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ABSTRACT: The ability to study organisms by direct analysis
of their proteomes without digestion via mass spectrometry
has benefited greatly from recent advances in separation
techniques, instrumentation, and bioinformatics. However,
improvements to data acquisition logic have lagged in
comparison. Past workflows for Top Down Proteomics
(TDPs) have focused on high throughput at the expense of
maximal protein coverage and characterization. This mode of
data acquisition has led to enormous overlap in the
identification of highly abundant proteins in subsequent LC-
MS injections. Furthermore, a wealth of data is left
underutilized by analyzing each newly targeted species as
unique, rather than as part of a collection of fragmentation
events on a distinct proteoform. Here, we present a major advance in software for acquisition of TDP data that incorporates a
fully automated workflow able to detect intact masses, guide fragmentation to achieve maximal identification and characterization
of intact protein species, and perform database search online to yield real-time protein identifications. On Pseudomonas
aeruginosa, the software combines fragmentation events of the same precursor with previously obtained fragments to achieve
improved characterization of the target form by an average of 42 orders of magnitude in confidence. When HCD fragmentation
optimization was applied to intact proteins ions, there was an 18.5 order of magnitude gain in confidence. These improved
metrics set the stage for increased proteome coverage and characterization of higher order organisms in the future for sharply
improved control over MS instruments in a project- and lab-wide context.

The high throughput analysis of intact proteins by mass
spectrometry has become increasingly relevant due to the

recent and rapid acceleration in the development of enabling
technologies. Front-end separations1 have undergone a trans-
formation as methods for solution-based intact protein
separation have provided a viable alternative to the bottom
up approach of in-gel digestion.2 These new separation
techniques are amenable to lower initial sample amounts and
can be coupled to nano-LC prior to mass spectrometric
analysis. Additionally, order of magnitude increases in
sensitivity and speed enable modern instruments to more
adequately handle the rigors of complex mixtures replete with
high mass intact proteins.3 These improvements in separations
and instrumentation have transformed top down mass
spectrometric analyses from single protein direct infusion
experiments to high-throughput proteome-wide analyses up to
100 kDa.4 Recent analyses have shown confident identification
of thousands of proteoforms and nearly 2000 unique accession
numbers.4,5

The focused efforts in separations and instrumentation, along
with new and existing bioinformatics tools (e.g., ProSight PC
3.06), have largely bypassed the realm of high-throughput mass
spectrometric data acquisition. However, intelligent acquisition
of mass spectrometric data holds great promise for increased

experimental efficiency. Real-time adjustments to fragmentation
parameters driven by decision logic have been successfully
incorporated into bottom up proteomics workflows.7,8 The
incorporation of “intelligence” yielded sizable increases in the
number of peptides identified in subsequent experiments. For
intact protein analysis, intelligent acquisition strategies have
been used to increase the number and quality of protein
identifications resulting from an LC-MS analysis but relied on
additional offline analysis.9 Extending these efforts to an online
data acquisition and analysis platform for TDP offers an
exciting way to increase the value of these proteomics data sets.
Further development of data driven acquisition will not only

increase the efficiency of data collection but also result in more
effective use of the data that is generated during an analysis.
High-throughput proteomics can generate immense quantities
of data; however, each new fragmentation event is typically
treated as a single, isolated event instead of part of a data set for
a unique mass species. This leads to redundancy in data
collection, which hinders deep exploration of the proteome.
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Additionally, project wide dynamic exclusion instead of an LC-
MS run based dynamic exclusion would prevent much
unneeded analysis of proteins that are already well charac-
terized. Because of the mismatch of dynamic range between
protein expression and mass spectrometers,10 the very most
abundant proteins (e.g., histone and heat shock proteins) can
be fragmented thousands of times over the course of a
proteomic investigation.2 Unfortunately, these proteins are
frequently fully characterized upon the first fragmentation so
additional fragmentation of the protein produces no additional
information.
Here, we demonstrate an upgraded TDP workflow driven by

intelligent data collection through a software termed Autopilot.
Online mass detection, supplemented with prior knowledge of
past fragmentation events, guides precursor selection and
fragmentation. Proteins not sufficiently characterized are
subjected to repeat fragmentation with optimized parameters
based on a fragmentation logic scheme. Spectral data are
searched immediately and the information is added to a
proteomic repository for reference in current and future runs.
Each distinct mass builds a fragmentation history with new
fragmentation data joined with previous data to produce the
best possible sequence coverage of proteins. Through accretion
of data from different fragmentation types, energies, and charge
states, more complete protein characterization can be achieved.
Furthermore, proteins which have exceeded a threshold of
characterization are excluded from all forthcoming analysis to
permit characterization of the maximal number of proteins in
the given proteome analysis.

■ METHODS
Cell Culture. Pseudomonas aeruginosa PAO1 (ATCC

15692) was plated on Mueller Hinton II agar plates and
incubated at 37 °C. A single colony was inoculated in 50 mL of
Mueller Hinton broth (MHB) and incubated overnight at 37
°C. This starter culture was used to inoculate a larger culture at
an inoculum to culture ratio of 1:500. Cells were harvested at
midlogarithmic growth phase (OD600 ≈ 0.4) by centrifugation
at 5000 × g.
Sample Preparation. PAO1 cells were lysed in 4% SDS

and 25 mM Tris, pH 7.4 with Halt protease inhibitors (Thermo
Pierce, Rockford, IL) and 1 mM DTT. The cell lysate was
acetone precipitated with three volumes of cold acetone and
centrifuged at max speed for 10 min. The precipitated pellets
were dried and 400−500 μg of protein was fractionated on a
GELFREE 8100 Fractionation system (Expedeon, San Diego,
CA) with either 10% or 12% cartridges. The collected fractions
were precipitated with MeOH/CH3Cl/H2O as previously
described to remove SDS.11 Prior to MS analysis, the samples
were resuspended in 30 μL of buffer A (95% H2O, 5%
acetonitrile, 0.2% formic acid).
LC-MS/MS. Briefly, each GELFrEE fraction was injected

onto a 2 cm, 150 μm i.d. PLRP-S trap column and a longer 10
cm, 75 μm i.d. column was used for the online separation as
described previously.12 Both the trap and analytical columns
were packed in-house with 5 μm diameter, 1000 Å pore size
PLRP-S. An Ultimate 3000 RPLCnano (Thermo Scientific
Dionex) with 300 nL/min flow rate setup was used for online
chromatography. An LTQ Velos Orbitrap Elite (Thermo
Scientific) was the mass spectrometer used for all data
acquisition. The resolution settings were 60 000 and 30 000
for precursor and fragmentation scans, respectively, at 400 m/z.
An isolation window of 15 m/z was used for mass selection. For

the Xcalibur data acquisition, the method implemented
precursor and fragmentation scans with four μscans and
dynamic exclusion with a repeat count of 1, a repeat duration
of 240 s, and an exclusion duration of 5000 s. The maximum
inject time for both precursor and fragmentation scans was
1000 and 400 ms for SIM scans. Autopilot utilized 4 μscans for
precursor scans and SIM scans, 6 μscans for HCD
fragmentation, and 12 μscans for ETD fragmentation. For
Autopilot operation, the Thermo LTQ component object
model (COM) is used in conjunction with an advanced user’s
license for the Orbitrap Elite. Several ion trap control language
(ITCL) changes were applied to enable ETD and HCD
fragmentation by Autopilot. The source code for the Autopilot
logic interface is included in the Supporting Information.
Instructions on the implementation of the fragmentation logic,
an analysis to infer mass, online search are included.
Raw mass spectrometry data has been deposited in the IU

Scholar Works Repository. The data is available at http://hdl.
handle.net/2022/17234.

Online Data Analysis. Autopilot applies Xtract with a 3
signal/noise cutoff to full precursor scans, SIM scans, and
fragmentation scans. For fragmentation data, the system
performs online absolute mass searches against the PAO1
database with the precursor mass from Xtract. The search
window is a 2000 Da tolerance around the precursor mass
while the fragment tolerance is 10 ppm. The search is
accomplished with the ProSight search engine and requires a
minimum number of 4 matched fragments, with only the top
hit (the most confident P-Score) returned from the search.

Offline Data Processing. The LC-MS/MS data files
acquired by Xcalibur files were processed with an in-house
software, cRAWler. The cRAWler produces ProSight upload
format (.puf) files, which contain Xtract detected precursor
masses linked with fragment ions from the corresponding data-
dependent scan. The completed .puf files are then searched by
ProSight PC 3.0 (Thermo Scientific, San Jose, CA) against the
PAO1 database. A multitier search was implemented in
ProSight PC with an initial small window absolute mass
precursor search of 2.2 Da, followed by a large window absolute
mass search of 100 000 Da if no hits were found in the first
search. For data-dependent Xcalibur fragmentation scans with
no associated precursor masses, a 100 000 Da window centered
on 55 555.55 Da is searched.

■ RESULTS AND DISCUSSION
Characterization. Increased protein characterization in an

automated fashion was the primary goal of this work. However,
TDPs currently lacks a “characterization” score. Therefore, the
P-score, which is a measure of the confidence of protein
identification, was used as an indirect measure of character-
ization. As described previously, this score generally improves
with an increasing number of matched fragment ions, which
indicates better characterization. The score also decreases with
an increasing number of unmatched fragment ions, breaking
the direct link between characterization and this score. While it
is recognized that this does not directly equate to character-
ization, the development of a characterization score is beyond
the scope of this work.

Workflow. For mass spectrometric workflows to operate at
optimal efficiency, the acquisition platform must utilize real-
time and stored information during an analysis to enable the
instrument to react to current acquisition needs in a productive
manner. To properly guide acquisition, an accurate survey of
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the current protein elution landscape is of primary importance
(Figure 1, top left). From a full MS spectrum, the data points
can be directly piped from the instrument into an isotope
determination routine, Xtract, which outputs a list of the
average and monoisotopic masses present in the spectrum
(Figure 1, top right and Figure S1A of the Supporting
Information).13 Along with mass information, Xtract includes
the charge state distribution of the species, which enables
charge states of a particular species to be grouped as a single
“target”. The strategy of isotope analysis for mass detection is
suitable for the mass range of proteins the Orbitrap Elite is able
to isotopically resolve on an LC-MS time scale. For proteins no
longer isotopically resolved (i.e., >30−35 kDa), a short
transient FT scan or low resolution ion-trap scan can be
combined with charge state deconvolution for intact mass
determination.14 However, this study focuses on lower
molecular weight proteins that can be isotopically resolved by
the Orbitrap mass spectrometer.
The protein species detected by Xtract represent the

potential targets for focused fragmentation events. The mass
list is parsed to group similar masses and account for simple
hardware and software artifacts such as oxidation and off-by-
one errors that result from incorrect isotope matches. The mass
list is further culled to remove previously fragmented species
identified at a high confidence level. Here, a very high degree of
confidence cutoff (P-score <1 × 10−50) was selected to
showcase the characterization abilities of the software. The
remaining targets, sorted by decreasing abundance, are placed
in a queue. This first-in, first-out queue supplies a new

fragmentation scan definition to the instrument as soon as the
data from the previous scan is returned.
Upon the initial fragmentation of a species, the lowest charge

state is selected for HCD fragmentation with a normalized
collision energy (NCE) of 25 (Figure 1, bottom right). The
lowest charge is fragmented first as it typically will yield the
largest number of unique fragments.15 The underlying
instrument control language translates the NCE into a HCD
energy in eV to be applied based on a combination of the NCE
value and the m/z of the fragmentation target. We apply Xtract
to the fragmentation spectrum for fragment ion detection. After
Xtract analysis is complete, a wide-window (2000 Da) absolute
mass search of the fragment set is immediately started. The
search is against the 5763 gene, 23 176 form pseudomonas
PAO1 database with a 10 ppm fragment tolerance. The top hit
is added to the fragmentation history of the mass species.
When a precursor mass of a previously fragmented species is

redetected by Xtract, whether in the same run or a subsequent
injection, the history of the species is queried from the
proteomic data set. The best previous fragmentation event for
the species is compared to an identification confidence cutoff. If
the confidence of the identification exceeds the cutoff, the
target is placed on an exclusion list. If it is below the set score
cutoff, a fragmentation decision tree (Figure S1B of the
Supporting Information) charts the course of action to
optimize the energy, charge state, and fragmentation technique
chosen for the reanalysis of the protein. The resultant spectrum
from refragmentation is then processed in a similar fashion to
the first fragmentation and the database record for the target is
updated accordingly.

Figure 1. Data acquisition workflow on an example protein. A full precursor scan is taken, followed by HCD fragmentation of the 9+ charge state on
the detected mass 7246.26 Da. After an online search, the software determines more analysis should be performed as the P-Score (1.8 × 10−47) is not
below the cutoff. An ETD scan of the highest charge state is taken and searched. The fragment ions are combined and the final P-Score of 5.0 ×
10−102 is below the cutoff. All charge states of the 7246.26 Da species are permanently excluded from further fragmentation and the system goes in
search of the next target mass.
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If no new targets are found in the precursor scan, the
platform queues a scan event for the acquisition of a 15 m/z
SIM scan. The region selected for the SIM scan is from a part
of the spectrum not occupied by an Xtract detected mass. The
SIM scan is for discovery purposes, as SIM scans can provide
the increased ion statistics required for Xtract to discover new
targets. With the noise reduction of the LTQ software, there are
frequently areas of the spectrum with no signal and a dedicated
SIM scan of these areas can often reveal protein species in this
space. In Figure S2 of the Supporting Information, a SIM scan
of the highlighted region was taken. While that region had very
little signal in the full precursor scan, Xtract detection on the
SIM scan produced nine precursor masses, including two
methylations. This discovery mode effectively increases the
dynamic range of the experiment by preventing the
monopolization of the ion current in a given scan by highly
abundant protein species.
Acquisition Mode Comparison Study. A comparison of

the data acquisition control system described above, named
Autopilot, to the standard acquisition software of Thermo mass
spectrometers, Xcalibur, was conducted on the low mass
GELFrEE fractions from a 10% T GELFrEE fractionation of
PAO1. Each fraction was analyzed in technical triplicate with
both systems. At a 1% FDR cutoff, Autopilot enabled the
confident identification of 234 unique accession numbers while
the standard data dependent software identified 230 unique
accession numbers, with 180 accession numbers shared

between the two data sets (Figure 2A and Table S1 of the
Supporting Information).
Importantly, the identifications from Autopilot were found

with searches performed during data acquisition by an absolute
mass search with a 2000 Da precursor tolerance. This search
strategy was chosen to sufficiently limit the search space to
enable searches to be performed on the same desktop computer
that controls acquisition and finish within the cycle time of the
instrument.
The identification mode for Xcalibur utilized an in-house

software for precursor and fragment detection followed by a
ProSight PC 3.0 search. The ProSight search incorporated a
search tree with a first-pass 2.2 Da precursor tolerance absolute
mass search and a larger window absolute mass search with a
100 000 Da precursor tolerance if needed. Additionally, for
fragmentation scans without an associated precursor, the large
window 100 000 Da precursor search was performed.
Figure 2A and B demonstrate the advantages of an online

search. Even with the much larger search space used in the
offline searches, Autopilot produced more protein identifica-
tions with the simple online search. Further, Figure 2B
compares the total amount of processing time required to
obtain a meaningful list of identifications. With Autopilot
searches performed simultaneously with acquisition instead of
the typical online acquisition, offline analysis approach, the
number of identifications/time increases from 4.8 identifica-
tions/hour with the conventional workflow to 13 identifica-
tions/hour with Autopilot, a 270% increase in throughput.

Figure 2. Comparison between Autopilot and the standard data acquisition software for Thermo mass spectrometers, Xcalibur. (A) All Autopilot
identifications were generated online during data acquisition with a 2000 Da absolute mass search mode. Meanwhile, the Xcalibur identifications
were generated with offline searches with a search tree capable of up to 100 000 Da absolute mass searches. At a 1% FDR cutoff, Autopilot was able
to identify 234 unique accession numbers compared to 230 by Xcalibur. (B) The total analysis time for the online data acquisition and offline data
analysis with the Xcalibur acquisition mode was 48 h, with 18 h of instrument time. The time for each run is the LC-MS acquisition time of 90 min
plus 30 min for spectral summing and ion detection and another 1−2 h for database searches and reports. Because Autopilot processes the data
concurrently with acquisition, the time from first injection to end of analysis is 18 h, which is a 270% increase in overall experimental throughput.
(C) The decoy and forward gamma distributions from the calculated instantaneous FDRs for every identification event from both data acquisition
methods are shown.
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To validate our search results, the instantaneous FDR, a
Bayesian posterior p value to measure the FDR for each
identification event, was calculated for each Poisson-based P-
Score.4 The instantaneous FDR plots in Figure 2C indicate our
directed fragmentation strategy significantly improves the
characterization of the identified proteins as the calculated
FDRs for each data set are substantially different. The 1% FDR
cutoff for Autopilot was 1.1 × 10−5 while the cutoff for Xcalibur
was 2.6 × 10−10. This difference can be attributed to the shift of
the decoy distribution toward higher P-Scores with a
subsequent shift of the forward distribution toward lower,
more confident P-Scores. In other words, there are more
matched fragments with a corresponding lower number of
unmatched fragments, which reinforces the use of P-score as a
reasonable substitute in the absence of a true characterization
score.
Fragmentation and Reanalysis of Protein Forms. The

increase in characterization seen in the comparison experiment
is a result of directed reanalysis of protein targets. Because not
every protein behaves in a predictable manner, each fragmented
species must be examined to determine if additional
fragmentation is needed. After the online protein identification
discussed above, the top P-Score proteoform from the search is
considered the correct hit for the mass. If the top hit is above

the confidence cutoff, the mass is excluded from all future
analysis; meaning, when detected again, no fragmentation event
will be triggered on any charge state of the species.
Alternatively, if the fragmentation led to mediocre results that
missed the cutoff for a characterized identification, another
fragmentation event can be queued. The subsequent
fragmentation of a mass target follows a decision tree composed
of ETD fragmentation with a variety of different reaction times
and HCD fragmentation with energy optimization (Figure S1
of the Supporting Information).
The fast speed of HCD coupled with generally robust

fragmentation coverage makes HCD an ideal starting point for
characterization. The first fragmentation event of any detected
mass is an HCD scan on the lowest charge state with an NCE
of 25. If more fragmentation is required, a different
fragmentation technique is used for the first reanalysis. As
ETD and HCD have been shown to be complementary
fragmentation techniques,16 the combination of the two can
increase overall sequence coverage. An ETD scan of the highest
charge state is therefore applied for the reanalysis. The scan has
twice as many μscans as the HCD scans to maximize ion
statistics of the many, low abundant fragment ions produced
from ETD. The highest charge state is selected because the
ETD reaction becomes faster and more efficient as the charge

Figure 3. (A) Example of the HCD optimization process is shown for the 10+ charge state at 1032 m/z of the 50S ribosomal protein L7
(RL7_PSEAE). Each colored line is a different quadratic fit to find the energy that will produce the best P-Score. The maximum for each fit is the
energy applied in the new fragmentation scan. After three quadratic optimizations, the best energy for this protein was determined. Table S2 of
Supporting Information lists the energy, matched fragments, and P-Score for each fragmentation event. (B) The gamma distributions for the decoy
and forward search spaces. The distribution for those species that were optimized more than three times undergoes a sizable shift to the right, which
results in a greater percentage of the masses moving past the 1% cutoff. (C) The number of matched fragments from the most optimized scan are
compared to those from the first pass, an HCD fragmentation scan with 25 NCE. (D) A similar graph to (C) but with −Log10(P-Score) shown
instead.
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increases on the protein. McLuckey and co-workers have
demonstrated that the rate of an ion−ion reaction is dominated
by Coulombic interaction.17 Therefore, the reaction time is
calculated by a simple expression: tprecursor = zprecursor

2 × (topt/
zopt

2), where opt indicates a measured optimal reaction time for
a species with a known charge state. In this case, 60 ms for a +3
ion was utilized. If the first ETD attempt does not yield the
desired coverage, the software will try various reaction times in
an effort to better maximize the ETD reaction and
fragmentation. When the ETD optimization is complete, the
program will shift efforts to HCD fragment energy optimization
if the confidence cutoff has still not been reached.
HCD Optimization. A past attempt was made to generalize

the HCD fragmentation energy selection for proteins with a
method to estimate optimal energy as a function of the
protein’s mass and m/z.18 The equation to govern the choice of
energy outlined in that article was developed on a small data set
from standard proteins. We applied this equation, along with
several other energies (NCE of 20, 25, and 30), across the set
of detected proteins from the PAO1 proteome during high-
throughput Top Down proteome analysis. We then visualized
the P-Scores obtained from the varied HCD energies across the
data set with a random set of proteins from the run (Figure S3
of the Supporting Information). The general shape of the
energy distributions in relation to the corresponding P-Scores is
a defined maximum with steep falloffs on each side.
We adapted this new knowledge into our HCD optimization.

To accomplish our optimization, different fragmentation
energies are surveyed until a local maximum is found. A
quadratic is then fit to the maximum and the closest points on
each side. The software will continue to fit the points until the
best fit is found. In Figure 3A, the software takes HCD scans of
25, 30, and 34 NCE. The scan of 30 NCE produces a P-Score
better than the 25 NCE scan. A higher energy scan (34 NCE)
is taken in an effort to produce even better coverage. When the
34 NCE scan returns a P-Score worse than the 30 NCE scan,

the quadratic is fit to the three points. This fit is repeated two
more times until the optimal value is discovered (orange dot,
Figure 3A).
Figure 3B−D showcases the result of this optimization

throughout the entire data set. From 1342 unique mass species,
408 were targeted for refragmentation at least once and 204
were retargeted more than three times. Figure 3B illustrates the
shift in the forward P-Score gamma distributions upon
optimization. After full HCD optimization, the forward
distribution has shifted very significantly to the right of the
previous distributions. If applied to a completely optimized, full
proteomic investigation, many species would be shifted from
the unacceptable FDR range to a confident value. Additionally,
the −log10 of the P-Scores were continually increased on
average as the proteins were reanalyzed with different HCD
energies (Figure 3D). The mean change to the −log10 value of
the P-Score was 4.0, 6.0, and 18.5 after one, two, and three or
more reanalyses, respectively. As evidenced by panel C, there is
an almost universal improvement in the characterization of
proteins with repeated, directed fragmentation. Furthermore,
panel D indicates that, generally, the increase in number of
matched fragment ions does not come at the expense of more
unmatched fragment ions.
While the end result of Figure 3A is a modestly improved P-

Score, the difference between a protein falling outside of the
FDR cutoff can often be only a couple of fragment ions. A
fragmentation optimization of proteins on the boundary of the
confidence cutoff can easily lead to gains that can bring the
protein identification into acceptable confidence levels.

Fragmentation History. By analyzing data and intelli-
gently directing acquisition online, metadata generated at
runtime may be used to improve the quality of information
extracted from a data set. If fragmentation scans were
previously performed (during any analysis in a project) on
the mass of interest, the former fragment spectra corresponding
to that mass can be combined with the new fragmentation

Figure 4. Comparison of targeted masses with greater than one fragmentation event. (A) The utilization of a fragmentation history results in greater
sequence coverage (i.e., more matching fragments) and a more confident P-Score than the top hit from the best fragmentation event. (B) The
fragmentation maps of the 50 S ribosomal protein L29 depicts the fragmentation history of the 7195.89 Da species. The top map shows the results
from the initial HCD fragmentation. The map in the middle is the HCD fragmentation together with the fragments from the first ETD pass. The
bottom map is the culmination of all the fragmentation data from the species, with the total combination yielding a confidence score of 2.2 × 10−118.
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spectrum through spectral averaging of the centroid data. The
summation of scans increases signal-to-noise of real ions and
can lead to detection of new fragment ions. From there, the
averaged scan is Xtracted and searched. An improved version of
the ProSight search engine, capable of database retrieval on the
different sets of ions generated by the different fragmentation
techniques in the same search, completes the search. The
combination of CID or HCD with ETD ions from the same
protein form bolsters identification confidence and improves
overall protein characterization. The confidence score for the
combined ion types is unchanged if we make a simplification to
the score assignment. The score used is similar to the Poisson
distribution calculation outlined in Meng et al.:19 Pf,n = ((xf)n ×
e−xf/n!) where x = (1/111.1) × 2 × (Ma × 2), f is the number
of detected fragments, and n is the number of random fragment
ion matches. The first factor of 2 in x is the number of different
ion types in the search type. With separate ETD and HCD
searches, the final results can be pooled together and scored
with this P-Score calculation if Y ions generated during ETD
are ignored. That is, the ETD search will have two ion types, C
and Z, and the HCD search will have two ion types, B and Y.
Typically, only a small number of Y ions are produced by ETD
so any detrimental effects of extra unmatched fragment ions will
be minor to the overall score.
On one PAO1 GELFrEE run, significant improvements were

produced in the coverage of the masses that were targeted again
(Figure 4). The median improvement for the overall combined
history in comparison to the individual target was 13 orders of
magnitude. The mean improvement was even larger, with a
gain of >42 orders of magnitude in confidence. In terms of
matched fragments, the median coverage had 29.0 more
matched fragments while the mean had 41.1 more matched
fragments. A few species had lower P-Scores or less matched
fragments because of a poorly fragmented protein spectrum
being averaged with the best previous individual fragmentation
spectrum. However, this combined result would be ignored in
favor of the best individual spectrum upon selection for further
fragmentation, but is included for illustration purposes here.
Also, an increase in number of matched fragments is not always
accompanied by a commensurate increase in P-Score. This can
be attributed to a higher number of unmatched fragments
detected in the averaged scan, thereby lowering the P-Score.

■ CONCLUSION
This work demonstrates that the implementation of several
important data acquisition features can produce large enhance-
ments in the characterization of proteins observed during TDPs
investigation. When past data from the same species is coupled
with current fragmentation data, a vast improvement to the
overall fragmentation coverage of many proteins in our samples
was achieved. Further, performing data analysis in parallel with
data acquisition enabled increased characterization of proteins
in significantly less overall time.
While this work focused on increased characterization of

proteins, the benefits of this software in terms of increased
unique protein accession numbers will be more visible and
directly tractable on newer mass spectrometers that feature
tremendous improvements in speed paired with quadrupolar
selection of mass species. The speed is desirable for different
MS1 modes, such as SIM scans. As shown in Figure S2 of the
Supporting Information, the SIM scan discovery mode can
uncover many species previously undetectable because of
dynamic range issues. With the quadrupole on these instru-

ments, such as the Thermo Q Exactive, precise selection of
these new SIM mass targets should enable large increases in the
number of identified proteins. The tight isolation windows will
prevent the current problem on hybrid instruments of nearby,
abundant proteins being isolated and fragmented with the
target species of interest. The abundant fragment ions drown
the signal of the target species, making identification of the
lower abundance species difficult. With quadrupole isolation,
this limitation is all but eliminated.
In addition to cross-platform capabilities, the data acquisition

structure of Autopilot is extensible by nature and can eventually
be operated in more complex ways. For instance, after initial
determination of the protein form with a first pass
fragmentation mode, the system could precisely fragment the
protein based on primary sequence composition. Also, our
flexible database allows for offline searches to be imported into
the database which will enable time and computationally
intensive searches, such as biomarker searches, to be done
offline on a cluster or supercomputer. The results of those
searches can then inform future data acquisition decisions in
real-time. Lastly, the database is compatible with our previously
collected data, which will allow past data sets to be seamlessly
incorporated into future proteomic studies.
As TDPs continues to advance, a necessary part of its

evolution is more efficient and intelligent data acquisition. The
characterization improvements presented here, coupled with
advanced instrumentation, will serve as the foundation for a
more complete elucidation of the complex proteoforms that
comprise higher organisms.
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