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There is a growing interest in continuous manufacturing within the bioprocessing
community. In this context, the chemostat process is an important unit operation.
The current application of chemostat processes in industry is limited although many
high yielding processes are reported in literature. In order to reach the full potential
of the chemostat in continuous manufacture, the output should be constant. However,
adaptation is often observed resulting in changed productivities over time. The observed
adaptation can be coupled to the selective pressure of the nutrient-limited environment
in the chemostat. We argue that population heterogeneity should be taken into account
when studying adaptation in the chemostat. We propose to investigate adaptation at
the single-cell level and discuss the potential of different single-cell technologies, which
could be used to increase the understanding of the phenomena. Currently, none of
the discussed single-cell technologies fulfill all our criteria but in combination they may
reveal important information, which can be used to understand and potentially control
the adaptation.

Keywords: chemostat cultivation, continuous biomanufacturing, adaptation, population heterogeneity, microbes,
single-cell technologies

INTRODUCTION

Today, production of biological products is primarily based on batch operations where each unit
operation is completed in sequence. The transition from these constitutive batch processes to
continuous manufacture in which the product moves directly from one unit operation to the
next, has been of growing interest within the bioprocessing community in recent years (Farid,
2019). Several benefits of moving to continuous processes can be listed due to the possibility
of keeping production organisms in high producing states for longer time. These include a
reduction in equipment costs, increased productivity, greater flexibility, and improved product
quality (Zydney, 2016).

Continuous cell culture technologies have existed for several decades and include among others
chemostat processes (Monod, 1950; Novick and Szilard, 1950). In a chemostat, the cells in the
bioreactor are kept in a steady-state growth environment by a continuous addition of medium with
one or more cell-density-limiting nutrients and simultaneous removal of spent culture medium
at a defined rate (Peebo and Neubauer, 2018). Ideally, the chemostat should operate at a true
steady state with a constant productivity. Although, the chemostat establishes a well-controlled and
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constant environment for production processes, it imposes
selective pressure on cells, which may result in cellular
adaptation. These alterations can affect productivity and
the output of the cultivation. It is therefore important to
understand the mechanisms behind the adaptation in order to
control them and realize the full potential of chemostats in
industrial production.

This article focuses on chemostat cultivations of microbes, the
reported adaptation, and discuss how development of continuous
biomanufacturing and chemostat processes can benefit from
single-cell technologies.

ADAPTATION IN THE CHEMOSTAT

The chemostat imposes a steady nutrient limited environment
forcing cells to grow at a constant growth rate. These conditions
result in an ongoing selective pressure driving the adaptation
of cells with growth advantages. Cells which are not able to
adapt will be washed out. Adaptive processes in chemostats are
illustrated in several studies for many different microorganisms
at both the RNA, protein, metabolite, and morphological level
(Adams et al., 1985; Ferea et al., 1999; Wick et al., 2001; Robin
et al., 2003; Jansen et al., 2004, 2005; Mashego et al., 2005;
Franchini and Egli, 2006; Wu et al., 2006; Douma et al., 2011;
Paulová et al., 2012; Wang et al., 2018). The adaptation covers
the differential expression of thousands of genes and proteins, but
some general trends, which confer fitness in a nutrient limited
environment, can be extracted (Figure 1A). This includes an
improved affinity for the limiting substrate (Wick et al., 2001;
Jansen et al., 2005). Any adaptation which increases the specific
growth rate under low external concentrations of the limiting
nutrient will improve the competitiveness of the cell compared
to non-adapted cells (Jansen et al., 2005). Moreover, decreased
(over)capacity of the main carbon metabolism including the
glycolysis and TCA cycle is observed and has been suggested
as a way to get an energetical advantage (Mashego et al., 2005).
Cellular stress-responses are in many cases also differentially
expressed between early and late cultivation stages including
proteins involved in heat shock, oxidative stress, and damage
resistance (Jansen et al., 2005; Franchini and Egli, 2006; Wright
et al., 2020). Morphological changes toward filamentous and
pseudo-hyphal growth are known effects of chemostat growth
(Brown and Hough, 1965; Adams et al., 1985; Rebnegger et al.,
2014; Rai et al., 2019) and also a known adaptive response
to nutrient poor environments (Gimeno et al., 1992). The
productivity of industrially relevant strains often decreases over
time during chemostat growth (Douma et al., 2011; Paulová
et al., 2012; Kazemi Seresht et al., 2013; Wright et al., 2016,
2020). A reduced productivity can be construed as a clear growth
advantage over cells that are not able to reduce the burden of
heterologous production.

Stochastic, regulatory, epigenetic, and mutational changes
can contribute to increased fitness and adaptation is therefore
a comprehensive process (Ryall et al., 2012). The underlying
functional mechanisms of the adaptive processes in chemostats
often remain unknown but many studies couple changed

phenotypes to specific genetic mutations (Brown et al., 1998;
Dunham et al., 2002; Wenger et al., 2011; Kvitek and Sherlock,
2013; Gresham and Hong, 2015; Hope et al., 2017). Hope
et al. (2017) related morphological changes in S. cerevisiae
after hundreds of generations to genetic mutations in known
flocculation genes such as the cell wall protein FLO1. Clones
with mutations in nutrient signaling and regulation of glucose
transport have also been isolated from S. cerevisiae evolved
for more than 200 generations in glucose-limited conditions
(Wenger et al., 2011). This illustrates that some of the observed
adaptive phenomena can be related to genetic alterations.
Whether and when a given mutation will dominate a culture
depends on the relative fitness of the mutant compared to
other clones in the population (Gresham and Hong, 2015). For
industrial strains, studies report reproducible adaptive changes
in transcriptome, proteome, and heterologous product already
after 22 generations of chemostat growth (Douma et al., 2011;
Kazemi Seresht et al., 2013; Wright et al., 2020). The observed
changes cannot always be coupled to genetic instability (Douma
et al., 2011) and may therefore be related to other adaptive
mechanisms, e.g., epigenetics.

Population heterogeneity is a cellular response to nutrient
limitation and is reported for chemostat growth (Lieder et al.,
2014; Kopf et al., 2015; Schreiber et al., 2016). Here we refer to
population heterogeneity as the phenotypic diversity occurring
between genetically identical individuals (Davis and Isberg,
2016). Nikolic et al. (2017) showed cell-to-cell variations in
gene expression and substrate specialization for E. coli growing
simultaneously on glucose and arabinose under chemostat
conditions. Population heterogeneity with respect to growth and
cell robustness was observed in glucose-limited chemostats of
both S. cerevisiae, E. coli, and P. putida (Carlquist et al., 2012;
Heins et al., 2019; Sassi et al., 2019) and also Arthrobacter
evolves subpopulations with respect to nucleic acid content
and metabolic activity (Kundu et al., 2020). The subpopulation
ratios reported, strongly depend on the cultured strains, the
cultivation conditions and the parameters analyzed. Ratios up
to 1:2 between non-growing and growing subpopulations are
reported (Kundu et al., 2020).

When bioprocesses are scaled up to manufacturing scale, the
cells will often be exposed to a heterogeneous environment,
for example, gradients in substrate and oxygen (Oosterhuis and
Kossen, 1984; Larsson and Enfors, 1988). Fluctuations in the
extracellular environment affect metabolism including product
yield and by-product formation (George et al., 1993, 1998;
Neubauer et al., 1995; Bylund et al., 1998, 1999, 2000; Lin and
Neubauer, 2000; Enfors et al., 2001; Sandoval-Basurto et al.,
2005). The gradients can also influence population heterogeneity.
Differences in transcription levels between cells located in
different zones of reactors have been found (Schweder et al.,
1999; Lara et al., 2006). Schweder et al. (1999) measured different
mRNA levels of stress genes between cells taken from the top and
bottom of a production reactor. Nonetheless, other studies have
shown that the heterogeneous environment can also result in a
more homogeneous population for example when measured by
viability and membrane damage (Hewitt et al., 2000, 2007; Han
et al., 2013; Brognaux et al., 2014).
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FIGURE 1 | The chemostat imposes a selective pressure on the cultured cells, which drives cellular adaptation. We suggest to intensify the efforts on combining the
study of adaptation at the average cell level with the current knowledge of population heterogeneity in chemostats to study the mechanisms of adaptation at the
single cell level. (A) General trends observed at average cell level during prolonged adaptation in chemostat cultivation of microbes. (B) Illustration of adaptation
measured in the bulk. The figure illustrates how it may look at the single-cell level if the adaptation is a result of a shift in the whole cell population. (C) Illustration of
adaptation measured in the bulk. The figure illustrates how it may look at the single-cell level if the adaptation is a result of a shift in subpopulation ratios.
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Population heterogeneity can therefore arise due to external
influences such as gradients in manufacturing scale and
nutrient limitation. It can also originate from intracellular
events not influenced by the environment such as stochastic
gene expression, e.g., random variations in the abundance
of intracellular molecules with important regulatory functions
(Elowitz et al., 2002; Blake et al., 2003). The population
heterogeneity can have important functional consequences,
which is beneficial for the entire population. It has been suggested
that heterogeneity emerges as a consequence of metabolic
cooperation between cells (Campbell et al., 2016) and that the
population as a whole benefits from division of labor between
individuals (Reuven and Eldar, 2011; Ackermann, 2015). We
speculate that this can also occur in chemostats. Bet-hedging is
another strategy resulting in phenotypic heterogeneity and can be
seen as a way to cope with unforeseen conditions in fluctuating
environments (Thattai and van Oudenaarden, 2004; Kussell
and Leibler, 2005). Acar et al. (2008) suggested that isogenic
populations can improve fitness by optimizing the phenotypic
diversity to an ideal fraction. As a recent example Kundu et al.
(2020) showed how cells in a chemostat divide into growing
and non-growing subpopulations and propose that the isogenic
population in this way improves its fitness to sudden increases
in nutrient concentrations. Due to the selective nature of the
chemostat, this strategy requires that cells with the less beneficial
growth advantage continuously emerge, as they would otherwise
be washed out (Kundu et al., 2020). Alternative mechanisms
causing phenotypic heterogeneity can be related to aging and the
asymmetrical division of exponentially growing cells. Recently,
Li Y. et al. (2020) showed that genetically identical yeast cells age
at different rates and toward different phenotypes in a constant
glucose-limited environment, for example.

DISCUSSION OF SINGLE-CELL
TECHNOLOGIES FOR THE STUDY OF
ADAPTATION IN CHEMOSTATS

It is essential to understand the functional molecular basis
of adaptation in prolonged chemostats in order to utilize
the full potential of the chemostat process in continuous
biomanufacturing. We suggest to intensify the efforts on
combining the study of adaptation at the average cell level
with the current knowledge of population heterogeneity in
chemostat cultivations to study mechanisms of adaption
at the single-cell level. This could reveal important
differences between subpopulations potentially hidden in
bulk measurements (Figures 1B,C). For this endeavor, single-cell
technologies are needed.

Traditionally, flow cytometry has been used to address
heterogeneity in bioprocesses including chemostats (Hewitt
et al., 1998, 1999; Delvigne et al., 2015; Heins et al., 2019;
Vees et al., 2020). Populations differentiated by structural or
physiological cell parameters can be revealed based on optical
signals from, e.g., staining dyes or biosensors. Online flow
cytometers exists and can be applied for regulation of bioreactors
(Sassi et al., 2019). If the adaptation observed in chemostats

is grounded in population heterogeneity, real-time monitoring
of heterogeneity can potentially be used to control adaptation.
However, more knowledge about how to control the processes
are needed. Fluorescence-activated cell sorting in combination
with proteomics or transcriptomics allow for the sorting of
cells into subpopulations, which can afterward be analyzed by
subpopulation omics (Achilles et al., 2007; Jehmlich et al., 2010;
Jahn et al., 2013; Lieder et al., 2014). This method can be used
to gain knowledge about changes in gene and protein expression
leading to the development of subpopulations (Jahn et al., 2013).
The method is limited by the time it takes to obtain enough cells
to detect sufficient amounts of proteins or transcripts for the
omics characterization.

Microfluidic single-cell cultivation systems enable time-
resolved analysis of individual cells in accurately controlled
environments by application of, e.g., online fluorescent readouts
or phase contrast images. These systems are typically used
to study cell division, morphology, aging, or gene expression
(Elowitz and Leibler, 2000; Wang et al., 2010; Ullman et al.,
2013; Grünberger et al., 2015; Li Y. et al., 2020). Contrary
to studies in bioreactors, it is possible to follow phenotypic
development and regulation of isolated cells with spatiotemporal
resolution and to distinguish contributions from intrinsic
stochastic processes and environmental factors (Weibel et al.,
2007; Dusny and Schmid, 2015). On this basis, the systems can
reveal fundamental insight into cellular regulation strategies to
nutrient-limited conditions (Lindemann et al., 2019). Several
microfluidic cultivation concepts exist where cells are trapped
by different physical principles. This includes systems with
contactless trapping of single cells by a non-uniform electric field
(Kortmann et al., 2009; Fritzsch et al., 2013) and mechanical
trapping of cells in chambers (Wang et al., 2010; Long et al., 2013).
1D chamber systems can accurately reproduce the dynamic
nutrient variations observed by cells in a large-scale production
reactor (Ho et al., 2019). We find the contactless cultivation
systems most interesting for the study of adaptation to nutrient
limited growth. In these systems cell-to-surface and cell-to-cell
interactions are avoided (Fritzsch et al., 2013). However, cell-
to-cell interactions may play important roles in bioreactors.
Cross-scale studies have, e.g., revealed differences in growth rates
of C. glutamicum due to density differences (Grünberger et al.,
2013). 2D-chamber systems exist where cell-to-cell interactions
can be examined (Burmeister et al., 2019). However, growth
is restricted to two spatial dimensions in the 2D systems and
gradients of nutrients and excreted metabolites can occur (Ho
et al., 2019). Droplet microfluidics is another example of single-
cell cultivation systems that enable high-throughput studies
of adaptation. Jakiela et al. (2013) developed a micro-droplet
chemostat to study bacterial growth and adaptation. However,
it is hard to control the environment in the droplets (Schmitz
et al., 2019). Recent examples show how microfluidic cultivation
systems can be coupled to mass spectrometry (MS) for label-free
analysis of extracellular proteins or metabolites (Dusny et al.,
2019; Haidas et al., 2020; Schirmer et al., 2020). These setups
are promising as they expand the window of molecules, which
can be analyzed in microfluidic cultivation systems. However,
the cultivation medium needs to satisfy the MS used for analysis
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FIGURE 2 | Single-cell technologies are compared on a scale from not sufficient to ideal with respect to how suited they are for the study of adaptation in
chemostats. The parameters used for the comparison are: the number of analyzed cells, how well the technologies emulate chemostat conditions, the number of
parameters which can be analyzed, how mature the technologies are and whether the technologies can be used to study individual cells by precise spatial and
temporal control. None of the technologies fulfill all these criteria at the moment.
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(Schirmer et al., 2020). Therefore, it is hard to precisely match the
bioreactor conditions in these setups.

Single-cell omics technologies covering single-cell proteomics,
single-cell transcriptomic (scRNA-seq), single-cell genomics
(SCG), and single-cell metabolomics are successfully applied to
mammalian cells in areas such as health and disease (Baslan and
Hicks, 2017; Stubbington et al., 2017). We envision a transfer
of this success to microbial bioprocesses enabling the study of
adaption in chemostats on all hierarchical levels by a systems
biology approach (Joyce and Palsson, 2006). Methods for analysis
of unicellular microorganisms lag behind mainly due to the small
size of the microorganisms, the low number of molecules per
cell, and their resistant cell walls (Saint et al., 2019). scRNA-
seq and SCG are the most evolved methods, mainly because
DNA and mRNA signals can be amplified. SCG has been used to
study genomic heterogeneity in both monocultures and microbial
communities by analyzing thousands of single cells (de Bourcy
et al., 2014; Hosokawa et al., 2017; Lan et al., 2017). Recent
promising studies have applied scRNA-seq for investigation of
microbes (Gasch et al., 2017; Kuchina et al., 2019; Saint et al.,
2019; Geoghegan et al., 2020; Jackson et al., 2020; Jariani et al.,
2020). The newest technologies identified more than half of
the transcriptome of yeast per cell for 285 individuals (Nadal-
Ribelles et al., 2019). Methods for label-free, single-cell analysis
of proteins, and metabolites from microbes are limited. Single-
cell MS has been used to measure in the region of 25 intracellular
metabolites from up to a thousand single cells from microbial
cultures (Ibanez et al., 2013; Walker et al., 2013; Krismer et al.,
2017; Li Z. et al., 2020). To our knowledge, only few methods
for unlabeled single-cell proteomics of microorganisms exist
in literature. Armbrecht et al. (2019) published a single-cell
proteomics method for mammalian cells and claimed that it also
works for microbes. Sensitivity for detection, technical noise and
the wide range of expression levels have been highlighted as
main challenges for MS techniques (Zhang and Vertes, 2018). To
speed up the progress toward suitable single-cell omics methods
one could focus the development on more efficient sample
preparation methods, e.g., based on microfluidics or droplets that
lead to less loss of material due to adsorption to plastic etc. (Dou
et al., 2019). Moreover, to increase the coverage of the methods,
we see computational approaches, which impute missing data, as
important tools (Li and Li, 2018; Peng et al., 2019).

The ideal technology for the study of single-cell adaptation
in chemostats should be high-throughput with respect to the
number of phenotypic parameters that can be analyzed and
in terms of the number of cells investigated in order to be
statistically significant for the high cell density cultures applied
in industry. Moreover, the cells should be analyzed in an
environment, which emulates chemostat conditions and the
analysis should not interfere with the studied mechanisms.
Ideally, the technology should enable a spatiotemporal resolution
of individual cells. None of the technologies described in this
perspective article fulfill all these criteria (Figure 2), but together
they can be used to reveal the underlying mechanisms thus
enabling control of adaptation in chemostats, e.g., by bioprocess
control strategies or metabolic engineering. Flow cytometry is
well established, high-throughput in terms of the number of

cells analyzed and has already proven its worth for the study of
chemostats (Hewitt et al., 1998; Sassi et al., 2019). The online
versions can be coupled directly to bioreactors making it possible
to perform the analysis in a relevant environment. Microfluidic
cultivation systems are the only technology, which enables the
study of individual cells by precise spatial and temporal control.
However, the systems have to emulate bioprocess conditions.
The number of available biosensors and reporter strains are
rapidly increasing. Recently, a biosensor for the measure of
glycolytic flux in yeast was developed (Monteiro et al., 2019).
Combined with flow cytometry and/or microfluidics, the increase
in reporter strains and biomarkers will enable the study of
new phenomena and mechanisms on the single-cell level.
Technologies, which rely on fluorescent readouts, are restricted
by the number of dyes, which can be applied simultaneously.
Moreover, genetic modifications of host strains for incorporation
of biosensors can be work intensive and might interfere with
the metabolism of the host. Due to the cost of large-scale
production reactors, potential GMP and safety regulations, we
find it hard to imagine that reporter strains can be used to
investigate adaptation in actual production scale. Single-cell
metabolomics and proteomics are still not suitable for the analysis
of microbial bioprocesses. SCG technologies are more matured
but will only reveal mutational mechanisms. scRNA-seq has
advanced rapidly but can be costly and labor intensive (Nadal-
Ribelles et al., 2019), which may explain the limited application in
microbial bioprocesses. Further development of the technologies
are therefore needed. Adaptation in chemostats affects both the
genome, transcriptome, metabolome, and proteome (Dunham
et al., 2002; Kazemi Seresht et al., 2013; Wright et al., 2020). We
envision the application of single-cell omics for the holistic study
of the adaptive mechanisms, as the omics technologies have the
potential to measure large amounts of parameters at all regulatory
levels. Therefore, if the rapid advancements of the technologies
continue, single-cell omics can become important supplements
to flow cytometry and microfluidic cultivation systems.
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