cancer therapy expected to
result in TLS. Rasburicase is contraindicated in patients with
glucose-6-phosphate dehydrogenase deficiency, as its use in
these patients will result in the development of haemolytic
anaemia [72].

HD is an effective therapy for TLS and is also able to correct
electrolyte and acid–base disturbances, especially in the pres-

ence of oliguric AKI. The need for HD to treat TLS has declined
since the introduction of rasburicase.

Drug-induced TMA. If TMA is diagnosed in cancer patients, the
cancer treatment must be considered as a potential cause and
the culprit agent must be stopped. Plasma exchange therapy
has no benefit in drug-induced TMA, except in cases with anti-
bodies against ADAMTS13 [20]. There is limited evidence for the
use of complement therapy in themanagement of drug-induced
TMA. There are only case reports available describing the use of
eculizumab in drug-induced TMA, suggesting that complement
dysregulation has a role in the underlying pathophysiology [73].
For HSCT-associated TMA, recent studies have confirmed the
role of complement activation and treatment is shifting towards
complement inhibition with eculizumab and mannan-binding
lectin serine protease 2 inhibition with narsoplimab [74].

RESEARCH NEEDS

In general, good evidence is lacking in the field of onco-
nephrology, as no or few randomized controlled trials have been
performed to date in this research area. For this reason, a lot of
the recommendations/suggestions provided in this review are
based on evidence from case reports and case series. Special-
ists in this field should organize in order to perform analyses on
larger groups of patients from centres around the world. A good
example is the recent international effort to gather data on ICI-
induced AKI from Gupta et al. [75]. As cisplatin is a widely used
chemotherapeutic with an increased risk of AKI, we would urge
for additional studies to identify effective approaches to prevent
and treat cisplatin-induced AKI. Also, the effective management
of cancer treatment-related TMA is a matter of debate, and ad-
ditional studies are needed in this area. In general, there is an
important need to develop onconephrology as a subspeciality
in nephrology in order to assemble international collaborative
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networks interested in moving this field forward and improving
patient outcomes.

CONCLUSIONS

AKI is a common complication in patients with cancer, and its
incidence is highest within the first year after cancer diagno-
sis. Causes include patient-, cancer- and treatment-related fac-
tors, and AKI in cancer patients is most often multifactorial. In
cancer patients, AKI is associated with a worse prognosis, inter-
ruption and/or dose reduction of potentially active treatments,
longer hospitalizations and increased costs. Knowledge of the
causes and risk factors of AKI is essential for its prevention,
prompt identification and adequate treatment (Figure 3). The
continuous introduction of novel anti-cancer treatments is par-
ticularly challenging, as novel therapies are expected to further
improve cancer patients’ outcomes but are also frequently as-
sociated with novel, and often ill-defined, (renal) toxicities [76].
In our opinion, a multidisciplinary approach is essential to re-
duce the incidence of AKI and to enhance assessment, preven-
tion, early treatment and monitoring of complications, thus im-
proving outcomes of patients with cancer. A close collaboration
between oncologists and organ specialists is also important to
enrich the knowledge about oncological therapies and the man-
agement of specific toxicities.
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