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Abstract

Preterm labour (PTL) is commonly associated with infection and/or inflammation. Lipopolysaccharide (LPS) from different bacteria
can be used to independently or mutually activate Jun N-terminal kinase (JNK)/AP1- or NF-kB-driven inflammatory pathways that lead
to PTL. Previous studies using Salmonella abortus LPS, which activates both JNK/AP-1 and NF-kB, showed that selective inhibition of
NF-kB delays labour and improves pup outcome. Where labour is induced using Escherichia coli LPS (O111), which upregulates
JNK/AP-1 but not NF-kB, inhibition of JNK/AP-1 activation also delays labour. In this study, to determine the potential role of JNK as
a therapeutic target in PTL, we investigated the specific contribution of JNK signalling to S. Abortus LPS-induced PTL in mice.
Intrauterine administration of S. Abortus LPS to pregnant mice resulted in the activation of JNK in the maternal uterus and fetal brain,
upregulation of pro-inflammatory proteins COX-2, CXCL1, and CCL2, phosphorylation of cPLA2 in myometrium, and induction of PTL.
Specific inhibition of JNK by co-administration of specific D-JNK inhibitory peptide (D-JNKI) delayed LPS-induced preterm delivery
and reduced fetal mortality. This is associated with inhibition of myometrial cPLA2 phosphorylation and proinflammatory proteins
synthesis. In addition, we report that D-JNKI inhibits the activation of JNK/JNK3 and caspase-3, which are important mediators of neural
cell death in the neonatal brain. Our data demonstrate that specific inhibition of TLR4-activated JNK signalling pathways has potential
as a therapeutic approach in the management of infection/inflammation-associated PTL and prevention of the associated detrimental

effects to the neonatal brain.
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Introduction

Globally, more than 15 million babies are born preterm
each year (Blencowe et al. 2013), of which around
1 million die from associated complications. Many
survivors experience lifetime learning disabilities and
visual and hearing problems. The risk of cerebral palsy
(CP) is increased 70-fold in infants born <28 weeks
gestation and some 90% of infants born before 30 weeks
gestation show brain abnormalities on MRI when
imaged at term-corrected age (Romero et al. 2006).
Intrauterine infection and/or inflammation plays an
important aetiological role in early preterm delivery
and is a risk factor for subsequent CP in both term and
preterm infants (Wu & Colford 2000).

Inflammation represents a common biochemical
pathway critically involved in both term and preterm
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l[abour (PTL; Romero et al. 2006). To study the underlying
biochemistry of inflammation-associated PTL, several
investigators have developed mouse models based on
intrauterine or systemic injection of bacteria or bacterial
lipopolysaccharide (Hirsch et al. 1995, Kaga et al. 1996,
Elovitz et al. 2003, Elovitz & Mrinalini 2004). Bacterial
products induce PTL through interaction with toll-like
receptor-4 (TLR4) and subsequent activation of pro-
inflammatory and pro-contractile pathways within the
uterus. Studies using TLR4 mutant mice show that TLR4
plays an essential role in LPS-induced PTL (Elovitz et al.
2003, Wang & Hirsch 2003). Activation of the TLR4
signalling pathway by LPS leads to the upregulation of
prostaglandin (PG) synthesis and production of proin-
flammatory cytokines (Gravett et al. 1994, Pollard &
Mitchell 1996, Elovitz et al. 2006). PG E2 and PGF2 and
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cytokines induce cervical ripening (Kelly 2002) and
stimulate uterine contractions (Baggia et al. 1996). There
is now good evidence that in addition to inducing
preterm delivery, proinflammatory cytokines also
mediate antenatal brain injury (Bell et al. 2004, Elovitz
et al. 2006). In animal models of prenatal brain injury,
injection of LPS or intact bacteria causes lesions in white
matter of the neonatal brain (Debillon et al. 2000),
including both periventricular leukomalacia (PVL), a
pathology associated with the development of CP
(Drougia et al. 2007), and diffuse white matter injury, a
brain abnormality more commonly associated with
adverse neurodevelopmental outcome (Dyet et al.
2006). Due to the association between inflammation,
the onset of labour and the risk of perinatal brain injury,
attention is being focused on anti-inflammatory agents as
novel therapeutic options to prevent PTL (Rinaldi et al.
2011, Maclntyre et al. 2012, Sykes et al. 2014).

Animal studies have demonstrated that several anti-
inflammatory agents delay preterm delivery and improve
pup survival, including cytokine IL-10 (Terrone et al.
2001, Rodts-Palenik et al. 2004), short-chain fatty acids
(Voltolini et al. 2012) and lipoxins (Macdonald et al.
2011). The transcription factor nuclear factor kappa B
(NF-kB) plays a pivotal role in the upregulation of
pro-labour and pro-inflammatory genes associated with
parturition (Choi et al. 2007) and is proposed to inhibit
progesterone receptor function and thus block uterine
quiescence (Condon et al. 2006). We, and others, have
shown that NF-kB inhibition leads to decreased
synthesis of cytokines that trigger both preterm delivery
and neonatal brain injury, making it an attractive
therapeutic target in the management of PTL (Adams
Waldorf et al. 2008, Pirianov et al. 2009, Li et al. 2010,
Nath et al. 2010).

We have recently shown that normal labour onset
in the mouse involves the sequential activation of the
transcription factors NF-kB and AP-1 within the uterus
(Maclintyre et al. 2014). Additionally, we have identified
differential activation of NF-kB and Jun N-terminal
kinase (JNK) in two mouse models of LPS-induced PTL
(Pirianov et al. 2009, Maclntyre et al. 2014). PTL
induced using highly TRL4-specific Salmonella abortus
LPS activates both NF-kB and JNK and leads to the
upregulation of cPLA2 and COX-2, both central to
prostaglandin synthesis, as well as the stimulation of
labour-associated cytokines, CCL-2 and CXCL-1, in the
myometrium (Pirianov et al. 2009). Inhibition of NF-«xB
activity, JNK activity and cytokine synthesis by the
anti-inflammatory  cyclopentenone prostaglandin
15-deoxy-812, 14-prostaglandin J2 (15d-PCJ2), delays
preterm birth and improves pup survival. In contrast,
induction of PTL by Escherichia coli-derived LPS
involves AP-1 activation via JNK, but does not involve
NF-kB activation (Maclntyre et al. 2014). In this model,
inhibition of JNK using SP600125 delays PTL. Where
labour is induced using the PR/GR antagonist RU486,
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no sequential activation of NF-kB and AP-1 is detected
in the uterus, but labour itself is associated with
increased JNK activity. Thus NF-kB activation
appears to be a feature of normal labour and of labour
induced by some LPS serotypes, but it is not a universal
feature of all models of inflammation- or non-inflam-
mation-induced PTL.

JNK-mediated activation of AP-1 appears to be
common to both inflammation- or non-inflammation-
induced PTL. Further, brain activation of JNK has been
shown to play a key role in perinatal brain injury. Three
mammalian JNK genes (JNK1, JNK2 and JNK3) have
been identified of which JNK3 is the form most
predominantly active in the brain. In a mouse model
where JNK3 expression was ablated, pup brain levels
of c-Jun were reduced compared to wild-type (WT)
animals and led to partial protection against hypoxic—
ischaemic injury through a reduction of caspase-3
activation (Pirianov et al. 2007).

Specific inhibition of JNK, in the context of inflam-
mation-induced PTL, has the potential to both delay
delivery and improve pup outcome. However, where
inflammation activates both NF-kB and JNK, specific
inhibition of JNK may be insufficient to either delay
preterm birth or improve pup outcome. In this study
S. abortus LPS was used to activate both uterine NF-kB
and JNK activation and cause preterm birth. Animals
were then treated with a highly specific JNK inhibitor,
D-JNK inhibitory peptide (D-JNKI), to determine if
in vivo inhibition of myometrial JNK-activation and
downstream inflammatory mediators such as COX-2,
cPLA and cytokines delays LPS-induced preterm
delivery, improves neonatal mortality and reduces
JNK3 activation and thus damaging the neonatal brain.

Materials and methods
Reagents and antibodies

Antibodies against serine 505-phosphorylated cPLA,;,
HRP-conjugated secondary antibodies and JNK in vitro kinase
kit and cleaved caspase-3 antibody were purchased from
Cell Signaling Technology (Danvers, MA, USA). COX-2, CCL2,
CXCL1 and JNK2 antibodies were purchased from Santa Cruz
Biotechnology. JNK1 and JNK1/2 antibodies were obtained
from Pharmingen (San Jose, CA, USA). The antibody against
B-actin was from Abcam (Cambridge, UK). LPS (TLR-4 grade S
form from Salmonella abortus) was purchased from Enzo
Biosciences (Nottingham, UK). D-JNKI was kindly provided
by Dr H Mehmet (Merck, Kenilworth, NJ, USA).

Mouse model of intrauterine inflammation

All animal experiments were approved by the Imperial College
London Ethical Review Board and conformed to the British
Home Office regulations. CD-1 outbred mice were used in this
study. This strain is commonly used in LPS-mediated models of
PTL and inflammation more generally and does not exhibit any
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known LPS resistance. CD-1 outbred, timed-pregnant mice
were obtained from Harlan Laboratories (Bicester, UK) on
gestation day 13 after mating and were acclimatised for 3 days
before being used in experiments. Surgery was performed on
day 16 of gestation. Dams were anaesthetised by isofluorane,
the uterine horns exteriorised following laparotomy and kept
moist with sterile PBS. The uterine horn containing the greatest
number of viable fetuses was selected for injection. A 25 pl
volume LPS (1.0 pg) alone, 5 ng D-JNKI, or 5 pug LPS plus 5 pg
D-JNKI was injected into the lumen of the uterus between the
first and second anterior fetuses using a 33-gauge Hamilton
syringe, taking care not to enter the amniotic cavity. The wound
was closed in two layers. Mice received Vetalar analgesia
(Parke Davis & Co. Ltd., Eastleigh, UK) and were recovered in a
warm environment. For observations, each mouse was housed
separately. Control animals received no anaesthesia or surgery,
and sham animals received anaesthesia and an intrauterine
injection of 25 pl of saline. The time from surgery to delivery
was recorded, with delivery of the newborn pups and their
survival rate monitored every 6 h. Animals studies were in
accordance with UK Home Office licence conditions.

Tissue harvesting and processing

Maternal uterine tissue (myometrium) and foetal brain were
collected close to the injection site in the uterine horn 1 and 6 h
post-injection with LPS £D-JNKI (1, 2 or 5 pug) or vehicle
control. Samples were flash frozen in liquid nitrogen and stored
at —80 °C. Tissues were lysed by sonication in a non-denaturing
phosphate lysis buffer consisting of 20 mM sodium phosphate,
137 mM NaCl, 25 mM sodium B-glycerophosphate, 2 mM
sodium pyrophosphate, 2 mM EDTA, 10% glycerol, 1% Triton
X-100 and protease inhibitor cocktail (Sigma-Aldrich).
Cell lysates were incubated on ice for 20 min and centrifuged
for 20 min at 12000 g at 4°C. Protein concentration
was determined by the bicinchoninic acid method (Pierce,
Rockford, IL, USA).

RT-PCR

Total RNA was isolated using RNA STAT-60 (Tel-Test, Inc.,
Friendswood, TX, USA) according to the manufacturer’s
instructions. A total of 1 ug RNA was used as a template for
reverse transcription. Expression of OTR, COX-1, COX-2,
connexin 26 and 43, CCL2, CXCL-1 and GAPDH were assessed
by real-time RT-PCR using an ABI PRISM 7700 Sequence
Detection System according to the manufacturer’s protocol
(Applied Biosystems/Life Technologies). Tagman primers and
probes were designed using the primer express programme
(Applied Biosystems/Life Technologies). The data were analysed
using Sequence Detector version 1.7 Software (Applied
Biosystems/Life Technologies) and were normalised to GAPDH.

SDS-PAGE and immunoblotting

Tissue lysates (50 pg) were separated on a 10% SDS-PAGE gel
and transferred to PVDF membranes (Millipore, Billerica, MA,
USA) and blocked using 5% (w/v) skimmed milk in Tris-
buffered saline (TBS) supplemented with 0.1% (v/v) Tween-20
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(TBST) for 1h at room temperature. Blots were incubated
overnight at 4 °C with primary antibody (1:1000 dilutions in
TBS, 1% milk). After washing in TBST, blots were incubated
with HRP-conjugated goat anti-rabbit antibody or rabbit anti-
mouse antibody at room temperature for 1h in 5% milk
prepared in TBST. Following the final wash, immune-reactive
bands were visualized on film using a chemiluminescent
substrate (ECL Plus, GE Healthcare and Buckinghamshire, UK).
Densitometric analysis was performed using 1D Kodak Digital
Science Software (Kodak). The levels of cellular B-actin were
used as a loading control.

Immunoprecipitation of cleaved caspase-3

Tissue lysates (200 pg protein) were incubated overnight at 4 °C
with G agarose beads (GE Healthcare) pre-bound with cleaved
p17 caspase-3 antibody. After washing, the beads were
resuspended in a sample loading buffer and heated for 5 min
at 95 °C and spun down. Samples (50 pl) were separated by
electrophoresis on a 14% SDS-PAGE gel, transferred to a PVDF
membrane and finally incubated with cleaved caspase-3
antibody (1:1000) overnight at 4 °C following the western
blotting procedure previously described.

In vitro kinase assay for INK

JNK activity was measured using a specific kit (Cell Signaling
Technology) following the manufacture’s instructions and using
GST-Jun (1-79) fusion peptide as the specific substrate for JNK.
In brief, tissue lysates (100 pg protein) were incubated
overnight at 4 °C with GST-Jun fusion protein beads. After
washing, the beads were resuspended in kinase buffer
containing ATP and the kinase reaction was allowed to proceed
for 30 min at 30 °C. The reaction was stopped by the addition of
a sample loading buffer. Proteins were separated by electro-
phoresis on a 10% SDS-PAGE gel, transferred to a PVDF
membrane and finally incubated with phospho-c-Jun (Ser63)
and c-Jun antibodies. Finally, blots were subjected to enhanced
chemiluminescence and kinase activity determined by densito-
metric analysis.

In vitro kinase assay for JNK3

Currently, specific non-cross-reactive antibodies for the major
JNK isoforms 1, 2 and 3 are not available. Therefore we used an
approach for capturing JNK3 following immunodepletion of
JNKT and JNK2 isoforms. To specifically determine the
presence of the active JNK3 isoform, cell lysates were first
immunoprecipitated with a mixture of JNK1 (cross-reacts with
JNK1 and 2 but not with JNK3; data not shown) and JNK2
(cross-reacts with JNK2 and 1 but not with JNK3; data not
shown) antibodies already pre-bound to Protein-G beads to
remove both JNK1 and JNK2 from the lysates. This process was
repeated twice to ensure that JNK1 and JNK2 were completely
removed from the supernatant. Depletion of JNK1 and JNK2
was confirmed by western blot analysis of cell lysates before
and after immunodepletion using a JNK1/2 antibody that
recognizes both the JNK1 and JNK2 isoforms. The residual
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Figure 1 D-JNKI inhibits LPS-induced JNK activation in myometrium
and neonatal brain. Timed pregnant CD-1 mice were injected on day
16 with Salmonella abortus LPS (1.0 ug) alone, LPS together with (1, 2
or 5 pg) of D-JNKI or with D-JNKI (5 pg) alone. Tissue samples from
myometrium and fetal brain were isolated at 1 h post-treated and
examined for JNK activity using an in vitro kinase assay.

Maximal inhibition of LPS-induced JNK activation was achieved with
5 ug D-JNKI.

active JNK3 isoform in the supernatant was subjected to in vitro
kinase assay to measure JNK3 activity, as described above.

Statistical analysis

Biochemical and molecular data are reported as mean+s.p.
and analysed with one-way ANOVA followed by the
Bonferroni post-test for multiple comparisons using GraphPad
Prism version 4.0. The differences between multiple groups in
PTL model were analysed by Kruskal-Wallis equality-of-popu-
lation rank test.

Results

D-JNKI supresses LPS-induced JNK activation in mouse
myometrium and fetal brain

We have previously shown that the administration of
S. abortus LPS activates TLR4/INK signalling in an
experimental model of PTL (Pirianov et al. 2009).
Here, the effects of D-JNKI (a specific inhibitor of JNK)
on PTL were investigated. In the first series of
experiments we determined the ability of co-administra-
tion of D-JNKI (0-5 ug) to block S. abortus LPS-induced
TLR4/INK activation in the myometrium and in the fetal
brain in this mouse model of PTL. Animals were
sacrificed 1 h post-injection of LPS. Because D-JNKI
prevents JNK/substrate interactions but not JNK phos-
phorylation, we utilised an in vitro kinase assay to
monitor the inhibitory effects of D-JNKI in tissue lysates.
Kinase assay data showed that LPS injection induced JNK
activity at 1h post-injection in both the maternal
myometrium and the neonatal brain. Inhibition of
LPS-induced JNK activity was achieved by D-JNKI at
an injection dose of 5 pg (Fig. TA). Although this single
western blot gives the impression that JNK is activated at
a higher level in the D-JNKI 5 pug treated samples
compared to controls and LPS 4+ D-JNKI treated samples,
quantification of three separate experiments (Fig. 2A
and B) shows that D-JNKI at 5 pg has no effect on JNK
activity. Based on this result, JNK activity assays were
performed using 5 pg of D-JNKI as shown in Fig. 2.
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This dose of D-JNKI was sufficient to inhibit JNK activity
up to 6 h post-injection in both the myometrium and
neonatal brain following LPS injection (Fig. 2A and B).

D-JNKI delays LPS-induced preterm delivery

In the next experiments we determined whether specific
inhibition of JNK by D-JNKI would lead to delayed S.
abortus LPS-induced PTL in this animal model. Animals
were injected on gestation day 16 with S. abortus alone
or together with 5 pg of D-JNKI or with 5 pg of D-JNKI
alone. The pregnancy was monitored at 6 h intervals
until delivery. S. abortus LPS alone caused preterm
delivery after ~20h (£s.e.m.) (Fig. 3A) with 70% pup
mortality (Fig. 3B). Co-injection of 5 pug of D-JNKI
delayed preterm delivery by an average of 10h (to a
mean of 32 h; Fig. 3A) and reduced pup mortality to 10%
(Fig. 3B). Injection of 5pg of D-JNKI alone was
associated with later preterm delivery at 40 h, with no
pup mortality. These data show that the specific
inhibition of JNK delays S. abortus LPS-induced PTL
and increases pup survival.

D-JNKI inhibits both LPS-induced cPLA, phosphory-
lation and upregulation of proinflammatory proteins
COX-2, CCL2 and CXCL1 in mouse myometrium

We have previously reported that PTL induced in a mouse
model using S. abortus LPS has no effect on OTR,
connexins 23 and 46 or COX-1 but significantly
upregulates mRNA levels of COX-2, CCL2 and CXCL1
and increases phosphorylation of cPLA2 in the myome-
trium 6 h post-injection. We therefore studied the effect of
D-JNKI on S. abortus LPS-induced expression of COX-2,
CCL2 and CXCL1 and cPLA2 phosphorylation. Upregula-
tion of COX-2, CCL2 and CXCL1 were significantly
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Figure 2 D-JNKI inhibits LPS-induced JNK activation in myometrium
and neonatal brain at T and 6 h post-injection. Timed pregnant CD-1
mice were injected on gestation day 16 with Salmonella abortus LPS
(1.0 pg) alone, LPS together with (5 pg) of D-JNKI or with D-JNKI (5 ng)
alone. (A) Tissue samples from myometrium and (B) fetal brain were
isolated at 1 and 6 h post-injection and analysed for JNK activity using
an in vitro kinase assay. (n=3 **P<0.001 compared to LPS alone at
each time point ANOVA).
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Figure 3 D-JNKI delays LPS-induced preterm delivery and increases
pup survival. Timed pregnant CD-1 mice were injected on gestation
day 16 with 1.0 pug Salmonella abortus LPS (n=7) or LPS together with
5 pg of D-JNKI (n=8) or with 5 pg of D-JNKI alone (n= 8). Delivery of
the newborn pups and their survival rate was monitored every 6 h.
D-JNKI led to a significant increase in time to delivery as well as
increased pup survival. Data represent the mean (+s.t.m.) of nanimals at
each group. **P<0.01, Kruskal-Wallis equality-of-population rank test.

suppressed by co-administration of D-JNKI (Fig. 4A, B
and C). Using western blotting analysis, we validated the
mRNA data at the protein level COX-2, CCL2 and CXCL1
in mouse myometrium (Fig. 4D and E). S. abortus LPS
injection induced cPLA, phosphorylation in maternal
myometrium, which was inhibited by D-JNKI at 1 h but
not after 6 h following injection (Fig. 5).

D-JNKI supresses LPS-induced JNK3 and caspase-3
activation in the fetal brain

We have previously shown that the JNK3 isoform plays
a critical role in hypoxia-ischaemia-induced neural cell
death and neonatal brain injury (Pirianov et al. 2007).
We therefore examined the effect of D-JNKI on S. abortus
LPS-driven JNK3 and caspase-3 activation in the fetal
brain. Using an in vitro immunodepletion kinase assay
(Pirianov et al. 2006) to measure JNK/JNK3 activity,
we found that co-injection of D-JNKI downregulates JNK
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activation and completely inhibits JNK3 activity in the
fetal brain (Fig. 6A). This effect of D-JNKI is associated
with a decrease in S. abortus LPS-induced caspase-3
activity, measured as a production of cleaved p17
caspase-3 active fragment (Fig. 6B).

Discussion

There exists a spectrum of severity of inflammation
associated with human PTL. Overt clinical signs of
chorioamnionitis are rarely seen during pregnancy in
women who go on to experience an infection-associated
PTL. In most cases, evidence of chorioamnionitis is only
obtained following histological examination of the
placenta and membranes following delivery. We
originally developed the mouse model of inflam-
mation-associated preterm delivery described in this
study to model the clinical presentation in humans. The
model is based on those developed by Hirsch et al.
(1995) and Elovitz et al. (2003, 2006), in which
sonicated bacteria or E. coli-derived LPS are used to
induce preterm birth. However, these models report high
variations in the LPS dose required, time to delivery and
level of pup mortality. Our S. abortus LPS model has the
advantage of reliable preterm delivery rates and
controllable rates of pup mortality thus permitting
in vivo study more representative of human presentation.

LPS derived from different bacterial species are known
to differentially induce TLR4 signalling pathways (Park &
Lee 2013). However, it is increasingly recognised that
LPS molecules from the same bacterial species belong-
ing to different serotypes also differentially interact and
stimulate the TLR4 receptor (Chessa et al. 2014). We
have previously reported that LPS isolated from either
S. abortus or E. coli will activate PTL in the mouse, yet
time to delivery and pup survival rates vary significantly

Figure 4 D-JNKI inhibits LPS-induced cPLA2
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phosphorylation and production of COX-2,
CCL-2 and CXCL-1 in myometrium. Timed
pregnant CD-1 mice were injected on day 16
with 1.0 pg of Salmonella abortus LPS alone, LPS
together with 5 pg of D-JNKI or with 5 pg of
D-JNKI alone. Tissue samples from the myome-
trium were collected at 6 h and analysed for
mRNA and protein levels of COX-2 (A and D),
CCL-2 (B and E) and CXCL-1 (C and F) expression
and normalised to loading controls (GAPDH and
actin) as arbitrary units (AU). Data represent the
mean (£s.e.m.) of three animals at each data
point. The difference between LPS alone or
together with D-JNKI was statistically significant
by ANOVA *P<0.05 and **P<0.01.
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Figure 5 D-JNKI inhibits LPS-induced cPLA2 phosphorylation. Timed
pregnant CD-1 mice were treated on gestation day 16 with Salmonella
abortus LPS (1.0 pg) alone, LPS together with 5 pg of D-JNKI, or with
5 ng of D-JNKI alone. Tissue samples from the myometrium were
prepared at 6 h and analysed for cPLA2 phosphorylation and
normalised to loading control actin as arbitrary units (AU). Data
represent the mean (+s.e.m.) of three animals at each data point.

The difference between LPS alone or together with D-JNKI was
statistically significant by ANOVA (**P<0.01).

(Pirianov et al. 2009, Maclintyre et al. 2014). Moreover,
we have shown that E. coli-derived LPS serotypes
differentially activate inflammatory pathways in the
mouse myometrial and pup brain leading to major
differences in maternal and fetal outcomes (unpublished
data). While all four of the E. coli LPS serotypes tested led
to preterm birth, time to preterm delivery onset was
strongly correlated with the level of JNK/AP1 activation
but not correlated with NF-«kB activation. Recent studies
using E. coli serotype O111 (B4) alone have shown that
preterm delivery in the mouse involves myometrial
activation of AP-1 via JNK without upregulation of
NF-kB activity and that inhibition of JNK can delay PTL
(Maclntyre et al. 2014). In contrast, S. abortus LPS leads
to preterm delivery that is associated with myometrial
activation of both NF-kB and JNK/AP-1 and that
inhibition of NF-kB by the cyclo-pentenone 15d-PGJ2
delays preterm delivery, improves pup survival and
inhibits myometrial and brain inflammation in the
mouse PTL model primarily (Pirianov et al. 2009).
The relative contribution of NF-kB and JNK/AP-1 to
both PTL and fetal outcomes is yet to be fully elucidated.
Thus, in this study we set out to determine whether
specific inhibition of JNK would also be effective in a
model in which both NF-kB and JNK/AP-1 are activated.
We selected the D-JNKI rather than SP600125 because
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the latter is a comparably weak and non-specific
inhibitor of JNK (Jin et al. 2009). The D-JNKI used in
this study is a small peptide pharmacological of JNK
activity based on specific interaction with substrate
binding domain of JNK (Bonny et al. 2001, Barr et al.
2002). D-JNKI is a highly cell permeable, decoy
substrate, which potently and selectively inhibits all
JNK isoforms and has the potential to be used as a small
molecule drug.

In the initial dose response studies, animals were
sacrificed at 1 h after injection of LPS. This time point was
chosen for the harvesting of uterine and brain samples
because JNK is thought to be involved in the early signal
transduction pathways leading to labour onset and
neonatal brain injury, and previous work has shown that
cytokine levels in the mouse uterus and brain are elevated
within 1-8 h of LPS administration (Hirsch et al. 1995,
Elovitz et al. 2006). Accordingly, effective and clinically
relevant strategies for JNK inhibition should target the
early phase of inflammatory pathway induction. Once
the suitable dose of D-JNKI had been determined, the
effect of that dose at early (1 h) and later (6 h) times points
was confirmed (Fig. 1B). As D-JNKI prevents JNK/
substrate interactions but not JNK phosphorylation, we
then utilised an in vitro kinase assay, rather than a marker
of JNK phosphorylation (indirect JNK activation), to
monitor the inhibitory effects of D-JNKI in myometrium
and brain tissue lysates (Fig. 2A and B). Significant
inhibition of JNK activity by D-JNKI was also achieved
at both 1 and 6 h time points indicating that D-JNKI
possesses a rapid and direct blockage of INK/AP1 activity
that is sustained for at least 6 h in an in vivo model of
infection-induced preterm birth.

Consistent with our previous findings, S. abortus LPS
was shown to induce PTL onset 18-24 h post-treatment
with 70% pup mortality (Pirianov et al. 2009) (Fig. 3).
Co-injection of 5 pg of D-JNKI delayed preterm delivery
until 32 h post-injection and reduced pup mortality to
10%. Therefore, inhibition of JNK/AP1 by D-JNKI delays
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Figure 6 D-JNKI inhibits LPS-induced JNK/JNK3 and caspase-3
activation in the fetal brain. Pup brain extracts collected at 6 h
following injection with 1.0 pg of Salmonella abortus LPS alone, LPS
together with 5 pg of D-JNKI, or with 5 pg of D-JNKI alone were
analysed for (A) JNK/JNK3 and (B) cleaved caspase-3 activation. Data
represent the mean (+s.e.m.) of three animals at each data point. The
difference between LPS alone or together with D-JNKI was statistically
significant by ANOVA (**P<0.05).
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preterm delivery and improves pup mortality to a similar
extent as inhibition of NF-kB by the cyclo-pentenone
15d-PGJ2, when tested in the same mouse model of
preterm birth (Pirianov et al. 2009). There were no major
differences between the ability of D-JNKI or 15d-PGJ2 to
delay labour or improve pup outcome suggesting that a
strategy of directly targeting JNK rather than NF-kB will be
effective whether the inflammatory stimulus does or does
not activate NF-xB.

In addition to inhibition of inflammatory transcription
activation, we also showed that D-JNKI significantly
reduced mRNA and protein levels of various down-
stream pro-labour and pro-contractile mediators
including CCL2, CXCL1 and COX-2 when assessed at
6 h post-LPS injection (Fig. 4). Moreover, inhibition of
enzyme cPLA2, which catalyses the release of arachi-
donic acid from membrane phospholipids, was achieved
by D-JNKI at 1h compared with LPS-alone treated
animals. While the ERK1/2 (p44/p42) or p38 isoforms of
MAPK have historically been considered as the primary
kinases responsible for cPLA2 serine 505 phosphory-
lation (Leslie 1997, Ghosh et al. 2006), JNK has recently
been identified as the key mediator of cPLA2 serine 505
phosphorylation and subsequent translocation to the
membrane in human macrophages (Casas et al. 2009),
suggesting that these events are likely to be cell type and
activation stimuli dependent. In support of the latter,
we show that D-JNKI inhibits early phosphorylation of
cPLA2 at 1 h post-treatment but not at the later 6 h time
point. This raises the possibility that cPLA2 phosphoryl-
ation in the myometrium is modulated in a phasic
manner by multiple kinases.

The typical length of gestation in these animals is
18.5 days. We found that D-JNKI alone had a modest
impact on reducing gestation length. It did not, however,
have any effect on CCL-2, CXCL-1 or COX-2 expression.
This suggests that D-JNKI alone did not lead to early
changes in the inflammatory response. Why D-JNKl alone
caused slight preterm delivery is unclear, but, impor-
tantly, pup mortality rates were similar in the D-JNKI and
injected control group. D-JNKI does inhibit all three
isoforms of JNK and we cannot exclude the possibility that
one of these isoforms is involved in the regulation of
parturition at term. JNK has been shown to play a key role
in neonatal hypoxic—ischaemic brain injury (Dreskin
etal. 2001). While JNKT and JNK2 are widely expressed
in a range of tissues, expression of JNK3 is largely
confined to the brain and testis (Kyriakis et al. 1994). Gene
ablation studies have shown that JINK1/JNK2 are essential
for normal development while deletion of JNK3 results in
apparently normal animals (Kuan et al. 2003). However,
JNK3 knockout mice are resistant to excitotoxic injury
(Yang et al. 1997) and partially resistant to experimental
hypoxic—ischaemic brain injury (Kuan et al. 2003).
This resistance to hypoxic—ischaemic brain injury applies
to JNK3 knockout neonatal mice in which absence of
JNK3 significantly truncates hypoxic—ischaemic

www.reproduction-online.org

Specific inhibition of INK in preterm labour 275

induction of caspase-3 and the associated apoptosis
(Pirianov et al. 2007). Fetal LPS exposure via the
intrauterine route alone has been shown to cause a
reduction in oligodendrocyte or myelin markers without
macroscopic lesions being evident. However, fetal
LPS exposure via the intrauterine route sensitises the
brain to subsequent hypoxic—ischaemic brain injury. We
therefore hypothesised that JNK3 activation may be
unregulated in the brain following LPS exposure via the
intrauterine route. We found that S. abortus LPS leads to
the upregulation of overall INK activity in the brain. Using
an immunodepletion assay in which JNK1 and JNK2
are removed, we showed that LPS injection causes a
large increase in JNK3 activity, increasing its contribution
to total JNK activity to 50%. This is associated with
increased caspase-3 activity. Observed increases in both
JNK3 and caspase-3 activity in response to LPS were
significantly inhibited by D-JNKI (Fig. 6), suggesting that
this small molecule has a neuroprotective function.

In mouse models of infection/inflammation-induced
PTL, activation of JNK is a common final pathway leading
to parturition independent of the serotype of LPS used to
induce labour. Specific inhibition of JNK prolongs
pregnancy, improves neonatal pup death rates and
reduces the expression of inflammatory mediators within
the myometrium. LPS exposure of the fetus via the
intrauterine injection route activates JNK3 and caspase-3,
known mediators of neuronal cell death. This activation is
also inhibited by D-JNKI. The data that we present here
shows that inhibition of JNK improves immediate pup
survival rates and reduces JNK-3 neurotoxic activity in the
brain. Whether this will in fact lead to measurable
improvements in outcomes of PTL and neonatal cerebral
injury requires further investigation. However, a small
molecule inhibition of JNK represents an attractive anti-
inflammatory strategy in the management of PTL and
its associated neonatal cerebral injury.
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