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Abstract: As civil engineering structures become larger, non-contact inspection technology is required
to measure the overall shape and size of structures and evaluate safety. Structures are easily
exposed to the external environment and may not be able to perform their original functions
depending on the continuous load for a long time. Therefore, in this study, we propose a method for
estimating the vertical displacement of structures using light detection and ranging, which enables
non-contact measurement. The point cloud acquired through laser scanning was rearranged into
a three-dimensional space, and internal nodes were created by continuously dividing the space.
The generated node has its own location information, and the vertical displacement value was
calculated by searching for the node where the deformation occurred. The performance of the
proposed displacement estimation technique was verified through static loading experiments, and the
octree space partitioning method is expected to be applied and utilized in structural health monitoring.

Keywords: light detection and ranging (LiDAR); terrestrial laser scanning (TLS); deflection; octree
space partitioning (OSP); structural health monitoring (SHM)

1. Introduction

Bridges are key infrastructural components of transportation facilities, including roads and
railways. Bridges are subjected to constant long-term loads owing to the daily passage of several vehicles.
Sustained long-term loads degrade the bridge’s function and can lead to major damage if the bridge
becomes deformed [1–3]. In addition, aging bridges become quite vulnerable to natural disasters, such as
earthquakes and floods, due to deterioration in performance [4,5]. Therefore, bridges are essential
structures that require regular inspections. Most bridges undergo regular inspections that incorporate
contact-type sensors. Depending on the size of the bridge and the number of sensors installed,
the amount of data collected can increase or decrease. Furthermore, if access to the bridge is difficult,
the sensor cannot be installed. The limits of contact-type sensors make it very difficult to assess the safety
of bridges. To address these problems, non-contact inspection techniques have been developed [6–8].

Non-contact measurement methods, such as image capturing using cameras, thermal imaging
cameras, and laser scanning, are now being used for structural safety inspection. In the case of a camera,
a separate target point must be installed to estimate the bridge displacement. In addition, multiple
cameras must be installed, and the position of the fixed camera must not be changed. For example,
if the camera position is changed owing to wind, a large error can occur in the bridge displacement
estimation [9–11]. In the case of laser scanning, a target point and separate data network are not required
for data acquisition. The necessary equipment for this procedure is a laser scanning device and a laptop
computer, which allows the researcher to obtain data on the entire surface of the structure [12–22].
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Light detection and ranging (LiDAR) systems, including laser scanning, are remote measurement
systems that use lasers. LiDAR systems can acquire the overall shape of a structure with precise
three-dimensional coordinates within a few minutes. Therefore, LiDAR systems can easily acquire
the shape information of structures that are difficult to access. In this study, we propose a method
for measuring the deflection of structures that can check and manage changes in the overall shape of
structures in 3D space using LiDAR data.

2. Methods

This study uses LiDAR to acquire the shape information of structures from a long distance for
long-term maintenance of structures. The main feature of LiDAR is fast acquisition of the entire shape
of a structure. It does not require a separate wired network for data acquisition. LiDAR can acquire
structural data at distances of approximately 300 m; hence, it is possible to acquire data on the entire
surface, even for structures that are difficult to access. Therefore, LiDAR has frequently been used in
structural displacement measurement studies.

There are three ways to obtain displacement estimation of bridge structures using laser scanning:

• grid-based displacement estimation,
• triangle grid-based displacement estimation, and
• displacement estimation based on the least-squares method.

First, grid-based displacement estimation creates a grid on a point cloud, and each coordinate point
is replaced with a grid center point to estimate displacement. If the distribution of points is not uniform,
this method generates an irregular shape and includes many errors. Second, triangle grid-based
displacement estimation calculates displacement using three points on the same line. In this method,
when a point is missing, the area of the triangle increases, and an error that is equal to the wrong area is
included. Third, the least-squares method calculates the distance to each point by defining an arbitrary
line. This method significantly reduces accuracy when there are missing points or when the point
distribution is irregular.

In this study, the point cloud is used as a node in the proposed 3D space. An internal node is
created through the octree spatial division algorithm, and the displacement of the structure is measured
using the generated node.

2.1. Grid-Based Displacement Estimation

The grid mean approximation method is an extension of the concept of arithmetic mean to the
spatial domain, and it has been applied experimentally to generate reference data for 3D data on
a surface. This method includes grid point errors and forms grids on the x and y planes based on
irregularly distributed spatial data. Thereafter, the z coordinates of the data in the grid are averaged to
determine the representative point of each grid [13,23].

The representative point is set as reference data in the center of the grid, as shown in Equation (1),
where Zji represents the Z coordinate value of the i-th coordinate data included in the j-th space.

Z j =
1
n j

n j∑
i=1

Z ji
(
i = 1 to n j, j = 1 to m

)
(1)

2.2. Triangle Grid-Based Displacement Estimation

The triangular grid approximation is a method that performs the linear trigonometric interpolation
method in reverse. This method uses a multiple regression analysis technique and calculates
the displacement of a structure using structural information such as strain, stress, displacement,
and z-coordinates [24].

This technique uses the strain and shape functions of three vertices, 1, 2, and 3, of the triangle
on the plane. The strain for a point inside the triangle can be expressed by Equation (2). The shape
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functions N1, N2, and N3 are calculated through natural coordinates, and the point p defined on the xy
plane can be expressed as Equation (3).

ε = f (N1, N2, N3) = N1ε1 + N2ε2 + N3ε3 (2)

P(x, y) = p(ε, Z) (3)

2.3. Displacement Estimation Based on the Least-Squares Method

The least-squares plane technique determines a function that can define a correlation between
data measured through experiments. Within the multiple linear regression analysis, the deviation of
the coordinate values included in the plane from the plane is minimized by applying the least-squares
theory to form a reference plane [8,25].

The approximation process determines the regression coefficient of the function that minimizes the
square of the difference between the multi-linear regression function values reflecting the characteristics
of the data and measured data values. When the function is determined, the vertical displacement
value of the Z axis is calculated by comparing it with the measured data value. Z is estimated by the
explanatory coefficients, N1, N2, N3 . . .Nm, and regression coefficients, β1, β2, β3 . . . βi, as shown in
Equation (4).

z = β0 + β1N1 . . .+ βmβm + e (4)

2.4. Displacement Estimation Based on Octree Space Partitioning Algorithm

The octree space partitioning (OSP) algorithm is used to accurately represent objects in the 3D
space. The octree refers to the format of the data storage structure, and it connects the upper and lower
spaces by subdividing the space [26].

The connected space exhibits a parent–child relationship, as shown in Figure 1. The uppermost
space is called a root node, and the lowest space is called a leaf node. In this study, the vertical
displacement was estimated by relocating the point cloud data in a 3D space and then dividing it in
detail to search for the change in the position of the leaf nodes.

Figure 1. Storage structure of point cloud data based on octree space partitioning (OSP) algorithm.



Sensors 2020, 20, 7117 4 of 18

To use the octree data structure, a 3D object must first be created. An object is constructed using a
voxel, the smallest unit of 3D spatial representation. Voxels are volumetric elements and represent
normal grid unit values in 3D space. The word “voxel” combines the words “volume” and “pixel” and
expands the concept of volume pixel into three-dimensional space. A voxel does not have coordinates
in space but recognizes its position with respect to other voxels.

3. Estimation of Vertical Displacement Using 3D Spatial Optimization

In this section, an experiment was conducted to compare the three mathematical techniques and
displacement estimation techniques using the 3D spatial optimization proposed in this study. Figure 2
shows the research process for estimation of vertical displacement. After removing the environmental
information from the scan data, the 3D coordinates were rearranged with the voxel grid system.
When data arrangement is complete, the space is continuously divided and nodes are connected. Each
node has location information, and it becomes possible to move between connected nodes. Finally, the
node where the change occurred was searched and calculated as the vertical displacement value.

Figure 2. Vertical displacement estimation process using 3D spatial optimization.

3.1. Data Acquisition

The test specimen was a high-performance steel (SS400) section installed and used in an actual
bridge structure. The laser scanning equipment was installed at a distance of 7 m from the SS400
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specimen, and the load test was performed using a universal testing machine (UTM) to measure
the displacement after applying a constant load to the specimen. In addition, a linear variable
differential transformer (LVDT) sensor was installed under the specimen to obtain reference data for
comparison with data from laser scanning. The load was applied in four stages: 0.8, 1.6, 2.4, and 3.2 kN.
The laser scanning equipment was a Leica ScanStation C5 model; detailed performance information is
summarized in Table 1.

Table 1. Specifications of the terrestrial laser scanner.

Model Leica ScanStation C5

Measurement distance 300 m

Scan
resolution

Spot size
From 0 to 50 m: 4.5 mm

(FWHH-based),
7 mm (Gaussian-based)

Point spacing

Fully selectable
horizontal and vertical;

<1 mm minimum
spacing, through full

range; single-point dwell
capacity.

Range accuracy 35 m at 300 m

Precision 2 mm

Speed 50,000 point/s

Range Horizontal 360◦ (max),
Vertical 270◦ (max)

Laser Class 3R (IEC 60825-1)

Memory 80 GB

The detailed sizes of the specimens are listed in Table 2. The three specimens were of 8, 10,
and 12 mm each, and the length between both ends of the support was 720 mm. LVDTs were used,
and vertical displacement was measured at the 1

4 , 1
2 , and 3

4 length points, as shown in Figure 3.
The LVDT used in the experiment contained an error rate of ±0.03 mm.

Table 2. Details of SS400 specimen used in the experiment.

Specimen
SS 400

Length
(mm)

Width
(mm)

Thickness
(mm)

1 1000 200 8
2 1000 200 10
3 1400 200 12
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The static loading experiment environment can be seen in Figure 4. Laser scanning was installed
at a distance of 7 m. The theoretical value was derived based on the elastic deflection theory, as shown
in Equation (5), and compared with the LVDT value. In the case of the two specimens (10 and 12 mm),
the difference between the theoretical and measured values was 0.1 to 0.5 mm. In the case of a specimen
(8 mm), the theoretical and measured values showed a difference of 1.0 to 2.0 mm, which can be
confirmed in Table 3.

Figure 4. Laser scanning installation and experiment environment for static loading experiment.
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Table 3. Comparison of theoretical value and actual LVDT value.

Load Weight Specimen
Thickness

Theoretical Value
(mm)

LVDT
(mm)

Difference
Value
(mm)

LC 1 0.8 kN
8 mm 3.56 4.41 −0.85

10 mm 1.82 2.01 −0.19
12 mm 1.05 1.19 −0.14

LC 2 1.6 kN
8 mm 7.11 8.31 −1.2

10 mm 3.64 4.06 −0.42
12 mm 2.11 2.36 −0.25

LC 3 2.4 kN
8 mm 10.67 12.29 −1.62

10 mm 5.46 6.01 −0.55
12 mm 3.16 3.53 −0.37

LC 4 3.2 kN
8 mm 14.22 16.29 −2.07

10 mm 7.28 8.11 −0.83
12 mm 4.21 4.64 −0.43

The reason for the different values is that the weight of the header of the UTM equipment is added
to the set load, and it appears that a displacement larger than the theoretical value has occurred.

De f lectionmax =
PL3

48EI
(5)

Three LVDTs were fixed, and the vertical displacement values were measured by installing LVDTs
at 18, 36, and 54 cm. The vertical displacement value was measured at three points, and the measured
values are listed in Table 4. The LVDT installed at 36 cm measured the displacement at the position
where the load was directly applied to the center point of the specimen.

Table 4. LVDT measurement results for three specimens.

Thickness Loading LVDT Value

LVDT 1 LVDT 2 LVDT 3

8 mm specimen

LC 1 3.18 4.41 2.93
LC 2 5.96 8.31 5.41
LC 3 8.76 12.29 7.89
LC 4 11.52 16.29 10.33

10 mm specimen

LC 1 1.43 2.01 1.26
LC 2 2.91 4.06 2.56
LC 3 4.31 6.01 3.78
LC 4 5.81 8.11 5.09

12 mm specimen

LC 1 0.85 1.19 0.74
LC 2 1.67 2.36 1.48
LC 3 2.51 3.53 2.22
LC 4 3.31 4.64 2.92

3.2. Data Processing

Laser scanning captures the shape information of all objects within the measurement range.
Therefore, accurate analysis results can be obtained by removing the information that is not within the
range of the specimen. This was performed using the software provided by the scanner manufacturer;
the relevant information range was selected, and the rest of the information was removed.

The point cloud measured via laser scanning is shown in Figure 5. The data consisted of a set
of numerous points. The vertical displacement value was measured by applying the terrestrial laser
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scanning (TLS) (Grid), TLS (Tri), and TLS (LSP) techniques. It was also measured using the TLS (OSP)
technique proposed in this study.

Figure 5. Scanning data of a specimen (10 mm) for each load.

3.3. D Space Segmentation

The measured laser scanning data generated internal nodes through the spatial division algorithm,
as shown in Table 5. The generated octree model checks the node to find the deformed point; if it
finds the deformed node, it calculates the position from the reference node to estimate the vertical
displacement value. The internal address system is constructed in a structure that can be searched by
connecting spatial information in the object model and creating numerous internal nodes that exhibit a
parent-child relationship. The computer performance used for data analysis is summarized in Table 6.

Table 5. Octree spatial division and node displacement algorithm.

Input Laser scan binary file
(index, value (point, depth, height, width))

Input Node displacement check
(Ref.octree model, Src.octree model)

Step 1 Step 2

1: resolution R = Space segmentation level
2: generate new octree (R)
3: while (index! = end)
4: read Binary data→ value
5: mark value→ empty or full
6: if (value == full)
7: octree→ Insert Node(value)
8: else octree→ Delete Node(value)
9: end if
10: next index
11: end while
12: write octree→ Complete Binary()
13: end octree
14: return octree storage file

1: lookup Ref.model containing Src.model
2: while (index! = end)
3: get next closest child (Ref, Src)
4: Node C = Src.index
5: if C == outside of Node
6: return 0
7: else
8: if C == inside of Node
9: return Distance Calculate (Ref, Src)
10: else
11: find closet node (Ref )
12: return Distance Calculate (Ref, Src)
13: end if
14: end if
15: end while
16: return Distance result file



Sensors 2020, 20, 7117 9 of 18

Table 6. Performance information of computer for data analysis.

Unit Specification Set

CPU 8-Core Intel Xeon E5-2670 (2.6
GHz, 20 MB L3, 8.0GT/sec QPI) 1

RAM 8GB DDR3
ECC-Registered/PC3-12800 8

HDD SATA 1 TB 32 MB Buffered/7200
rpm 1

POWER 865 W AC power supply w/PFC 1
OS Ubuntu 12.04.2 LTS (Linux)/64-bit -

The octree spatial division algorithm proceeded in two stages. The first step was to rearrange the
point cloud in a three-dimensional space. In the second step, the vertical displacement was estimated
by searching for node movement.

In Figure 6, nodes that did not exist in the Ref octree model (blue area) exist in the Src octree
model (red area). The red area is recognized as the location where the displacement value appears.
The vertical displacement was estimated by searching for node movement between the reference model
and the source model with deformation, as summarized in Table 5.

Figure 6. Detecting variant nodes viewed from the perspective above the root node.

The models created through the 3D spatial division algorithm can be seen in Tables 7 and 8.
Nodes of the model without load are marked in blue, and areas where node movement occurred are
marked in red. The node movement was evident in the 8 mm specimen, and the confirmed node
changes are marked in red, even in the 10 and 12 mm specimens.

Table 7. Octree inner node visualization and node transformation area (10 mm specimen).

Case Specimen Thickness (10 mm)

LC 0
(0 kN)

LC 1
(0.8 kN)

LC 2
(1.6 kN)

LC 3
(2.4 kN)

LC 4
(3.2 kN)
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Table 8. Octree inner node visualization and node transformation area (8 and 12 mm specimens).

Case Specimen Thickness (8 mm) Specimen Thickness (12 mm)

LC 0
(0 kN)

LC 1
(0.8 kN)

LC 2
(1.6 kN)

LC 3
(2.4 kN)

LC 4
(3.2 kN)

3.4. Deflection Analysis

Laser scanning was performed eight times for each load case, and scanning data of 40 scans per
specimen were obtained, including those for the case without load. Four displacement estimation
techniques were applied using the point cloud of the specimen. The maximum displacement occurred
at the center of the specimen at 36 cm, and the results are summarized in Table 9.

Table 9. Estimated value of vertical displacement obtained via four methodologies.

Case Method
Specimen Thickness

8 mm 10 mm 12 mm

LC 1
(0.8 kN)

Grid 6.21 3.85 2.50
Tri 6.21 3.78 2.50

LSP 5.82 3.41 2.35
OSP 4.83 2.92 2.20

LC 2
(1.6 kN)

Grid 10.11 5.74 4.11
Tri 10.11 5.74 3.89

LSP 9.85 5.41 3.54
OSP 8.71 4.45 3.21

LC 3
(2.4 kN)

Grid 13.62 7.39 5.48
Tri 13.62 7.39 5.42

LSP 13.11 7.02 5.11
OSP 12.75 6.51 4.29

LC 4
(3.2 kN)

Grid 17.81 9.85 6.37
Tri 17.69 9.78 6.35

LSP 17.12 9.26 5.98
OSP 16.78 8.63 5.09

The displacement estimation results of each method were classified into 24 classes. The 24th class
represents the maximum displacement value. The classes of the 8, 10, and 12 mm specimens can be
seen in Figures 7–9, respectively.
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Figure 7. Classification of vertical displacement of the 8 mm specimen (LC4).

Figure 8. Classification of vertical displacement of the 10 mm specimen (LC4).



Sensors 2020, 20, 7117 12 of 18

Figure 9. Classification of vertical displacement of the 12 mm specimen (LC4).

The vertical displacement values estimated using the four methodologies were compared with the
LVDT measurements. The TLS (Grid) and TLS (Tri) techniques showed similar results in all displacement
sections, and TLS (LSP) showed larger displacement values than TLS (OSP) did. Figures 10–12 show
the same pattern: as the vertical displacement value increases, measurements from all four techniques
become closer to the LVDT value.

Figure 10. Comparison of vertical displacement between LVDT and the four methodologies
(8 mm specimen).
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Figure 11. Comparison of vertical displacement between LVDT and the four methodologies
(10 mm specimen).

Figure 12. Comparison of vertical displacement between LVDT and the four methodologies
(12 mm specimen).

Three specimens were scanned eight times for each case. Figures 13–15 show the vertical
displacement values after repeated scanning. After repeated scanning, the measured value was based
on the LVDT center point (36 cm), and all four techniques measured the vertical displacement at the 36
cm point. The four techniques showed the same value or between 0.01 and 0.03 mm difference during
the eight repeated scans.
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Figure 13. Comparison of vertical displacement with eight repeated laser scans (8 mm specimen).

Figure 14. Comparison of vertical displacement with eight repeated laser scans (10 mm specimen).

Figure 15. Comparison of vertical displacement with eight repeated laser scans (12 mm specimen).
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The Clock_gettime function was used to check the time for execution of each technique.
The Clock_gettime function measures the time in the Linux operating system and can obtain the precise
time of the code execution within a specific section. The time was calculated by specifying the range
between the beginning and end of the source file for each technique. In Table 10, space relocation
is the time required to load data, and displacement estimation is the time required to calculate the
displacement value.

Table 10. Comparison of execution time between the four methodologies.

Method Points

Running Time
Total Execution

Time (s)Space Relocation
(s)

Displacement
Estimation (s)

Grid

3527~3673

0.24 0.12 0.36
Tri 0.24 0.15 0.39

LSP 0.24 0.15 0.39
OSP 1.49 0.04 1.53

As a result of checking the execution time, the TLS (Grid), TLS (Tri), and TLS (LSP) techniques
were the time required to load the point cloud. The TLS (OSP) technique took more time, as the point
cloud was relocated to the 3D space.

After the data were loaded, the displacement estimation required more than 0.12 s for TLS (Grid),
TLS (Tri), and TLS (LSP), but only 0.02 s for TLS (OSP). The three methods (Grid, Tri, and LSP)
used all point clouds for displacement calculation, whereas TLS (OSP) converted the points to nodes.
Hence, the node displacement estimation method appears to have significantly reduced the time.

The error rates were compared based on the LVDT value, which can be seen in Figure 16. The error
rates of the all four techniques were found to be less than 10% for displacements greater than or equal
to 16 mm. LiDAR equipment has a spot size of 4.5 mm, and the error rate of all four techniques
decreased when the displacement value was greater than 4.5 mm. For displacements smaller than
4.5 mm, the error rate gradually increased. The error rate remained within a displacement similar to
the spot size for a while, and then it increased rapidly [27,28].

Figure 16. Comparison of error rates for vertical displacement of three specimens based on LVDT.
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For displacements greater than or equal to 12 mm, only the LSP and OSP techniques had an error
rate of less than 10%. For displacements greater than or equal to 4 mm, the OSP technique had an error
rate of less than 10%. In Table 11, the section marked in green indicates that the error rate was less
than 10% with respect to the LVDT value, and the section marked in yellow indicates the error rate
was less than 5%. As a result of the experiment, at a displacement 4.5 mm larger than the spot size of
the LiDAR equipment, the OSP technique showed close results to the LVDT value compared to the
existing three techniques. In the case of measuring a displacement smaller than the spot size, the error
increased significantly, but it was confirmed that the error rate can be measured within 10% up to the
4.06 mm displacement section.

Table 11. Comparison of error rates between LVDT and the four methodologies. Color display of error
rate (Green: within 10%, Yellow: within 5%).

Case
8 mm 10 mm 12 mm

LVDT (mm) LVDT (mm) LVDT (mm)

Grid Tri LSP OSP Grid Tri LSP OSP Grid Tri LSP OSP

LC1
−4.41 −2.01 −1.19

40.8 40.8 32.0 9.5 91.5 88.1 69.7 45.3 110.1 110.1 97.5 84.9

LC2
−8.31 −4.06 −2.36

21.7 21.7 18.5 4.8 41.4 41.4 33.3 9.6 74.2 64.8 50.0 36.0

LC3
−12.29 −6.01 −3.53

10.8 10.8 6.7 3.7 23.0 23.0 16.8 8.3 55.2 53.5 44.8 21.5

LC4
−16.29 −8.11 −4.64

9.3 8.6 5.1 3.0 21.5 20.6 14.2 6.4 37.3 36.9 28.9 9.7

4. Discussion

Previous studies obtained analysis results by applying the technique to point cloud data measured
through laser scanning. In this study, instead of applying the method directly to the point cloud,
the points were rearranged in a three-dimensional space, and nodes were created to calculate the node
movement displacement rather than using distance estimation methods between points. The proposed
method reprocesses the point cloud data, and the data processing time required is more than the
analysis time. Therefore, future research should aim to shorten the data processing time such that the
technique can be applied in practice.

5. Conclusions

This study proposes a LiDAR-based displacement estimation technique for measuring the total
displacement of infrastructure and civil structures. Point cloud data measured through the LiDAR
system are arranged in a three-dimensional space and implemented in the form of nodes, where each
node is connected via a parent-child relationship. Connected nodes containing location information in
3D space were developed to estimate the vertical displacement of the structure by searching for the
location of the node.

The proposed method applied a static load to three specimens (with thicknesses of 8, 10, and 12 mm)
and compared the LVDT value and estimated value based on laser scanning. Four laser scanning-based
methodologies were employed: Grid, Tri, LSP, and OSP. The displacement estimation results of the
four techniques showed that the error rate at displacements greater than or equal to 16 mm was less
than 10%. At displacements of 12 mm or more, the LSP and OSP techniques showed an error rate of
less than 10%. At displacements of 8 mm or more, the OSP technique showed an error rate of less than
10%. It was confirmed that the OSP technique had the highest accuracy among the four techniques.

The execution time is an important factor because the amount of point cloud data obtained from
the structure is large. The execution time of the four techniques was measured by dividing the total time
into the time required to load the data and the time required to calculate the displacement. The first
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three techniques (Grid, Tri, and LSP) required approximately 0.24 s to load and register point cloud
data. The OSP technique required approximately 1.5 s, including the time required for reprocessing
owing to the conversion of points to nodes. The OSP method required 0.04 s for the displacement
estimation after data placement was completed. The displacement estimation times of the first three
methods (Grid, Tri, and LSP) were in the range of 0.36 to 0.39 s; thus, displacement estimation using
nodes is faster than that using the point cloud.

Therefore, the proposed method proved that the accuracy of displacement estimation can be
improved, although it requires time for structural displacement analysis. This study proposed a
technique to estimate the displacement of a structure in 3D space. The proposed method can be used
for stability evaluation, even for civil engineering structures that are difficult to access.
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