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Increasing serotonin bioavailability 
alters gene expression in peripheral 
leukocytes and lymphoid tissues of 
dairy calves
M. G. Marrero1, S. L. Field1, A. L. Skibiel1,2, B. Dado-Senn1, J. P. Driver1 & J. Laporta1 ✉

Dairy calves are born with a naïve immune system, making the pre-weaning phase a critical window 
for immune development. In the U.S., 40–60% of dairy farms feed milk replacer to pre-weaned calves, 
which are devoid of bioactive factors with immunological roles. Serotonin is a bioactive factor with 
immunoregulatory properties naturally produced by the calf and present in milk. Human and rodent 
immune cells express the serotonin machinery, but little is known about the role of serotonin in the 
bovine immune system. Supplementing milk replacer with 5-hydroxytryptophan (serotonin precursor) 
or fluoxetine (reuptake inhibitor) increases serotonin bioavailability. We hypothesized that increased 
serotonin bioavailability promotes serotonergic signaling and modulates the expression of immune 
related genes in peripheral leukocytes and immune-related tissues of dairy calves. The present 
experiment targeted candidate genes involved in serotonin production, metabolism, transport, 
signaling and immune regulation. We established that bovine peripheral leukocytes express all known 
serotonin receptors, and can synthesize, uptake and degrade serotonin due to the expression of 
serotonin metabolism-related genes. Indeed, we showed that increasing serotonin bioavailability alters 
gene expression of serotonin receptors and immune-related genes. Further research will determine 
whether manipulation of the serotonin pathway could be a feasible approach to bolster dairy calves’ 
immune system.

Dairy calves are born with a naïve immune system. Feeding newborn calves high quality colostrum is a practice 
readily implemented on most U.S. dairy farms1,2. While colostrum is important for calf immune protection and 
survival, the remaining pre-weaning phase consists of a liquid diet of either whole milk or milk replacer. In the 
U.S., 40–60% of dairy farms feed milk replacers to pre-weaned dairy calves3. Dairy calves’ adaptive immune 
system develops gradually, and the pre-weaning phase has been shown to be critical for immune system devel-
opment and maturation4. Emerging data demonstrate that milk not only delivers nutrients, but also primes the 
newborn’s growth and development through delivery of bioactive factors5,6. Although milk replacer formulation 
has improved over the years, it still lacks bioactive components naturally present in milk that could aid in the 
development of the dairy calf immune system. Therefore, there is a need to explore novel bioactive factors that 
when added to milk replacers can enhance dairy calf immune development.

Serotonin is a bioactive factor with immunoregulatory properties7–12 that is present in cow milk and is also 
endogenously synthesized by the calf13–15. However, little is known about the immunologic role of serotonin in 
milk or in cattle. Serotonin is derived from the conversion of L-tryptophan to 5-hydroxytryptophan (5-HTP) by 
the rate limiting enzyme tryptophan hydroxylase (TPH1, in peripheral tissues, and TPH2, in the brain), which is 
subsequently converted to serotonin by the aromatic amino acid decarboxylase enzyme (AADC/DDC)16. There 
are 7 serotonin receptor families with more than 10 G-protein coupled receptor (GPCR) subtypes and 3 ion-gated 
channel receptor subtypes17. Depending on which serotonin receptor subtype (Gs, q/11 or i/o) is activated, signaling 
cascades including adenylyl cyclase (AC), protein kinase C (PKC), inositol trisphosphate (IP3) and mitogen and 
extracellular signal regulated kinase (MERK) are activated18 to modulate the activity of proteins or to regulate 
gene transcription. Serotonin action is terminated by the serotonin transporter (SERT), which removes circulat-
ing serotonin from the extracellular space to be recycled or degraded by monoamine oxidase (MAO).
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Peripheral serotonin (close to 95% of total serotonin in the body) is primarily synthesized by the enterochro-
maffin cells in the gut and is involved in the regulation of many physiological functions14,19–23, including immune 
modulation. Peripheral serotonin is mainly stored and transported by blood platelets24, the major source of sero-
tonin for circulating immune cells and organs. Several studies support the immunomodulatory role of peripheral 
serotonin in the rodent and human model. For instance, platelet-derived serotonin in mice promotes neutrophil 
recruitment to inflammation sites by increasing L-selectin expression and enhancing endothelial interactions25. 
Research in humans and rodents show that different immune cells express one or multiple components of the ser-
otonergic signaling pathway machinery (i.e., receptors, TPH1 and/or SERT, MAO8,9,26,27), indicating their capac-
ity to synthesize, metabolize, respond to, and/or transport serotonin11,28,29. Dendritic cells (DCs) do not express 
TPH1, however upon activation they increase SERT expression which allows them to take up serotonin from 
circulation8. Activation of murine T lymphocytes increases TPH1 expression and hence, endogenous serotonin 
production. This serotonin then acts as an autocrine-paracrine cytokine to enhance T cell proliferation or is taken 
up by circulating cells (i.e., DCs and platelets)8,9. Furthermore, in mice, serotonin can attract mast cells, which 
express both TPH1 and SERT11, to inflammation sites30. Studies using TPH1 knockout mice (lacking peripheral 
serotonin) show reduced macrophage infiltration and lower proinflammatory cytokine production (i.e. IL-1β 
and -6) compared to wild type mice31. Dendritic cells of TPH1 knockout mice produce less IL-12 following a 24 h 
in vitro lipopolysaccharide (LPS) challenge compared to wild type mice32. It has also been shown that isolated 
monocytes incubated with LPS secrete more cytokines when serotonin is present26.

Serotonin has been shown to regulates physiological functions that are relevant to lactation performance 
including metabolic status, milk synthesis and calcium regulation15,23,33. However, studies exploring ser-
otonin’s immunomodulatory role are limited in the bovine. One study showed that supplementation of 
5-hydroxytryptophan to newborn calves for 15 days increased blood mRNA abundance of genes related to innate 
and adaptive immunity, including nuclear factor kappa beta, chemokine C-C motif ligand 5, cyclooxygenase-2 
and interleukin 1 beta34. However, a more thorough characterization of the bovine serotonergic pathway and its 
ability to modulate immunity is lacking. Herein, we characterize the expression profile of genes involved in ser-
otonin synthesis, metabolism and signaling, and its impact on cytokine expression in leukocytes and lymphoid 
tissues of dairy calves supplemented with 5-hydroxytryptophan, the serotonin precursor, or fluoxetine, a selective 
serotonin reuptake inhibitor (SSRI). We hypothesized that increased cell and tissue serotonin bioavailability will 
promote the expression of genes involved in serotonergic machinery and signaling, and positively modulate the 
expression of immune genes in peripheral leukocytes, spleen, thymus and popliteal lymph node of pre-weaned 
dairy calves.

Results
Effects of FLX and 5-HTP supplementation on white blood cells counts and subfractions.  No 
differences were observed for total WBC (count/μL) among treatment groups before or after 10 days of FLX 
or 5-HTP supplementation (P > 0.19; Table 1). Likewise, WBC subfractions (count/μL) including neutrophils, 
eosinophils, basophils, monocytes and lymphocytes were not different among treatment groups before or after 10 
days of supplementation (P > 0.47; Table 1).

Effects of 5-HTP on peripheral leukocyte gene expression.  Serotonin synthesis, metabolism, and 
downstream pathways.  After 10 days of 5-HTP supplementation, peripheral leukocytes were isolated for gene 
expression analysis, reported as fold change relative to CON saline-supplemented group. Supplementation of 
5-HTP upregulated or tended to upregulate genes involved in serotonin synthesis and metabolism, including 
DDC and MAOA (P < 0.03) and MAOB (P = 0.09), while TPH1, SLC6A4 and IDO1 gene expression was not 
affected (P > 0.94; Fig. 1A). Seven serotonin receptors were upregulated including 5-HT1A, -1B, -1D, -1F, -3B, -3C 
and -4 (P < 0.04) while 5-HT2B tended to be upregulated (P = 0.06; Fig. 1B). The 5-HT3A receptor subtype was 
downregulated more than 8-fold following 5-HTP supplementation (P = 0.06; Fig. 1B), whereas the expression 
of 5HT2A, -5A, -6 and -7 remained unchanged (P > 0.13). Four genes downstream of serotonin GPCR signal-
ing were significantly upregulated by 5-HTP supplementation, including ADCY1, PLCB2, MAPK3 and AKT1 
(P < 0.05); while AKT2 and STAT5B tended to be upregulated (P < 0.10; Fig. 1C).

WBC count

Treatmentsa P-valueb

CON 5-HTP FLX
5-HTP vs. 
CON

FLX vs. 
CON

Neutrophils, 103/μL 3.69 ± 0.62 3.96 ± 0.67 3.69 ± 0.62 0.78 0.99

Monocytes, 103/μL 1.08 ± 0.11 1.19 ± 0.12 0.97 ± 0.11 0.51 0.48

Lymphocytes, 103/μL 4.37 ± 0.23 4.79 ± 0.24 4.79 ± 0.23 0.22 0.48

Eosinophils, 103/μL 0.06 ± 0.02 0.06 ± 0.22 0.09 ± 0.02 0.96 0.42

Basophils, 103/μL 0.01 ± 0.02 0.05 ± 0.03 0.03 ± 0.02 0.26 0.71

Table 1.  Circulating white blood cells (neutrophils, lymphocytes, monocytes, eosinophils, and basophils) 
in dairy calves with increased serotonin bioavailability. aOral supplementation of milk replacer with saline 
(control; n = 8), fluoxetine (40 mg/d; n = 8) or 5-hydroxytryptophan (5-HTP, 90 mg/d; n = 8) to Holstein 
dairy calves for 10 consecutive days. bStatistical significance declared at P-value ≤ 0.05 and tendencies at 
0.05 < P ≤ 0.10.
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Clusters of differentiation and immune related genes.  The expression of several immune related genes in periph-
eral leukocytes was modulated by 5-HTP supplementation. Specifically, CTLA4 was upregulated (P < 0.006), 
and CD80 tended to be upregulated compared to CON (P = 0.10; Fig. 2A). A significant upregulation of vari-
ous cytokines including IFNG, IL2, IL4, IL13, and IL17A (P < 0.02) was observed, with IL2 having the highest 
fold-change of 17.5 when compared to CON (Fig. 2B). Differentially expressed genes in peripheral leukocytes are 
summarized in Fig. 3A.

Effects of FLX on peripheral leukocyte gene expression.  Serotonin synthesis, metabolism and down-
stream pathways.  After 10 days of FLX supplementation, peripheral leukocytes were isolated for gene expression 
analysis and reported as fold change relative to CON saline-supplemented group. Supplementation of FLX upreg-
ulated genes involved in serotonin synthesis and metabolism, including DDC and MAOA (P < 0.03) and tended 
to upregulate MAOB (P = 0.07), whereas TPH1, SERT and IDO1 were not differentially expressed (P > 0.12; 
Fig. 1D). Fluoxetine supplementation upregulated the expression of 5-HT2C (P = 0.03) and 5-HT4 (P = 0.08); 
while 5-HT2A and -3A were significantly downregulated (>30-fold, P < 0.006; Fig. 1E). All other serotonin recep-
tors remained unchanged (P > 0.12). Eight genes downstream of serotonin receptor signaling were upregulated 
including PKA, PLCB2, MAPK3, AKT1, STAT5B and PIK3CB (P < 0.03) or tended to be upregulated such as 
AKT2 and REL (P < 0.10) by FLX supplementation (Fig. 1F). Meanwhile, MAPK14 was significantly downregu-
lated (P = 0.008) and MAPK1 tended to be downregulated by FLX (P = 0.09, Fig. 1F).

Clusters of differentiation and immune related genes.  The expression of various immune related genes in periph-
eral leukocytes was modulated by FLX supplementation. Specifically, FLX upregulated the gene expression of 
CD14, CD80, and TLR4 (P < 0.045), CTLA4, and SELL (P < 0.10), while it downregulated CD28 expression com-
pared to CON (P < 0.10; Fig. 2C). Supplementation of FLX upregulated the gene expression of various cytokines, 
including IL1B, IL4 and IL12B (P < 0.03), TNF, IL17A and CXCL10 (P < 0.10; Fig. 2D). Only TGFB gene expres-
sion in peripheral leukocytes was significantly downregulated after the 10-d FLX supplementation (P = 0.04; 
Fig. 2D). Differentially expressed genes in peripheral leukocytes are summarized in Fig. 3B.

Effects of 5-HTP on Thymus, Spleen, and Lymph Node Gene Expression.  Serotonin synthe-
sis, metabolism and downstream pathways.  Supplementation of 5-HTP for 10 days did not affect serotonin 
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Figure 1.  Gene expression in peripheral leukocytes of pre-weaned dairy calves after a 10-day oral 
supplementation of 5-hydroxytryptophan (5-HTP, 90 mg/d; n = 8), fluoxetine (FLX, 40 mg/d; n = 8) or saline 
(CON; n = 8). Gene expression is reported as fold change (2−ΔΔCt) relative to CON saline-supplemented 
group. Gene expression fold change of (A) genes related to serotonin synthesis and metabolism, (B) serotonin 
receptors, and (C) their downstream pathways after 10 days of 5-HTP oral supplementation. Gene expression 
fold change of (D) genes related to serotonin synthesis and metabolism, (E) serotonin receptors and (F) their 
downstream pathways. Black bars denote 5-HTP vs. CON gene expression fold change, and dotted bars denote 
FLX vs. CON gene expression fold change. The negative inverse of fold-change values <1 was calculated for 
visual representation of negative fold changes. (*) indicate significant differences (P ≤ 0.05) and (#) indicate 
tendencies (0.05 < P ≤ 0.10) between CON and FLX or CON and 5-HTP treatments.
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metabolism related genes in spleen tissue compared to CON (P > 0.15; Supplementary Fig. S1A), but upregu-
lated serotonin receptors 5-HT1A and -4 (P < 0.01) and tended to upregulate 5-HT3B (P = 0.09; Supplementary 
Fig. S1B). In the spleen, MAPK1 and AKT2 tended to be upregulated, while MAPK14 tended to be downregulated 
(P < 0.07; Supplementary Fig. S2A). In the popliteal lymph node, serotonin metabolism related enzyme MAOB 
tended to be upregulated (P = 0.06; Supplementary Fig. S1A), but no serotonin receptors were differentially 
expressed by 5-HTP (P > 0.11; Supplementary Fig. S1B). Additionally, in the lymph node, MAPK3 and STAT5B 
tended to be downregulated (P > 0.08; Supplementary Fig. S2A). In the thymus, 5-HTP supplementation upregu-
lated DDC (P = 0.04) and tended to downregulate TPH1 (P = 0.07; Supplementary Fig. S1A), while it significantly 
upregulated the serotonin receptor 5-HT3B (P = 0.02; Supplementary Fig. S1B). Thymus expression of genes 
downstream of serotonin receptors included upregulation of AKT1 and AKT2 (P < 0.043) and STAT5A (P = 0.06; 
Supplementary Fig. S2A). Differentially expressed genes in tissues are summarized in Fig. 3A.

Clusters of differentiation and immune related genes.  The expression of several immune related genes in lymphoid 
tissues was altered by 5-HTP supplementation. In the spleen, 5-HTP supplementation upregulated the surface 
protein CTLA4 (P = 0.01) and tended to downregulate the T cell surface marker, CD8B (P = 0.07; Supplementary 
Fig. S3A). Spleen expression of IL17A was upregulated (P = 0.04) and IFNG and IL13 tended to be upregulated 
(P < 0.09) by 5-HTP supplementation; while IL1B cytokine was downregulated (P = 0.003; Supplementary 
Fig. S3B). In the popliteal lymph node, CD14 was downregulated (P = 0.04; Supplementary Fig. S3A) but cytokine 
gene expression was not affected by 5-HTP supplementation (P > 0.16; Supplementary Fig. S3B). In the thy-
mus, the surface protein, CTLA4, gene expression was upregulated (P = 0.025; Supplementary Fig. S3A), however 
cytokines were not differentially expressed after 5-HTP supplementation (P > 0.11; Supplementary Fig. S3B).

Effects of FLX on Thymus, Spleen, and Lymph Node Gene Expression.  Serotonin synthesis, metab-
olism and downstream pathways.  In the spleen, FLX supplementation upregulated SLC6A4 (P = 0.02) and 
IDO1 (P = 0.07) and downregulated TPH1 (P = 0.06; Supplementary Fig. S1C). Additionally, serotonin receptors 
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Figure 2.  Gene expression in peripheral leukocytes of pre-weaned dairy calves after a 10-day oral 
supplementation of 5-hydroxytryptophan (5-HTP, 90 mg/d; n = 8), fluoxetine (FLX, 40 mg/d; n = 8) or control 
(CON; n = 8). Gene expression is reported as fold change (2−ΔΔCt) relative to CON saline-supplemented 
group. (A) Gene expression of immune surface markers and (B) cytokines after 10 days of 5-HTP oral 
supplementation. (C) Gene expression fold change of immune surface markers and (D) cytokines after 10 days 
of FLX oral supplementation. Black bars denote 5-HTP vs. CON gene expression fold change, and dotted bars 
denote FLX vs. CON gene expression fold change. The negative inverse of fold-change values <1 was calculated 
for visual representation of negative fold changes. (*) indicate significant differences (P ≤ 0.05) and (#) indicate 
tendencies (0.05 < P ≤ 0.10) between CON and FLX or CON and 5-HTP.
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5-HT1A and -4 were upregulated (P < 0.04), 5-HT1D and -2B tended to be upregulated (P < 0.08), while 5-HT3B 
tended to be downregulated (P = 0.054; Supplementary Fig. S1D). Only MAPK1 gene expression was upregulated 
by FLX (P = 0.03), while all other downstream serotonin receptor signaling genes remained unchanged in the 
spleen compared with CON calves (Supplementary Fig. S2B). In the popliteal lymph node, REL gene expression 
was downregulated following FLX supplementation (P = 0.002; Supplementary Fig. S2B). In the thymus, FLX 
tended to upregulate 5-HT6 receptor (P = 0.09) and the downstream PKA (P = 0.04), but the expression of genes 
related to serotonin metabolism or downstream pathways was similar to CON (P > 0.11; Supplementary Fig. S1D, 
S2B). Differentially expressed genes are summarized in Fig. 3B.

Clusters of differentiation and immune related genes.  The expression of several immune related genes in lym-
phoid tissues was modulated by FLX supplementation. In the spleen, FLX upregulated the surface protein CTLA4 
(P = 0.03) and tended to downregulate CD28 (P < 0.10; Supplementary Fig. S3C). The gene expression of IFNG 
and IL17A was upregulated (P < 0.04) and IL13 tended to be upregulated (P = 0.08; Supplementary Fig. S3D). 
Meanwhile, the expression of CXCL10 was downregulated (P = 0.001) and IL1A, IL1B and IL10 tended to be 
downregulated (P < 0.08; Supplementary Fig. S3D). Fluoxetine supplementation upregulated the expression of 
surface protein CTLA4 (P = 0.021; Supplementary Fig. S3C) in the thymus, however, cytokine genes were not 
differentially expressed (P > 0.11; Supplementary Fig. S3D). In the popliteal lymph node tissue, IL17A tended to 
be upregulated (P = 0.10; Supplementary Fig. S3D) but no other cytokine or surface markers genes were differen-
tially expressed following FLX supplementation (P > 0.11; Supplementary Fig. S3C, S3D).

Effects of 5-HTP and FLX on Proliferation, Apoptosis, and Cell Metabolism Genes.  Peripheral 
leukocytes.  The expression of genes related to cell proliferation, apoptosis, cell metabolism and cell cycle 
in peripheral leukocytes after 10-d of 5-hydroxytryptophan or fluoxetine supplementation was evaluated. 
Supplementation of 5-HTP upregulated PTEN (P = 0.005), whereas FLX upregulated CCND1 (P = 0.02) and 
tended to upregulate LAMP2, CASP8 and PCNA (P < 0.10; Supplementary Table S1).

Secondary lymphoid tissues.  In the spleen, 5-HTP supplementation had no effect on cell metabolism gene 
expression (P > 0.12) whereas FLX supplementation downregulated CCND1 (P = 0.04; data not shown). In the 
popliteal lymph node, 5-HTP supplementation tended to downregulate CCND1 expression (P = 0.07), while FLX 

Figure 3.  Summary of serotonin receptors, intracellular downstream signaling, cytokines and metabolism 
genes that were differentially expressed at the mRNA level in peripheral leukocytes (n = 8 per treatment) and 
lymphoid tissues (spleen, thymus and lymph node, n = 4 per treatment) of pre-weaned dairy calves after (A) 
10-d 5-hydroxytryptophan oral supplementation (5-HTP, 90 mg/d) vs. 10-d saline oral supplementation (CON), 
and (B) 10-d Fluoxetine oral supplementation (FLX, 40 mg/d) vs. 10-d saline oral supplementation (CON). 
Summarized genes were (P ≤ 0.05) or tended (0.05 < P ≤ 0.10) to be differentially expressed between 5-HTP vs. 
CON or FLX vs. CON groups.
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supplementation upregulated APAF1 and CASP8 (P < 0.04; data not shown) and tended to upregulate FASLG 
and PCNA (P < 0.10; data not shown). In the thymus, 5-HTP upregulated BAX (P = 0.01), while FLX upregulated 
FASLG (P = 0.03; data not shown).

Discussion
The role of serotonin as an immunoregulatory molecule has been widely demonstrated in human and 
rodents7–11,25,27, however, evidence supporting its role in livestock species is lacking. We previously 
reported that increasing serotonin bioavailability in dairy calves is possible through the supplementation of 
5-hydroxytryptophan or fluoxetine35. Herein, we report the effects of increased serotonin bioavailability on cir-
culating WBC count and the gene expression of peripheral leukocytes and secondary lymphoid organs of dairy 
calves undergoing immune system maturation. To our knowledge, this is the first experiment to characterize how 
the serotonin axis regulates the bovine immune system.

In this experiment, WBC and WBC subfractions including neutrophil, monocyte, lymphocyte, eosinophil, 
and basophil counts were within the normal physiological ranges for growing dairy calves and similar among 
treatment groups before and after 10 days of treatment supplementation. This indicates that increasing seroto-
nin bioavailability for 10 days did not significantly alter immune cell populations. Even though we did not see 
an increase in neutrophil counts, it is possible that serotonin is improving neutrophil function. For instance, 
human neutrophils cultured in vitro with high concentrations of serotonin have higher motility than neutrophils 
grown in low serotonin conditioned media36. Platelet expression of FcγRIIA, a receptor that recognizes immune 
complexes, plays a role in inflammation by activating neutrophils and enhancing endothelial vasodilatation37. 
Furthermore, neutrophils from wild type mice have been shown to have improved tissue infiltration compared to 
TPH1 knockout mice25. Thus, further in vitro experiments evaluating serotonin’s role in neutrophil motility and 
function (i.e. oxidative burst and phagocytic capacity) are needed in bovine.

For over 20 years, researchers have investigated the significance of serotonin receptors in human and murine 
immune cells and their possible implication in autoimmune diseases. In our experiment, the entire seroton-
ergic machinery, including genes involved in serotonin synthesis, mechanism of action, and metabolism were 
expressed in the circulating leukocytes of all calves. This indicates that peripheral leukocytes of dairy calves can 
synthesize, metabolize, uptake and degrade serotonin. Supplementation of either 5-HTP or FLX increased seroto-
nin bioavailability35 and upregulated several genes involved in serotonin machinery in peripheral leukocytes. The 
ubiquitous aromatic decarboxylase enzyme, DDC, that converts 5-HTP to serotonin, and monoamine oxidase 
enzyme, MAOA, that metabolizes serotonin, were significantly upregulated in the peripheral blood leukocytes 
of both 5-HTP and FLX fed calves. This suggests an overall increase of serotonin metabolism in immune cells of 
calves under supplementation.

Notably, supplementing 5-HTP upregulated the gene expression of 9 out of the 13 serotonin receptor subtypes 
evaluated in peripheral leukocytes compared to controls. Interestingly, all serotonin receptors from family 1 sub-
types (5-HT1), including -1A, -1B, -1D, and -1F were significantly upregulated, suggesting a positive feedback 
loop to increase ligand binding. Serotonin receptor family 1 proteins couple mainly through Gi/o proteins to 
inhibit adenylyl cyclase in various cells and tissues and have high affinity towards serotonin18. Serotonin receptor 
5-HT1 subtypes are expressed in various human and mouse immune cells including monocytes/macrophages, 
dendritic cells, neutrophils, mast cells, eosinophils, B cells and T cells7. Data in human and/or rodents shows 
that 5-HT1A receptor subtype modulates adhesion and chemotaxis of mast cells30 and enhances phagocytosis by 
murine macrophages38. Upregulation of serotonin receptors subtypes from family 1 in peripheral leukocytes after 
5-HTP supplementation could support calves’ immune function by promoting adhesion and chemotaxis of mast 
cells, and/or enhancing phagocytosis. However, future functional studies targeting this specific receptor should 
be conducted in the bovine.

In this experiment, the 5-HT2B receptor subtype was upregulated following 5-HTP supplementation. 
Activation signals among 5-HT2 family receptor subtypes are different, but mainly couple through Gq/11 proteins. 
For instance, the 5-HT2A receptor subtype signals through the activation of PLC-β in tissues and cells, whereas 
the 45% homologous 5-HT2B receptor subtype signal through various phospholipases (i.e. PLC-β, PLA)18. 
This 5-HT2B receptor subtype has been widely studied in human dendritic cells (DCs) where it is reported 
to promote anti-inflammatory functions. Human monocytes cultured in the presence of serotonin, as well as 
IL-4 and granulocyte-macrophage colony-stimulating factor, differentiate into DCs with reduced expression of 
co-stimulatory molecules (i.e. CD86) which are needed for antigen-presenting cells (APC; i.e. DCs) and T cell 
cognate interactions39. Similarly, 5-HT2B receptor activation was found to downregulate monocyte derived DC 
expression of co-stimulatory molecules that activate naïve T cells, and possibly preventing inflammation by reg-
ulating both innate and adaptive immune systems40. Apart from 5-HT2B, 5-HT2A expression is upregulated on 
activated CD4+ and CD8+ T cells41. Furthermore, 5-HT2A antagonist treatment inhibits T cell activation and 
diminishes IL-2 and interferon gamma (IFN-γ) production in a dose dependent manner41. Thus, it appears that 
5-HT2A acts as a proinflammatory serotonin receptor whereas 5-HT2B acts as an immunosuppressive serotonin 
receptor.

Herein, both IL2 and IFNG gene expression were upregulated even though 5-HT2A was not differentially 
expressed. Interleukin-2 is an immunoregulatory cytokine, mainly produced by CD4+ T cells, which enhances T 
cell proliferation, regulates T helper cell differentiation42, and limits immune responses by enhancing T-regulatory 
cells function43. Moreover, IL-2 induces the transcription of IFN-γ in T cells44. Interferon gamma is an important 
inflammatory cytokine that induces maturation and licensing of APC that in turn recruit and prime T cells, and 
increases the expression of major histocompatibility complex45. Translation of IFN-γ by T cells skews B cells to 
enhance antibody production and induces isotype switching from IgM to IgG2a46. Upregulation of IL2 and IFNG 
by 5-HTP supplementation, if translated to protein, could act to support adaptive immune responses. Further 
studies are warranted to confirm and determine the implications of these findings.
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The serotonin receptors -3B and -3C, and -4 were upregulated following 5-HTP supplementation. The 5-HT3B 
receptor subtype is a ligand-gated ion channel47 and is 41% homologous to the 5-HT3A receptor48. This receptor 
has been linked to nausea in patients undergoing chemotherapy49. To our knowledge the function of 5-HT3B 
receptor subtype has not been linked to immunity, probably because 5-HT3B can be expressed as a heteromeric 
receptor, 5-HT3A/B, with properties differing from those of 5-HT3A receptor subtype50.

Gene expression of key signaling molecules downstream of serotonin receptors, including ADCY1, PLCB2, 
MAPK3 and AKT, was upregulated by 5-HTP supplementation. Adenyl cyclase (ADCY1) is a major downstream 
signaling gene for 5-HT4, -6 and -7 following Gs coupling activation18. Yet, in some cell types, activation of 
5-HT1A receptor inhibits ADCY151. Since both 5-HT1 and -4 receptor families were upregulated in our exper-
iment we cannot determine which specific serotonin receptor subtype might be upregulating the expression of 
ADCY1 intracellularly. Furthermore, both PLCB2 and 5-HT2B were differentially expressed and PLCB2 is known 
to be the major signaling downstream molecule for 5-HT2B52. Yet, further investigation is needed to characterize 
the effects of specific serotonin receptors and downstream pathways on specific circulating immune cells in the 
bovine.

The gene expression of clusters of differentiation CD4, CD8 and CD14 in peripheral leukocytes were not 
affected by 5-HTP supplementation, suggesting that increased serotonin bioavailability had no effect on immune 
cell concentrations. However, serotonin has been linked to the migration of specific immune cell types. For 
instance, Müller et al.53 reported that 5-HT1B receptor induces the migration of human immature DCs. 
Additionally, human DCs have been shown to secret IL-1 β after activation of receptors 5-HT3, -4 and -754. 
Interestingly, in our experiment, peripheral blood leukocytes had greater expression of serotonin receptor sub-
types 5-HT3B, -3C and -4, although upregulation of IL1B was not observed. Hernandez-Castellano et al.55 supple-
mented 5-HTP to newborn dairy calves for 15 days and reported an upregulation of both IL-1 β and nuclear 
factor kappa beta (NF-κβ) genes in blood but no differences in IgG production were observed. In our experiment, 
REL (NF-κβ  subunit) was not affected by 5-HTP supplementation, however discrepancies between 
Hernandez-Castellano’s and our results could be attributed primarily to calf age linked to different facets of 
immune system development.

To explore serotonin’s role on immune system activation, we also evaluated the gene expression of surface 
molecules and cytokines. Supplementation of 5-HTP for 10 days tended to upregulate CD80 gene expression and 
upregulated CTLA4, its preferential binding partner56. The cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4) is a protein expressed by regulatory T cells and activated T cells that exerts negative feedback to diminish T cell 
responses, whereas CD80 is a costimulatory molecule expressed on APC57. As previously mentioned, 5-HTP sup-
plementation upregulated IL2 gene expression, which plays an important role in T-helper cell proliferation and 
survival, and T-regulatory cell activation42. Our findings suggest that greater serotonin bioavailability might acti-
vate serotonin receptors on immune cells, promoting IL-2 production, T cell activation, and eventually CTLA4 
expression to prevent excessive T cell activation42,43. Thus, we propose that the serotonin axis may play a role in 
balancing the immune system by promoting protective immune responses and preventing potentially dangerous 
inflammation.

Fluoxetine oral supplementation increases serotonin bioavailability by blocking SERT58. Fluoxetine supple-
mentation downregulated 5-HT2A and -3A receptor subtypes by more than 20-fold in peripheral leukocytes. 
Contradictory findings have been reported linking the use of SSRIs to 5-HT2A downregulation in the rodent 
frontal cortex59. Nevertheless, the effects and implications of the downregulation of 5-HT2A receptor by SSRIs in 
the immune system remain unknown59–61. Monocytes and T cells express the 5-HT3A receptor subtype62, as well 
as naïve and activated B cells, predominantly by differentiating B cells at the germinal centers of lymph nodes63. 
Interestingly, the use of the 5-HT3A antagonist, tropisetron, inhibits T cell activation and production of IL-264. In 
1994, Fan65 reported that 5-HT3 receptor is a target of fluoxetine, which in turn decreases serotonin influx into 
the cell. Moreover, fluoxetine blocks 5-HT3 receptors by interactions during both open and closed channel states, 
although the clinical relevance of this effect is still unknown66. Thus, further research is needed to understand 
5-HT3B downregulation by fluoxetine supplementation.

The thymus is a central lymphoid organ where T cells develop, while the spleen and lymph nodes are impor-
tant secondary lymphoid organs where immune responses are generated67. Therefore, we sought to explore the 
effects of increased serotonin bioavailability in these tissues. Similar to peripheral leukocytes, all tissues, inde-
pendent of treatment supplementation, expressed the serotonergic machinery indicating that serotonin could 
be playing a role in the development and deployment of adaptive immune responses. We demonstrated that 
increased serotonin bioavailability exerts a less pronounced effect in these tissues compared to peripheral leu-
kocytes, at least at the mRNA level. However, it is important to mention that tissue data was collected from a 
subset of animals (n = 4/treatment) euthanized after 10 days of treatment supplementation and that the statistical 
power to detect significant differences in tissues was 66%. Nevertheless, it is notable that we observed a significant 
downregulation of CD14 in the popliteal lymph node after 5-HTP supplementation and FLX tended to down-
regulate CD8B in spleen tissue, while both treatments upregulated CTLA4 in the thymus and spleen tissues. CD8 
downregulation has been shown to occur when CD8 effector T cells are switching functions68. There is limited 
data exploring the effect of serotonin on thymus, lymph node, and/or spleen gene expression, thus, these results 
are novel and warrant deeper investigation.

The present experiment targeted candidate genes involved in serotonin production, metabolism, transport, 
signaling and immune regulation. We established that bovine peripheral blood leukocytes and immune tissues 
express components of the serotonin signaling pathway, including TPH1, SERT, DDC, MAO and serotonin recep-
tors. This indicates that these cells and tissues have the potential to synthesize, transport, respond to and/or 
degrade serotonin. We demonstrated that at the mRNA level, increased serotonin bioavailability exerts a pro-
nounced immunomodulatory response, particularly in peripheral leukocytes and spleen tissue. Indeed, specific 
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serotonin receptors and cytokines were differentially expressed upon 5-HTP or FLX supplementation, which 
could potentially influence the developmental trajectory and maturation of immune cells in dairy calves at a 
young age. Differences in the modulatory effects of 5-HTP and FLX in the peripheral immune system could be 
attributed to intrinsic differences in their molecular mechanism of action. Indeed, we previously reported that 
5-HTP calves had greater circulating serotonin concentrations when compared to fluoxetine calves35, thus we 
hypothesize that greater serotonin bioavailability exerts different effects. While promising correlations between 
serotonin and the immune system exist in other species, and now in the bovine at the transcriptional level, it 
is currently unknown whether promoting serotonin translates into both innate and adaptive immune system 
orchestration. Ultimately, the fact that 5-HTP is a biogenic modified amino acid whereas fluoxetine is a synthetic 
drug should be taken into consideration when developing strategies to enhance livestock health and development.

Methods
Animals and experimental design.  All methods and procedures performed in this study were

carried out in accordance with relevant guidelines and regulations approved by the Institutional Animal 
Care and Use Committee at the University of Florida (protocol # 201709851). Experimental design and treat-
ments are described in detail by Marrero et al.35. Briefly, Holstein bull calves (n = 24, 18 ± 2 d of age, 47 ± 3.2 kg) 
were assigned to one of three treatments in a complete randomized block design (8 pens, 2.3 m x 2.5 m; n = 3 
per pen, one of each treatment). Calves received 4 L of milk replacer (Southeast Milk Inc, Okeechobee, FL) at 
0700 h and 1700 h. Treatments were administered once daily (0700 h feeding) by supplementing milk replacer 
with 5-hydroxytryptophan (5-HTP, 90 mg/d, n = 8, Sigma, St. Louis, MO, USA; #H9772), fluoxetine (FLX, 
40 mg/d, n = 8, Spectrum Chemical, Gardena, CA, USA; #F1200) or saline (CON, n = 8) for 10 consecutive days. 
Treatment was applied individually to each calf. Supplementing 5-HTP and FLX increases serotonin bioavailabil-
ity by different mechanisms: exogenous 5-HTP bypasses the rate liming enzyme TPH1, allowing its conversion to 
serotonin by AADC69, whereas FLX binds to SERT inhibiting endogenous serotonin reuptake within the cell58,70.

Hematology analysis.  Whole blood samples were collected from the jugular vein before (d0) and on the 
10th day of treatment supplementation 4 h after 0700 h feeding in tubes containing K2 EDTA (BD, Franklin Lakes, 
NJ, USA, #368047). Within 2 h of collection, blood samples were analyzed for hematology parameters including 
white blood cells (WBC), neutrophil, lymphocyte, monocyte, eosinophil and basophil count/μL using the Idexx 
ProCyte Dx analyzer (IDEEX Laboratories Inc., Westbrook, ME).

Peripheral blood mononuclear cell isolation.  Blood samples were collected from the jugular vein on 
the 10th day of treatment supplementation 4 h after the 0700 h feeding using heparin blood collection tubes (BD, 
Franklin Lakes, NJ, USA, # 366430) and kept on ice until laboratory arrival. Blood was centrifuged at 1,200 g for 
18 min at 20 °C, plasma layer was discarded, and peripheral leukocytes (i.e., buffy coat) was transferred to a 15 mL 
conical tube. To lyse residual red blood cells, a hypotonic solution (lyse buffer:1.5 g Na2HPO4 (Fisher; #BP332-1) 
and 0.3 g NaH2PO4 (Fisher; #BP329-1) at pH 7.2) was used. To restore cells, restore buffer was used (27 g NaCl 
(Fisher cat. #BP358-1) added to the lyse buffer solution and adjusted to pH 7.2). To each sample, 8 mL of lyse 
buffer and 4 mL of restore buffer were added. Tubes were centrifuged at 650 g for 5 min at 4 °C to form a pellet. 
Pellets were resuspended in 200 µL of RNAlater (Invitrogen, Carlsbad, CA, USA; #AM7021) and stored at -80 °C 
until RNA extraction.

Euthanasia and tissue collection.  After the 10th d of treatment supplementation, 4 calves per treatment 
(n = 4 pens) were euthanized at the University of Florida abattoir. Calves were sedated by intravenous admin-
istration of 0.2 mg/kg xylazine and euthanized using a captive bolt pistol followed by jugular exsanguination. 
Spleen, popliteal lymph node and thymus tissues (approximately 1 g each) were harvested, rinsed in sterile PBS, 
transferred to a cryotube containing RNAlater and stored at −80 °C until RNA extraction.

Peripheral Leukocyte and Tissue RNA Extraction.  Peripheral leukocytes resuspended in RNAlater 
were centrifuged at 650 g for 10 min at 4 °C to reform the pellet and RNAlater was removed. For tissues, RNA 
was extracted from 60 mg each of spleen, popliteal lymph node and thymus. Each sample was placed in 1 mL of 
QIAzol Lysis reagent (Qiagen, cat. #79306) and homogenized using a tissue homogenizer (Tissue Master 125, 
Omni International, GA, USA). A commercial RNA extraction kit (RNeasy Plus Universal Mini Kit, Qiagen, cat. 
#73404) was used according to the manufacturer’s instructions. RNA concentration and quality were determined 
using a NanoDrop (NanoDrop Spectrophotometer, Thermo Scientific, USA; #ND-2000). RNA samples were 
stored at −80 °C until gene expression analysis.

Primer design, validation and, gene expression analysis.  We quantified the expression of genes related 
to serotonin machinery and signaling (i.e., synthesis and metabolism, serotonin receptors, and downstream path-
ways), immune-related genes (i.e., cytokines), and genes involved in metabolic and cellular processes (i.e., apop-
tosis, cell cycle, among others) in peripheral leukocytes, spleen, thymus and popliteal lymph node tissues. For 
this, high-throughput Multiplex RT-qPCR BioMark Dynamic Array Integrated Fluidic Circuits (IFCs) was used 
(Fluidigm Corporation, South San Francisco, CA). Briefly, 96 primers targeting 91 genes of interest, 4 reference 
genes (ACTB, GADPH, RSP9 and HPRT1), and one reference structural gene were assayed (see Supplementary 
Table S1). An initial quantification run was performed for primer validation using an 8-point, two-fold dilution 
series (in triplicate) using RNA pools per tissue of interest. The linearity between RNA quantity and cycle threshold 
(Ct) was tested and efficiency of amplification was calculated. Primers were considered validated if they passed 5 
points with an efficiency of 0.8–1.3 and an R2 ≥ 0.92. Specificity of amplification for each primer pair was evaluated 
by plotting the dissociation-characteristics of double-stranded DNA. A single peak following melt curve analysis 
indicated a pure, single amplicon. For gene expression of immune-related tissues and peripheral leukocytes, RNA 
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was diluted to 5–15 ng/μL. All samples were normalized to 256 pg RNA and transferred to the IFC plate with the 
primer-probe sets. All nanoliter reactions were performed as per manufacturer’s recommendations using the follow-
ing thermal protocol: 95 °C for 1 min, followed by 30 cycles of 96 °C for 5 s and 60 °C for 20 s. The software, Fluidigm 
Real-Time PCR Analysis, was used to calculate Ct values for all 96 genes for each sample. Non-detectable expression 
was set at a Ct of 26 for spleen tissue and 28 for WBC, popliteal lymph node, and thymus tissues. The geometric 
mean of the four reference genes was calculated for each sample and used to normalize Ct values of genes of interest. 
Normalized gene expression (ΔCt) was used for statistical analysis.

Statistical analysis.  Data were analyzed using linear models in R programming 3.5.1 (R Foundation for 
Statistical Computing; Vienna, Austria). Variables analyzed were white blood cell counts and ΔCt of genes evalu-
ated by qPCR. The model included pen and treatment (CON, 5-HTP or FLX) as fixed effects. For gene expression 
analysis, the estimates of the model (ΔΔCt) for each gene were used to calculate fold change relative to CON (i.e. 
5-HTP vs. CON or FLX vs. CON), using the 2-ΔΔCt method71. The negative inverse of fold-change values <1 was 
calculated for visual representation of negative fold changes. Homogeneity of variance and normality of residuals 
were evaluated by plotting and influential points were detected using Cook’s distance test. Peripheral leukocyte 
gene expression ΔCt averages for CON, 5-HTP and FLX, and fold changes and P values for 5-HTP vs. CON and 
FLX vs. CON can be found in Supplementary Table S2. Statistical significance was declared at P ≤ 0.05 and ten-
dencies at 0.05 < P ≤ 0.10.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
figures and tables online].
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