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Abstract
An individual-based approach is used to describe population dynamics. Two kinds 
of models have been constructed with different distributions illustrating individual 
variability. In both models, the growth rate of an individual and its final body weight 
at the end of the growth period, which determines the number of offspring, are func-
tions of the amount of resources assimilated by an individual. In the model with a 
symmetric distribution, the half saturation constant in the Michaelis–Menten func-
tion describing the relationship between the growth of individuals and the amount 
of resources has a normal distribution. In the model with an asymmetric distribu-
tion, resources are not equally partitioned among individuals. The individual who 
acquired more resources in the past, will acquire more resources in the future. A sin-
gle population comprising identical individuals has a very short extinction time. If 
individuals differ in the amount of food assimilated, this time significantly increases 
irrespectively of the type of model describing population dynamics. Individuals 
of two populations of competing species use common resources. For larger differ-
ences in individual variability, the more variable species will have a longer extinc-
tion time and will exclude less variable species. Both populations can also coexist 
when their variabilities are equal or even when they are slightly different, in the lat-
ter case under the condition of high variability of both species. These conclusions 
have a deterministic nature in the case of the model with the asymmetric distribu-
tion—repeated simulations give the same results. In the case of the model with the 
symmetric distribution, these conclusions are of a statistical nature—if we repeat the 
simulation many times, then the more variable species will have a longer extinction 
time more frequently, but some results will happen (although less often) when the 
less variable species has a longer extinction time. Additionally, in the model with 
the asymmetric distribution, the result of competition will depend on the way of 
the introduction of variability into the model. If the higher variability is due to an 
increase in the proportion of individuals with a low assimilation of resources, it can 
produce a longer extinction time of the less variable species.
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1 Introduction

The competitive exclusion principle was an important and intensively discussed 
question in theoretical ecology of the sixties, seventies, and eighties. At that time 
classical Volterrian models in their original form describing the density dynamics 
of populations and communities (Volterra 1931) were in common use. In the case 
of two competing species, they show that both species can persistently coexist 
only in the situation when intraspecific competition is stronger than interspecific 
competition. In other cases, the density of one species reaches zero, while the 
density of the second species asymptotically approaches nonzero value. Param-
eter values of the excluded species indicate that it is more than other species vul-
nerable to interspecific competition. When both species are equal competitors, the 
initial densities decide who will win the interspecific competition (this species 
which initially had greater density).

In the classical form of Volterra model of the dynamics of two competing spe-
cies resources are not explicit. Competition depends on the terms proportional to 
the product of the densities of both competing species. Competitively excluded is 
the species with a higher absolute value of the coefficient preceding this product 
(both these terms are placed with negative signs in the model equations, as com-
petition reduces the growth rate of each competitor, although not equally).

The model of the population dynamics of two competing species proposed by 
Tilman (1977, 1982) is developed on a different basis. Resources are explicit in this 
model. Their dynamics is described by an additional equation. The two remaining 
equations describe, as earlier, the dynamics of the density of two competing species. 
Competition is for the same resources (this is the only form of information which 
these competitors have about one another), and the rate of increase in their densities 
is an increasing Michaelis–Menten function of the amount of resources. The winner 
of competition is the species with the lowest half saturation constant.

One can infer from this kind of models that the coexistence of species is pos-
sible only when the interspecific competition in relation to the intraspecific one is 
ecologically unimportant factor. However, Armstrong and McGehee (1976, 1980) 
argued that the above holds only for Volterrian model of competition in its original 
form which is a linear one. If we assume some nonlinear functions of densities on 
the right hand side of the model’s equation and additionally allow the densities to 
fluctuate, for instance, in the form of a limit cycle, then we obtain the coexistence of 
two (or even more (Zicarelli 1975)) competing species (Koch 1974; McGehee and 
Armstrong 1977). Abrams (1984) showed that temporal variation in resource assim-
ilation—especially when there is a strong negative correlation between the assimila-
tion rates of different species—promotes the coexistence of competing species. Pres-
ence of a predator can also positively influence competitors coexistence. Teramoto 
et al. (1979) and Messia et al. (1984) illustrated this with models in which a predator 
species exploits two prey species. The prey species are competitors. However, the 
predator species has the ability to switch on this prey which is more abundant. This 
mechanism enables the coexistence of the competitors. In the absence of the preda-
tor, the density of one of the competitor species reaches zero.
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When we are looking at the ecological literature of that time, especially interest-
ing from our point of view is the paper of Begon and Wall (1987). They have used 
the model of Hassell and Comins (1976) describing the dynamics of two competing 
species to answer the question whether species variability can facilitate competitors 
coexistence. Classical ecological models with population density as the state vari-
able are using parameters which are the average characteristics of interacting spe-
cies. That’s why it is not easy to introduce individual variability into them. One pos-
sibility is to apply so-called structured population models (Ebenman and Persson 
1988). Begon and Wall divided the total densities of both competing species into 
classes with different carrying capacities (intraspecific competition ability) and dif-
ferent interspecific competitive ability. When there is an individual variability in the 
parameters describing intra- and interspecific competition, both species coexist. This 
effect has been observed only for sufficiently high degree of variability to ensure 
that for the inferior competitors the class with the highest interspecific competition 
ability was superior than the class of lowest interspecific competition ability of the 
superior competitor. Without individual variability and parameter values equal to 
averages exclusion of inferior species was observed.

Later the ecological discussion on the dynamics of competing species has been 
shifted to solving different problems. Instead of considering how to secure the per-
sistence of identical or strongly interacting competitors, ecologists started to think 
how different should be the competing species to coexist (May 1973, 1981). Spe-
cies don’t compete for one resource. Let us assume that there are different kinds of 
resources and they can be described by some continuous variable. Each species has 
its own function of resource utilization in the form of Gaussian distribution. So-
called principle of limiting similarity (Abrams 1983) indicates the minimal distance 
between the maxima of these functions of different competitors which ensure their 
coexistence.

In the nineties, all these theoretical problems almost totally disappeared from the 
ecological literature and only recently Clark (2010) and Violle et al. (2012) recalled 
the problem of the coexistence of species and the role of intraspecific variability in 
the dynamics of competing species. Several models have appeared in the last decade. 
Lichstein et al. 2007 presented a stochastic model for two competing plant species: 
all adults are identical, they produce the same number of seeds, individual variabil-
ity exists only among juveniles, which differ in their competitive ability. There is no 
explicit space in the model. Proportion of places occupied by adults (equal to adult 
density) was calculated in the model. It was assumed that empty places are occupied 
by the best juvenile. When juveniles of both species have identical distributions of 
competitive ability, the competitive exclusion is random with probability 0.5. For 
different distributions of competitive ability, the conditions for exclusion of one spe-
cies and for coexistence of both species were formulated. The results of the model 
strongly depend on the density of competing juveniles. Another plant model was 
analyzed by Hart et al. (2016).They adopted the model originally developed by Bev-
erton and Holt (1957) for fish population dynamics. The model equations describe 
the dynamics of seed densities. Only the competition between seeds is assumed. 
The authors argue that contrary to common belief, the intraspecific variation can 
reduce the likelihood of competing species coexistence. It is due to the nonlinear 
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relationships between the dynamics of population and demographic rates included 
in the model and because of demographic stochasticity.

The opposite results were obtained by Menden-Deuer and Rowlett (2014) in the 
model for the dynamics of competing microorganisms. The model consists of differ-
ential equations for the dynamics of competing populations, but the rate of density 
increase for each population depends on the cumulative payoff of all individuals of 
this population playing a competitive game against other individuals of all species. 
The individual variability in strategies ensure the coexistence of competing species. 
As computer simulations show, this result is valid for communities consisting up 
to 100 species. Competitive exclusion was observed only in the case of very small 
populations. Feniova et al. (2013) used a numerical scheme with parameter values 
taken from laboratory experiments on the increase in numbers of Simocephalus vet-
ulus and Ceriodaphnia quadrangular clones, the traits of which differed. She proved 
that even the less competitive species could exclude the stronger competitor on the 
condition that the first occurred in the form of several different clones, and the sec-
ond only in the form of one nondiversified clone. Moreover, the authors indicate the 
effect of temperature on the expression of individual variation—it increases with 
increasing temperature.

The aim of this paper is an analysis of the effect of individual variability on the 
outcome of interspecific competition. Unlike in the models previously mentioned, 
this paper will consider a pure, relatively general individual-based model of two 
competing species describing growth and reproduction of individuals that differ in 
important traits with respect to the utilization of resources. Resource dynamics will 
be explicit in the model. Competition will be of global type and its outcome—une-
ven resource partitioning—will influence the rate of growth of individuals.

Individual variability is obvious for ecologists, but it is absent from classical 
mathematical models of ecological systems. We know quite a lot about the variation 
of body weight in even-aged populations of plants and animals (Uchmański 1985; 
Huston 1994). Frequency distributions of such weights are positively skewed, and 
their skewness increases with, for example, population density, or deteriorating food 
conditions. The cause of the positive skewness of weight distribution in even-aged 
populations is attributed to intraspecific competition. Individual body weight is a 
cumulative variable. Its value in the period of growth before the age of reproduction 
is an effect of the summation of the excess of energy intake from the environment 
over the general cost of life, which can be measured as the rate of respiration by an 
organism (Majkowski and Uchmański 1980). Competition means uneven resource 
partitioning among competitors (Łomnicki 1988). If this is food, then food assimi-
lation by different members of an even-aged population will differ. As a result, the 
body weights will have some distribution. The shape of this distribution, its posi-
tive skewness, is a result of another attribute of competition as expressed by the 
following statement: who acquired more food in the past, will acquire even more of 
it in the future (Uchmański 1987). Therefore, if we arrange individuals in even-aged 
population according to increasing body weight, then we will be able to assign a cer-
tain rate of food assimilation to each of them, and later to describe this assimilation 
as a function of body weight. It turns out that to get a positive skewness of the body 
weights in even-aged populations this function should be non-concave (thus linear 
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or convex), and dependent in a specific way on the amount of food available in the 
environment (Uchmański 1985; Uchmański and Dgebuadze 1990).

Individual variability defined in this way is important to the dynamics of a sin-
gle population. This problem was analyzed for the first time by Łomnicki (1978). 
However, he used the classical model of a single population, thus he did not refer to 
any pattern considering the traits of individuals and interactions among them known 
from experiments and observations. Individual-based models, directly incorporating 
the pattern of growth of individuals and resource partitioning among them as it was 
presented above, yield quite different properties of population dynamics from these 
which we know from classical models. General properties of population dynamics 
in such models were analyzed by Uchmański (2000a) and Grimm and Uchmański 
(2002), and the effect of different ways of resource partition on population dynamics 
by Uchmański (2000b).

The analysis of earlier papers dealing with interspecific competition presented 
above shows that when individual variability was included into the model, the dis-
tribution illustrating it was symmetric. However, the deeper ecological analysis 
of individual variability produced during interactions between individuals, as we 
can see from two above paragraphs, indicates that individual variability should be 
described rather by positively skewed distributions.

This is the reason why two versions of the model will be considered in this paper: 
with a symmetric distribution describing individual variability and with an asym-
metric one. The model with a symmetric distribution assuming random individual 
variability will be treated as null-model for the model with an asymmetric one. In 
this last case, it is assumed that individual variability is an effect of competition. The 
aim of the model with an asymmetric distribution is to extend the above presented 
scheme describing resource partitioning resulting from intraspecific competition 
between individuals, which so far was used to develop models of single populations, 
to a two-species case, and to examine the significance of this type of individual vari-
ability to the results of interspecific competition.

2  Random Individual Variability

2.1  A Single Population

The model describes the population dynamics of animals with nonoverlapping gen-
erations and the dynamics of resources available to them. The lifecycle of individu-
als starts at the beginning of the season. They grow over the season and reproduce 
at the end of the season, then they die. Juveniles overwinter and start growing at the 
beginning of the next season. The individuals represent a parthenogenetic species.

The growth rate of an individual is assessed as the difference between the rate of 
resource assimilation and the rate with which these assimilated resources are used 
for living costs. The rate of resource assimilation A and living costs as measured by 
the rate of respiration R are power functions of body weight w (Duncan and Kle-
kowski 1975):
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where a1, a2, b1 and  b2 are parameters. This gives the following equation of indi-
vidual growth (Majkowski and Uchmański 1980):

The rate of assimilation depends on the amount of available food resources. Let 
us describe this relationship in the same way as Tilman (1977, 1982) did it, by using 
the Michaelis–Menten curve applied for filtering organisms (Murray 1989):

where V is the amount of resources available in the environment, H is the half satu-
ration constant, that is, the amount of resources at which the rate of their assimila-
tion reaches half of the maximum value and a1,max is the maximal value of parameter 
a1 reached when V = ∞.

The greatest weight wmax (at successive time steps of the simulation and at the end 
of growth) has a hypothetical individual who is growing under conditions V = ∞:

The maximum final weight wmax
end of an individual, asymptotically reached when 

assimilation is equal to respiration, for the growth described by Eq. (5) is

An individual growing under condition when V < ∞, after the end of growth will 
reach the weight wend < wmax

end. The number of juveniles produced by an individual 
after the end of growth is proportional to the difference between its final weight and 
some threshold weight:

where c is the parameter describing the intensity of juvenile production, and wfak 
(0 < wfak < 1) says what part of the maximum end weight wmax

end given by Eq. (6) is 
the threshold weight which allows the calculation of juvenile production by an indi-
vidual. Individuals with body weights lower than or equal to the threshold weight die 
before producing progeny. The function round rounds a real number to the nearest 
integer, as the number of juveniles can be only a natural number. The initial weights 
of juveniles of each individual are drawn from the normal distribution with a mean 
value w0, mean and variance w0,variance, but only from the interval [w0,min, w0,max].

The number of individuals in the population Nt+1 at time step t + 1 conforms to 
the following equation

(1)A = a1w
b1

(2)R = a2w
b2

(3)dw∕dt = a1w
b1 − a2w

b2

(4)a1 = a1,maxV∕(H + V)

(5)dwmax∕dt = a1,maxw
b1
max − a2w

b2
max

(6)wend
max

=
(

a1,max∕a2
)1∕ (b2−b1)

(7)z =

{

round (c(wend − wfakw
end
max

) for wend > wfakw
end
max

0 for wend ≤ wfakw
end
max

}
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where the summation is done over all individuals present in the population at time 
step t. This was combined with the equation describing the resource dynamics

where Vt+1 and Vt are resources in two subsequent time steps, Ai is the resource 
assimilation by the i-th individual and g is the constant amount of resources added 
at each time step. This assumption made here for the sake of simplicity means that 
resources not consumed by individuals in the population will linearly increase. In 
Eq. (9) the summation is also over all individuals present in the population at time 
step t.

At the initial time instant, the population consisted of N0 individuals, and they 
had Vo available resources. Their initial weights are taken from the normal distribu-
tion with the properties noted above. The basic simulation step was that used for the 
calculation of the number of individuals in the population of successive generations. 
However, within each generation, the equations describing the growth of individuals 
and the resource equation were solved by using the Euler method in 80 smaller time 
steps. This number of smaller steps allowed a good enough fitting of the numeri-
cal solutions to the analytical solutions of the growth Eq. (5) for an individual with 
the maximum weight. Weight increases at each smaller time step were calculated in 
the model with reference to the actual amount of resources available to individuals. 
After the end of growth, the number of juveniles for each individual was calculated, 
their initial weights were assessed, and the amount of food was calculated with 
respect to its utilization and supplementation. This allowed for the same calculations 
at successive time steps. The simulation was stopped when Nt+1 = 0 or Vt+1 < 0.

In an even-aged population, individuals differ in the values of the parameter H. 
For each individual, it is drawn from a normal distribution with a mean value Hmean 
and variance Hvariance. To avoid meaningless values of this parameter, it is assumed 
that the drawn values of H should fulfill the condition

where Hmin and Hmax are parameters. At a constant level of resources V, the indi-
vidual with a lover value of the parameter H will have a higher rate of consumption, 
attain a greater final weight, and produce more juveniles.

2.2  Two Competing Species

Individuals of different species “feel” their presence as they use the common food 
supply. The equation describing resource dynamics is of the form

where the first sum is the joint total assimilation by individuals of species 1 and the 
second of species 2.

(8)N
t+1

= Σzi

(9)Vt+1 = Vt − ΣAi + g

(10)Hmin ≤ H ≤ Hmax

(11)Vt+1 = Vt − ΣA1

i
− ΣA2

i
+ g
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In the simulations, all parameters describing different species were the same, 
except for those describing individual variability in the values of parameter H 
(Table 1). However, the mean, the highest and lowest values of this parameter were 
the same for both species (Hmean

1 = Hmean
2, Hmax

1 = Hmax
2, Hmin

1 = Hmin
2). The differ-

ence in individual variation between the species means that these species differed 
in the variances of the distributions from which the values of the parameter H were 
drawn (Hvariance

1 ≠ Hvariance
2).

2.3  Results

2.3.1  A Single Population. Identical Individuals

In a population comprising identical individuals, each of them will grow in the same 
way. As the initial weights of individuals were drawn from a normal distribution, 
thus at very early growth stages, their growth curves only slightly differed from each 
other, and these differences soon disappeared, so that at the end of growth all indi-
viduals had the same final weight (Fig. 1A). First, this happens because such is the 
nature of the balanced growth equation (Eq. 3) used in this model (Majkowski and 
Uchmański 1980), but first of all, because each individual responds in the same way 
to the amount of resources actually available in the environment.

Table 1  Standard values of the model parameters used in the simulation of competition between two spe-
cies

Indexes indicating species number are not shown with parameter symbols, as they differ only in the val-
ues of Hvariance. For Hvariance only the range of its variance is shown, as the simulation outcomes are pre-
sented for different values of this parameter

Parameter Value

Growth equation parameters a1,max 0.11
– a2 0.03
– b1 0.7
– b2 0.9
Parameters of initial weight distribution w0,min 14
– w0,max 26
– w0,mean 20
– w0,variance 5
Parameters of half saturation constant distribution Hmean 500·103

– Hvariance 50 × 103 to 700 × 103

– Hmin 100 × 103

– Hmax 1000 × 103

Threshold for reproduction wfak 0.65
Initial number N0 5
Initial resources V0 6 × 106

Increase of resources g 2 × 106
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Population dynamics of identical individuals is very simple (Fig.  2). It starts 
with a low number of individuals and a relatively high resource level. In this situ-
ation, each individual can produce more than one juvenile, and the population size 
increases in successive time steps. However, the resources which are exploited by 
increasing number of individuals start shrinking. Thus, the production of juveniles 
is declining. At a certain time step, it equals one, and this is the case of all individu-
als in the population, as they are identical, and juvenile production can be expressed 
only as natural numbers and zero. With a further decline in the amount of resources, 
juvenile production drops to zero, and no individual can produce juveniles. The pop-
ulation goes extinct. This pattern of population dynamics will hold, with only small 
differences in the time of extinction, for different values of the model parameters.

2.3.2  A single Population. Variable Individuals

Figure 3 illustrates the frequency distributions of the half saturation constant H from 
Eq. (4). These values were drawn from a double-sided truncated normal distribution. 
For low values of the variance, the variation of H is low, it increases with increasing 

Fig. 1  Growth curves of individuals [according to Eqs. (3) and (4)] in the constant resource condi-
tion V = 6 × 106. A Growth of individuals with various initial weights, but with the same value of 
H = 500 × 103. Empty squares—w0 = 26, filled triangles—w0 = 20, empty circles—w0 = 14. B Differences 
in the initial body weights are maintained, but individuals differ in the value of H. Empty squares—
H = 100 × 103, filled triangles—H = 500 × 103, empty triangles—H = 1000 × 103.. The highest curve (filled 
quadrates) illustrates the growth of the heaviest possible individual growing in the condition when V = ∞ 
[Eq. (5)]
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variance, and for its high values H is almost evenly distributed within the acceptable 
range. The population consists now of variable individuals with lower and higher 
values of the parameter H. For a constant level of resources, an individual with a 
low value of this parameter will be characterized by a higher assimilation, and con-
sequently, by a greater body weight and juvenile production than an individual with 
higher values of these variables (see Fig. 1B).

Now, in a longer time perspective, the population dynamics will be signifi-
cantly different from the dynamics of a population made up of identical individu-
als, although the initial phases will be similar (Fig.  4). After the first maximum, 
the population size and resource level start declining. However, now the population 
does not go extinct after reaching the minimum numbers. This is so because in the 
population comprising variable individuals also at a low resource level there will be 
at least one individual with a correspondingly low value of the parameter H whose 
weight will be sufficient for the production of at least one juvenile. As the number of 
individuals is low, then resources are exploited at a low rate and, constantly supple-
mented, they start increasing. This is followed by an increase in the population size, 
and the cycle is repeated. In this way, the population can go through several cycles 

Fig. 2  Number dynamics of a population composed of identical individuals. Standard parameter values. 
In simulations of the dynamics of a single population, the initial numbers were twice as high (N0 = 10) as 
in simulations of the competition between two species (see Table 1) to obtain similar initial conditions. 
All individuals have the same value of the parameter H = 500 × 103. A Dynamics of resources used by 
individuals of the population. The values on the vertical axis should be multiplied by  104 to obtain the 
values occurring in the simulations. B Population dynamics. The population goes extinct at time step 11
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of growth and decline. However, sooner or later, it may happen that in the phase of a 
low number of individuals and low resource level there will be no individual with a 
correspondingly low value of the parameter H for juvenile production, and the popu-
lation will go extinct.

The time when this occurs will be much longer than for the population compris-
ing identical individuals. Figure 5 shows the frequency distributions of the extinc-
tion times of a population for different values of Hvariance, based on 1000 repeated 
simulation runs. Increasing individual variation accounts for an increased extinction 
time. At low individual variation, extinction times are similar to those for popula-
tions of identical individuals. When individual variation was increasing, the times to 
population extinction were increasing and approached several hundred time steps for 
high values of Hvariance. However, the distributions of the extinction times were posi-
tively skewed all time, with a predominance of the relatively shortest times.

2.3.3  Two Competing Species

Let us begin with the number dynamics of two competing species characterized 
by identical but large variances Hvariance

1 = Hvariance
2. Frequency distributions of 

Fig. 3  Distributions of the values of H parameter for different Hvariance values of the truncated normal 
distribution: A Hvariance = 50 × 103, B Hvariance = 100 × 103, C Hvariance = 200 × 103, D Hvariance = 300 × 103, 
E Hvariance = 400 × 103, F Hvariance = 500 × 103, G Hvariance = 600 × 103, H Hvariance = 700 × 103. The mean 
of the normal distribution Hmean, from which H values were drawn equals 500 × 103. The drawn values of 
H cannot be lower than Hmin = 100 × 103 and higher than Hmax = 1000 × 103
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the extinction times of each of them are shown in Fig. 6. They are similar. The 
paired two-sample Wilcoxson test indicates that the mean values of these distri-
butions are not statistically different. Thus, we cannot say that one of them has 
a longer extinction time. Figure  7 illustrates the pairwise comparison (extinc-
tion time of population 1—extinction time of population 2). Situations when 
both populations go extinct simultaneously are relatively rare. Most often one of 
these populations goes extinct earlier. It is important, however, that this happens 
equally often for each of them. 

Similar outcomes are when Hvariance
1 = Hvariance

2 but for low values of the vari-
ance. Figure 8 shows the distributions of extinction times of both populations. The 
Wilcoxson test shows no significant differences in their mean values. Pairwise com-
parison of extinction times (Fig. 9) is also symmetric about the diagonal. The only 
difference is that now the extinction times are shorter. This, however, agrees with 
what we already know about properties of the dynamics of a single population com-
posed of variable individuals.

A different situation emerges when Hvariance
1 ≠ Hvariance

2. Figure  10 shows the 
distributions of extinction times in the case of a large difference in the variances 
between the two species. The more variable population has longer extinction times. 
The Wilcoxson test shows significant differences in their mean values, and the 
pairwise comparison of extinction times is clearly asymmetric about the diagonal 

Fig. 4  Dynamics of a population composed of variable individuals. Standard parameter values, N0 = 10 
and Hvariance = 300 × 103. A Dynamics of resources used by individuals in the population. Numbers on 
the vertical axis should be multiplied by  104. B Population dynamics. The population goes extinct at time 
step 153
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in favor of the species with greater individual variability (Fig. 11). The extinction 
times of the latter can be very long compared to those of its competitor.

We obtain the same results when Hvariance
1 ≠ Hvariance

2 but the difference in vari-
ances is smaller than previously. Mean values of the distributions of extinction 
times are significantly different (Fig. 12), and the pairwise comparison of extinction 
times is asymmetric about the diagonal as Fig. 13 shows, with a dominance of the 
extinction times of species whose individuals are more variable. The only difference 
compared with the preceding case is that the extinction times of both populations 
are much shorter. Moreover the differences in the extinction times between pairs of 
competing species are smaller.

Figure  14 shows all possible results characterizing the population dynamics of 
two competing species differing in individual variability. Across the full range of 
Hvariance

1 and Hvariance
2 values presented in the graph, if only Hvariance

1 = Hvariance
2, 

the competing populations coexisted in the sense presented in Figs.  7 and 9: the 
distributions of their extinction times did not differ, and after multiple replications 
of simulation runs, population 1 went extinct the same number of times as did popu-
lation 2. Figure  5 shows that for a large individual variability, population extinc-
tion times become very long (population persistence is very high). For this reason, 
two competing populations with high individual variation (upper- right corner in 
Fig. 14) can coexist (in the above meaning of this term) even when they differ in the 

Fig. 5  Distributions of the population extinction times for different Hvariance. Other parameters have 
standard values. Results of 1000 repeat simulation runs. A Hvariance = 50 × 103. B Hvariance = 100 × 103, 
C Hvariance = 200 × 103, D Hvariance = 300 × 103, E Hvariance = 400 × 103, F Hvariance = 500 × 103, G 
Hvariance = 600 × 103, H Hvariance = 700 × 103
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Fig. 6  Distributions of the population extinction times for two competing species with equal and large 
variations Hvariance

1 = Hvariance
2 = 650 × 103. The other parameters have standard values. The results of 

1000 repeat simulation runs. A Species 2, B species 1

Fig. 7  Pairwise comparison of the extinction times for competing species. The species have equal but 
large variances: Hvariance

1 = Hvariance
2 = 650 × 103. The other parameters have standard values. The results 

of 1000 repeat simulation runs
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Fig. 8  Distributions of the population extinction times for two competing species with equal but small 
variances Hvariance

1 = Hvariance
2 = 150 × 103. The other parameters have standard values. The results of 

1000 repeat simulation runs. A Species 2, B species 1

Fig. 9  Pairwise comparison of population extinction times for competing species. The species have equal 
but small variances: Hvariance

1 = Hvariance
2 = 150 × 103. The other parameters have standard values. The 

results of 1000 repeat simulation runs
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Fig. 10  Distributions of population extinction times for two competing species with different and large 
variances Hvariance

1 = 650 × 103 and Hvariance
2 = 150 × 103. The other parameters have standard values. The 

results of 1000 repeat simulation runs. A Species 2, B species 1

Fig. 11  Pairwise comparison of population extinction times for competing species. The species have 
different but large variances: Hvariance

1 = 650 × 103 and Hvariance
2 = 150 × 103. The other parameters have 

standard values. The results of 1000 repeat simulation runs
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Fig. 12  Distributions of extinction times of the populations of two competing species with different and 
small variances: Hvariance

1 = 200 × 103 and Hvariance
2 = 150 × 103. The other parameters have standard val-

ues. The results of 1000 repeat simulation runs. A Species 2, B species 1

Fig. 13  Pairwise comparison of population extinction times for competing species. The species have 
different but small variances: Hvariance

1 = 200 × 103 and Hvariance
2 = 150 × 103. The other parameters have 

standard values. The results of 1000 repeat simulation runs
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values of Hvariance
1 and Hvariance

2, although these differences should not be too large. 
If they are too large, the population composed of more variable individuals (lower-
right and upper-left corners in Fig. 14) will have much more often longer extinction 
times. However, when individuals of both populations are characterized by small 
individual variability (lower-left corner in Fig. 14), even a small deviation from the 
equality of variances Hvariance

1 and Hvariance
2 causes that the population with more 

variable individuals wins the competition.

3  Individual Variability as an Effect of Intraspecific Competition

3.1  Model of the Dynamics of a Single Population

The algorithm described earlier in Sect. 2 was used here with the same power func-
tions describing the assimilation [Eq.  (1)], respiration [Eq.  (2)], and the growth 
equation [Eq.  (3)] of an individual. However, different functions were used to 
describe dependence of food assimilation of an individual on food availability and 
resource partitioning among competing individuals.

As earlier, the rate of assimilation depends on the amount of food available. The 
rate of assimilation A of a single individual isolated from interactions with other 
individuals of the same species, as a function of the amount of food V can be 
described by the equation proposed by Ivlev (1961):

Fig. 14  Population dynamics of two competing species presented in the parameter space Hvariance
1 and 

Hvariance
2. The other parameters have standard values. The numbers on the two axes should be multiplied 

by  103 to obtain the real values of the two variances. Gray circles—the two species coexist—the popula-
tion of species 1 goes extinct first with the same frequency as the population of species 2. Gray left-half 
of the circle—species 1 is the winner of the competition, the population of species 1 has a longer extinc-
tion time more often than the population of species 2. Gray right-half of the circle—species 2 is the 
winner of the competition, the population of species 2 has a longer extinction time more often than the 
population of species 1
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where a1,max, as earlier, is the maximal value of parameter a1 reached when V = ∞ 
and s is constant parameters describing the rate of reaching this maximal value.

However, if individuals feed together, they may compete for food. We assume 
that this is a global competition. Each individual competes with all other individuals 
in the population by using the common food supply. This leads to uneven food par-
titioning among competitors. If individuals often compete, then the individual who 
acquired more resources in the past, will acquire more of them also in the future. 
A good measure of the amount of resources acquired by an individual in the past, 
accounting also for the energy costs of resource acquirement, is its actual weight. 
For this reason, the rate of assimilation of an individual in the case of a group of 
competing individuals is described by Eq. (12) with additionally added dependence 
on the actual body weight of the individual according to the scheme below.

At each simulation step, individuals with the lowest weight wmin and the high-
est weight wmax are identified. The rate of assimilation by the lightest individual is 
described as

and that of the heaviest individual as

The assimilation rates of individuals with intermediate weights are calculated 
by using linear interpolation between the values from Eq.  (13) for wmin and from 
Eq.  (14) for wmax (Fig.  15A). As it was stressed in the Sect.  1 the analysis of the 
weight distributions of growing and at the same time competing individuals shows 
(Uchmański 1985; Uchmański and Dgebuadze 1990) that to obtain positively 
skewed distributions, a linear or convex function should be used for the interpola-
tion. The simpler linear case has been chosen in the present model.

Between the values of constant parameters smin and smax of Eqs. (13) and (14), 
there is an inequality

When smin = smax, individuals in even-aged population are equal. Assimilation of 
each individual depends in the same way on V. When smin < smax, individuals differ in 
the rate of assimilation. The degree of these differences increases with the increas-
ing difference between smin and smax or decreasing V. However, the differences disap-
pear for V → ∞ (Fig. 15A). The heaviest individual at each time step (wmax) and at 
the end of growth (wmax

end) was a hypothetic individual growing under conditions 
V = ∞..

Let the number of individuals in the population be N0 at the initial time step. The 
initial weights of individuals are derived from the normal distribution with the mean 
value w0,mean and variance w0,variance. They values are confined to the interval [w0,min, 
w0,max] located symmetrically around w0,mean. At each time step, the lowest and the 

(12)A = a1,max(1−e
−sV )wb1

(13)A = a1,max(1 − e−sminV )w
b1
min

(14)A = a1,max(1 − e−smaxV )w
b1
max

(15)smin ≤ smax
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highest weights of individuals in the population are identified. This makes it pos-
sible to calculate the assimilation of each individual from the population with 
respect to its actual weight and to the actual growth conditions. A growth curve 
can be assigned to each individual. When summed for a generation of even-aged 
competing individuals, the growth curves form a characteristic “fan” (Fig. 15B and 
C): differences in body weights between individuals increase with time, and their 
magnitude depends on growth conditions. The weight distribution at the beginning 
of the generation is symmetric. However, at the end of the generation it becomes 
positively skewed. All of this properly simulate the results of many experiments 

Fig. 15  Resource partitioning among competing individuals and their growth in relation to the amount 
of food. A Illustrates how the value of parameter a1 was calculated for individuals that differed in the 
actual body weight. wmin and wmax are the lowest and the highest weights of an individual in the current 
population. Sections of straight lines represent linear approximations applied for calculating the values of 
parameter a1 for individuals with body weights greater than wmin and smaller than wmax at different food 
resources V. (1)—food amount V = ∞. Values of the parameter a1 are the same for all individuals in the 
population and equal to the maximum value amax. Successive lines (2, 3, and 4) illustrate the values of a1 
at declining food amounts V. It can be seen that differences among individuals in food consumption are 
increasing with declining V. However, the decline in food supply triggers a considerably greater decline 
in assimilation by individuals with lower body weights than with higher weights. B, C Growth curves 
of individuals obtained by applying the method presented above for calculating the assimilation rates of 
competitors. The results of growth simulation are shown for several chosen individuals at a constant food 
supply V (B V = 6 × 106, C V = 4 × 106). It can be seen that differences in body weights increased with age 
and they were greater at lower levels of food supply. Horizontal dashed line shows the threshold value of 
the weight wfak wmax

end. Individuals with the final weight higher than the threshold weight will reproduce



611

1 3

Can a More Variable Species Win Interspecific Competition?  

and observations of the growth of competing individuals in even-aged populations 
(Uchmański 1985).

As earlier in the model with random individual variability, the number of progeny 
produced by an individual after the end of growth is proportional to the difference 
between the adult individual weight (wend) and a threshold weight (wfak wmax

end) [see 
Eq. (7)]. The initial juvenile weights of each individual are taken from the normal dis-
tribution with a mean w0, mean and variance w0,variance, and as earlier their values should 
be in the range [w0,min,w0,max].

The model describes the dynamics of a population with nonoverlapping generations. 
Adult individuals die after giving birth, and their progeny form the next generation, 
the individuals of which grow and reproduce according to the scheme above. The rela-
tionship between the numbers of individuals in two subsequent generations is given by 
Eq. (8).

At the initial time instant, individuals had an amount V0 of food available. It is 
assimilated at a rate equal to the sum of the assimilation rates of all individuals, and it 
regenerats at a constant rate g [see Eq. (9)].

Two categories of time steps were used in this model in the same way as they have 
been applied in the previous model. The basic simulation step was used for the calcula-
tion of the number of individuals in the population of successive generations. Within 
each generation, 80 smaller time steps were used for calculating the body weights of 
individuals, the amount of food in the environment, and the values of all variables 
needed to calculate assimilation by individuals, thus, for example, the lowest body 
weight wmin and the highest body weight wmax of individuals at a given small time step 
within the generation.

3.2  Two Competing Species

In the model of competition between two species, the above scheme describing the 
dynamics of a single population is doubled. As the effect of individual variability on 
the outcome of competition was analyzed, then the values of all parameters of species 
1 and 2 were the same, except for those influencing individual variability. Thus, the 
species differed in the values of parameters smin and smax. For species 1, this was the set 
smin

1 and smax
1, and for species 2 smin

2 and smax
2. Table 2 shows the values of the model 

parameters used in the simulations.
It is assumed that there are no direct interactions that occur between individuals of 

different species. Intraspecific competition will lead to the differentiation of individu-
als within each species according to the scheme presented above. Individuals of differ-
ent species “feel”, however, their presence because they use the common food supply. 
Thus, the presence of a competitor influences only the food conditions under which 
individuals grow. The Eq. (11) describing the dynamics of resources was used in this 
model.
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3.3  Results

3.3.1  Dynamics of a Single Population

A single population comprising nonvariable individuals (smin = smax)) has a charac-
teristic and simple dynamics already analyzed many times (Uchmański 1999, 2000a, 
b; Grimm and Uchmański 2002) and very similar to the dynamics of nonvariable 
individuals from Sect. 2. In short, after an initially exponential increase and reaching 
maximum, the population goes extinct. This pattern of population dynamics does 
not depend on the initial number of individuals, the initial food supply in the envi-
ronment, nor on the values of the other parameters of the model. It is only impor-
tant that the individuals be identical, grow identical, attain the same weight at the 
end of growth, and, as a result, produce the same number of juveniles. Population 
dynamics for different values of the model’s parameters will differ only in the time 
of extinction, but typically it will be short, of the order of several or several dozen 
generations. Repeated simulations with the same values of parameters will lead to 
the dynamics with the same time of extinction.

A single population comprising variable individuals (smin < smax), like previously, has 
much more complex dynamics. After the first maximum, the number of individuals 
in the population will be decreasing with declining food supply in the environment. 
However, it will not go extinct after the first minimum, as when the variability of indi-
viduals is large enough even at a low level of food, there will be a chance that a suffi-
ciently good individual will be present in the population to produce progeny under such 

Table 2  Standard values of the model parameters used in the simulation of competition between two spe-
cies

Indexes of the species are not shown with parameter symbols, as they differ only in the values of smin and 
smax. For smin and smax the range of their values is shown, as the results of simulations will be presented 
for different values of this parameter

Parameter Value

Growth equation parameters a1,max 0.11
– a2 0.03
– b1 0.7
– b2 0.9
Parameters of initial weight distribution w0,min 14
– w0,max 26
– w0,mean 20
– w0,variance 5
Parameters of resource partitioning function smin 10 × 10–8 to 60 × 10–8

– smax 40 × 10–8–130 × 10–8

Threshold for reproduction wfak 0.65
Initial number N0 5
Initial resources V0 6 × 106

Increase of resources g 2 × 106
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conditions. And when the number of individuals is low, food will be exploited at a low 
rate, so it will start growing. This pattern will be followed by the population growth up 
to the next maximum, followed by the next minimum. The population may go through 
many such cycles, but sooner or later, no individual capable of reproduction will be 
present at the minimum value. Then also the population of variable individuals will die 
(Fig. 16). However, the time of population extinction will be much longer than in the 
case of nonvariable individuals.

As population extinction at the minimum number is a random event, then repeated 
simulation runs with the same parameter values will yield dynamics with different 
extinction times. The distributions of extinction times for various degrees of individual 
variability (measured as the difference between smin and smax) are shown in Fig. 17. The 
proportion of long extinction times clearly increases with increasing individual varia-
bility. And it does not matter in which way the increase in the difference smin and smax is 
realized: whether smin is constant and smax increases, or vice versa, or in any other way.

3.3.2  Two Competing Species: smin
1 ≠ smin

2

In the model presented here, two competing species may differ in individual vari-
ability in several ways. In this paper, two of them are chosen. In the first case, both 
species have the same value of the parameter smax (smax

1 = smax
2), and they differ in 

Fig. 16  Dynamics of a single population (B) and resources (A). Individuals differ from each other. 
Standard values of parameters are used: smin = 36 × 10–8, smax = 100 × 10–8. The population goes extinct at 
time step 75. Numbers on the vertical line of A should be multiplied by  104 to get the values occurring in 
simulations
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the parameters smin (smin
1 ≠ smin

2) (Fig. 18A). In the second case, the opposite is true: 
smin

1 = smin
2 and smax

1 ≠ smax
2 (Fig. 18B).

Let consider the first case. Summary of different types of dynamics of two com-
peting species in the parameter space smin

1 and smin
2 illustrates Fig. 19 If both spe-

cies are characterized by the same degree of individual variability smin
1 = smin

2, they 
will coexist and die simultaneously. For small but the same values of smin

1 and smin
2, 

what in the case of both these species gives large individual variability, the times of 
extinction are long, exceeding the maximum value set for simulation, that is, 1000 
time steps. For larger but also the same values of smin

1 and smin
2, the extinction times 

are shorter but as in the previous case identical for both species (Figs. 20 and 21).
However, not only the species with the same individual variability may coexist. 

Also the species that differ in variability have this ability, but under condition that 
the differences in individual variability are not too large In the lower left part of 
Fig. 19 there is a quite large area where both species coexist, and the extinction time 
of each of them exceeds 1000 time steps. In this area, smin

1 and smin
2 have low values, 

which means that both have high individual variability. And this, as we remember 
from the analysis of the properties of a single population, coincides with a high per-
sistence of each of them. The area of the parameter space where this occurs is in fact 
the only one where we have to do with a real long-term coexistence of both species.

Fig. 17  Frequency distributions of extinction times of a single population composed of variable indi-
viduals. Results of 1000 runs of simulations with standard values of the parameters. smax = 100 × 10–8. A 
smin = 33 × 10–8, B smin = 36 × 10–8, C smin = 40 × 10–8, D smin = 50 × 10–8. The proportion of long extinction 
times of the population declines with increasing value of smin
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Another such area is in the upper right corner in Fig. 19. However, such popu-
lations have short extinction times now. If the differences in individual variability 
between these two species are not too large, then under conditions of a low food 
level, they are in a similar situation relatively fast and in the same time step in both 
populations there are no individuals capable of producing juveniles. Both go extinct 
at the same, typically short time (Fig. 22 and 23).

Populations of both species coexist and go extinct simultaneously, but again in a 
short or very short time when the variability of one species is large, and that of the 
second species is low [lower right corner and upper left corner (Fig. 19)]. Large var-
iability of the species, which is generated by reducing the value of smin, means that 
differences in the amount of food assimilated by individuals will increase, but this 
increase is due to an increase in the proportion of individuals with low assimilation 
and low increases in body weight. Therefore, the proportion of individuals that die 
before producing offspring increases, and consequently, the population comprising 
more variable individuals has a low number of individuals. Thus, at the minimum 
level of population size that they both attain simultaneously, we have similar indi-
viduals in one of them, as it is little variable, and in the other population, potentially 

Fig. 18  Two competing species. Illustration of the differences in food partitioning among individuals of 
each population, leading to individual variability in growth rate, weight attained, and number of juveniles 
produced. This is a replica of the lines from Fig. 15A for each species separately. A The first way of indi-
vidual variability smax

1 = smax
2 and smin

1 ≠ smin
2. The species with a lower value of smin is more variable. B 

The second way of individual variability: smin
1 = smin

2 and smax
1 ≠ smax

2. The species with a higher value of 
smax is more variable. Arrows indicate the ways in which greater individual variability in resource assimi-
lation by individuals of a species were incorporated into the model
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more variable individuals that can reproduce have no chance to appear since their 
proportion is low. Consequently, both populations go extinct at the same short time.

However, if the variability of one population remains at the same high level, and 
the variability of the second population, which was little variable earlier, slightly 
increases, then a new pattern of the dynamics of the two-species system emerges. In 
the parameter space shown in Fig. 19, at the central parts of both axes there are areas 
where, contrary to our intuition, more variable species will be excluded (Figs. 24 
and 25). Let us compare these areas of the parameter space with those analyzed in 
the preceding paragraph. The more variable species continues to be in the same situ-
ation. At low numbers, its chance for the realization of potential possibilities result-
ing from high variability is small. However, the species, which was little variable 
earlier, now enjoys a higher individual variability at still sufficiently high numbers 
to take advantage of this chance. That is why the population of the more variable 
species becomes extinct, and the population of the less variable species survives for 
a longer time.

If leaving this area, we would continue to increase the variability of the less 
variable species, then through a narrow boundary area in which the population of 
the more variable species continues to go extinct earlier, and the time of extinc-
tion of the less variable species exceeds 1000 time steps, we would enter the earlier 
described area of permanent coexistence of both these species, where their extinc-
tion times exceed 1000 time steps.

Fig. 19  Properties of the dynamics of the system of two competing species in the parameter space smin
1 

and smin
2. The species have the same values smax

1 = smax
2 = 100 × 10–8 but they differ in smin

1 and smin
2. The 

other parameters have standard values. Numbers on the axes should be multiplied by  10–8 to obtain the 
parameter values used in simulations. Full-black circles—populations of both species coexist for more 
than 1000 time steps. Full-gray circles—the two species go extinct simultaneously, but the extinction 
times are shorter than 1000 time steps. Left half-black circles—species 1 persists longer than 1000 time 
steps, species 2 goes extinct earlier. Left half-gray circles—species 2 goes extinct earlier, species 1 per-
sists longer, but its extinction time is shorter than 1000 time steps. Right half-black circles—species 2 
persists longer than 1000 time steps, species 1 goes extinct earlier. Right half-gray circles—species 1 
goes extinct earlier, species 2 persists longer, but its extinction time is shorter than 1000 time steps
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3.3.3  Two Competing Species: smax
1 ≠ smax

2

Let’s consider now the second case of individual variability when smin
1 = smin

2 and 
smax

1 ≠ smax
2 (Fig. 18B). An overall set of different types of population dynamics of 

two competing species in the parameter space smax
1 and smax

2 is illustrated in Fig. 26. 
If two species have the same individual variability, smax

1 = smax
2, then both these pop-

ulations become extinct simultaneously. For small values of smax
1 and smax

2, when 
the individual variability of the two species is low, although the same, the extinction 
times are short. With increasing values of smax

1 and smax
2, the extinction times of the 

two species will be increasing, and for large values of smax
1 and smax

2, both popula-
tions will exist longer than the maximum simulation time, that is, 1000 time steps. 
In the upper-right corner of Fig. 26, there is an area indicating that the two popu-
lations can exist longer than 1000 time steps not only when smax

1 = smax
2 but also 

when the values of these parameters differ, although slightly. For other ranges of the 
values of smax

1 and smax
2, such areas do not exist. The two populations can go extinct 

simultaneously only on the condition that smax
1 = smax

2.
At all other points of the parameter space where smax

1 ≠ smax
2 most results of 

repeated simulations show that one species goes extinct earlier than the other species 

Fig. 20  Dynamics of two competing species (B) and resources (A). Standard values of param-
eters (Table  2). smax

1 = smax
2 = 100 × 10–8. Both species have the same individual variability: 

smin
1 = smin

2 = 36 × 10–8. Note the synchronization of the dynamics of both populations and similar num-
bers of individuals. Numbers on the vertical line in A should be multiplied by  104 to obtain the values 
occurring in simulations
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and this is the less variable species which goes extinct earlier. At points located 
below the diagonal in Fig. 26 this will be species 2, while above the diagonal—spe-
cies 1. At the points located along the right edge of Fig. 12 and along its upper edge, 
variability of the species, winning the competition is so large that this species exists 
for more than 1000 time steps, while its competitor dies much earlier.

Figure 27 illustrates an example of the dynamics of two populations for one pair 
of the values of parameters smax

1 and smax
2 located below the diagonal in Fig. 26. 

Summary of the extinction times for pairs of competing species with the same 
parameter values as in Fig. 27 and 1000 repeated simulations is shown in Fig. 28. 
Some points lie on the diagonal (they are few compared with 1000 simulations) 
indicating that the populations go extinct simultaneously. However, the major-
ity of points lie below the diagonal, where the more variable species 1 wins the 
competition.

Figure  29 shows the location of points with coordinates corresponding to the 
extinction times of competing species in relation to the differences between smax

1 
and smax

2. If the values of smax
1 and smax

2 differ, then the species with larger indi-
vidual variability, that is, with a higher value of smax, will survive for a longer time 
(Fig. 29A). If the differences between smax

1 and smax
2 are smaller, then most often 

Fig. 21  Pairwise comparison of extinction times of species 1 and species 2. Both species are char-
acterized by the same individual variability. A smin

1 = smin
2 = 36 × 10–8, B smin

1 = smin
2 = 50 × 10–8. 

smax
1 = smax

2 = 100 × 10–8. The other parameters have standard values (Table 2). In both figures, all points 
lie on the diagonal, which means that populations go extinct simultaneously. However, the populations 
with larger individual variability have longer extinction times
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the more variable species wins the competition, but in some simulations both these 
species go extinct simultaneously (Fig. 29B, C and E). However, the contribution 
of such events is not large, and it declines with increasing difference between smax

1 
and smax

2. In the extreme case, when the difference between smax
1 and smax

2 is large, 
and when one of the species is characterized by a large value of this parameter, and 
the second one is not much higher than the corresponding value of the parameter 
smin, then the less variable species becomes extinct almost immediately, and the 
more variable species persists more than 1000 time steps (Fig. 29F). If the values of 
these parameters are equal, then the species coexist and go extinct simultaneously 
(Fig. 29D).

Fig. 22  Dynamics of two competing species (B) and resources (A). Standard values of the parameters 
(Table 2). smax

1 = smax
2 = 100 × 10–8. The species differ in their individual variability. Filled circles in B 

illustrate the numbers of species 1 with a higher individual variability smin
1 = 36 × 10–8, Empty circles 

denote numbers of species 2 with a lower individual variability smin
2 = 40 × 10–8. Nevertheless, these pop-

ulations go extinct simultaneously. Let us note that the less variable species attain much higher numbers 
at the maximum. Numbers on the vertical axis in A should be multiplied by  104 to obtain the values 
occurring in simulations
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4  Conclusions

A more variable species wins the competition. This is the main result of earlier 
papers which I reviewed in the introduction. The individual-based models which I 

Fig. 23  Pairwise comparison of the extinction times of species 1 and 2. The species differ in individual 
variability: smin

1 = 36 × 10–8, smin
2 = 40⋅10–8. smax

1 = smax
2 = 100 × 10–8. The other parameters have standard 

values (Table 2). In spite of differences in variability, all points (except one) lie on the diagonal, which 
means that the populations of both species go extinct simultaneously

Fig. 24  Dynamics of two competing species. Standard values of the parameters (Table  2). 
smax

1 = smax
2 = 100 × 10–8. The species differ in their individual variability. Empty circles illustrate the 

numbers of individuals of species 1 with lower individual variability smin
1 = 36 × 10–8, filled circles illus-

trate the numbers of species 2 with larger variability smin
2 = 25 × 10–8. The more variable population goes 

extinct earlier (at time step197), while the population of the less variable species—later (at time step 
214). Population of the less variable species attains much higher maxima
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Fig. 25  Pairwise comparison of the extinction times of species 1 and species 2. The species differ in indi-
vidual variability: smin

1 = 36 × 10–8, smin
2 = 25 × 10–8. smax

1 = smax
2 = 100 × 10–8. The other parameters have 

standard values (Table 2). Almost all points lie below the diagonal, which means that the population of 
species 1, with a lower individual variation, has a longer extinction time

Fig. 26  Dynamics of the system comprising two competing species, shown in the parameter space smax
1 

and smax
2. The species have the same values smin

1 = smin
2 = 36 × 10–8, but they differ in the values smax

1 
and smax

2. The other parameters have standard values. Numbers on the axes should be multiplied by  10–8 
to obtain the parameter values used in the simulations. Full-black circles—populations of both species 
coexist for more than 1000 time steps. Full-gray circles—the two species go extinct simultaneously, but 
the extinction times are shorter than 1000 time steps. Left half-black circles—species 1 persists longer 
than 1000 time steps, species 2 goes extinct earlier. Left half-gray circles—species 2 goes extinct ear-
lier, species 1 persists longer, but its extinction time is shorter than 1000 time steps. Right half-black 
circles—species 2 persists longer than 1000 time steps, species 1 goes extinct earlier. Right half-gray 
circles—species 1 goes extinct earlier, species 2 persists longer, but its extinction time is shorter than 
1000 time steps
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described in this paper provide a strong support for this statement, but also a much 
more precise explanation of it. In classical models, we are forced to analyze the sta-
bility properties of the system and the asymptotic behavior of the model solutions. 

Fig. 27  Population dynamics of two competing species. Standard values of the parameters. (Table  2). 
smin

1 = smin
2 = 36 × 10–8. The species differ in individual variability. Filled circles denote the number of 

individuals of species 1, with higher individual variability: smax
1 = 100 × 10–8. Empty circles denote the 

number of individuals of species 2, which is less variable: smax
2 = 70 × 10–8. The less variable population 

goes extinct earlier (at time step 64) than the population of the more variable species (at time step 101). 
As long as they coexist, the numbers of individuals of the two species are similar. After the extinction of 
the competitor, the population of the more variable species has access to a greater amount food, and it 
increases

Fig. 28  Pairwise comparison of extinction times of species 1 and species 2. The species differ in indi-
vidual variability: smax

1 = 100 × 10–8, smax
2 = 70 × 10–8. smin

1 = smin
2 = 36 × 10–8. The other parameters have 

standard values (Table 2). Most points lie below the diagonal, which means that the population of species 
1, with a higher individual variability, has a longer extinction time



623

1 3

Can a More Variable Species Win Interspecific Competition?  

In individual-based models, the situation is different. Now, we are forced to analyze 
the phenomenon of extinction: the population extinction time of the more variable 
species is longer than the extinction time of the population comprising less variable 
individuals. Also the statement formulated at the beginning of this paragraph, as 
individual-based models show, is not unconditional. Many depend on character of 
the distribution which describes species variability. Earlier papers dealing with this 
question applied symmetric distributions of features expressing species variability 
(Begon and Wall 1987). However, these authors stressed also that an asymmetric 
distribution should be more appropriate in this case. Indeed, individual-based mod-
els which I presented in this paper proved that the meanings of the terms competi-
tive exclusion and coexistence of competing species depend on the shape of the dis-
tribution describing species variability. It is important whether this distribution is 
symmetric or asymmetric. Please note also that individual-based approach to this 
question enables us to formulate precisely what does species variability means. In 
the classical models, the distribution of a parameter describing the interspecific 
competitive ability of species which is rather hard to measure, was used. In the 
individual-based models, it is the distribution of individual traits connected with the 
assimilation of resources which are subject to competition.

Fig. 29  Pairwise comparison of extinction times of species 1 and 2 inrelation to differences between 
smax

1 and smax
2. A smax

1 = 100 × 10–8 and smax
2 = 50 × 10–8, B smax

1 = 100 × 10–8 and smax
2 = 70 × 10–8, C 

smax
1 = 100 × 10–8 and smax

2 = 90 × 10–8, D smax
1 = 100 × 10–8 and smax

2 = 100 × 10–8, E smax
1 = 100 × 10–8 

and smax
2 = 120 × 10–8, F smax

1 = 100 × 10–8 and smax
2 = 130 × 10–8. The other parameters have standard 

values (Table 2) smin
1 = smin

2 = 36 × 10–8
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When the distribution describing species variability is symmetric, all statements 
about competitive exclusion and coexistence of competing species are of a statistical 
nature. When properly formulated, the principle of competitive exclusion should be 
put like this: if competition episodes between two species repeat many times, then 
the longer extinction time of the species with a higher individual variability will 
be more frequent than that of the species with a lower individual variability. On 
the other hand, the coexistence of two competing species with identical individual 
variability means that these populations will have longer extinction times with equal 
frequency.

This situation arises from the character of the distribution of individual traits. 
They were drawn from a normal, thus symmetric, distribution. An increase in the 
variance of this distribution means that in the population appeared individuals 
whose presence increased population persistence, along with individuals less capa-
ble of reproduction, thus decreasing population persistence. Drawing individual 
traits at each generation, especially when the population is small, can lead to the 
situation that even less valuable individuals can appear in populations with higher 
individual variability. However, with appropriately large differences in individual 
variability between two populations, the advantage due to drawing individuals with 
traits enhancing long extinction times of the more variable population can be so 
large that the competitive exclusion of a more variable species by a less variable 
species will be much less frequently observed. For the same reason, we will observe 
the coexistence (in the above statistical sense) of the two species even when they 
differ in their individual variabilities, but on the condition that these variabilities are 
great enough (but not much different) to enhance the long extinction times of each 
of them.

Different situation arises when the distribution illustrating species variability 
is asymmetric, because now the increase of variability can go through an increase 
in the number of individuals with traits enhancing or weakening the long extinc-
tion times of the more variable population. For the case of a single population, this 
favorable effect of individual variability does not depend on how we will attain this 
variability of the population—whether through an increase in the number of weak 
individuals or strong individuals. It is only important that they differ among them-
selves. However, for two competing populations, the situation looks a little different.

Hierarchy of individuals, the amount of food that each of them will obtain, with 
all further consequences of this resource partitioning resulting from intraspecific 
competition, is now dependent on each of the two populations separately. However, 
individuals of both species use the common food. Thus, individuals of both popu-
lations will experience the maximum level of food at the same time, and later the 
minimum also at the same time.

The use of common resources by individuals of both species strongly synchro-
nizes their dynamics: their numbers will attain a minimum simultaneously. Results 
of interspecific competition depends on which individuals will be present at a mini-
mum in each of these populations.

If an increase in population variability is due to an increase in the contribu-
tion of valuable individuals (smin

1 = smin
2 and smax

1 ≠ smax
2)—consuming more food 

during interspecific competition, with larger body weights, and higher juvenile 
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production—then their importance for population persistence is so great that the 
more variable species will be characterized by a higher persistence, that is, it will 
have a longer time to extinction. Just the presence of these individuals (when one 
population is more variable) or their absence (when the other population is less 
variable), will determine the fate of competing populations at the minima of their 
numbers.

However, if an increase in the population variability relies on an increase in the 
contribution of lower quality individuals (smax

1 = smax
2 and smin

1 ≠ smin
2), which gain 

less food, attain less body weight, and thus produce less juveniles, then the result-
ing differences in the sizes of these populations will start playing an important role. 
The more variable population is enriched in individuals dying without producing 
offspring. In a sense, this corresponds to an increased mortality, and causes that the 
more variable population will be characterized by a smaller size. This limits the 
chance that at the minimum there appears an individual capable of producing juve-
niles under these conditions. Therefore, the more variable population will eventually 
face a greater risk of extinction at each minimum. Instead, the less variable popula-
tion will not lose its potential variability for the production of less valuable indi-
viduals and, as a result, it will increase. This increases the chance that at minimum 
numbers there will appear an individual capable of reproduction.

Moreover, if we have a look at Fig. 18B, we will see that at the differences in 
individual variability of that kind, a downward shift of the left end, illustrating the 
partitioning of resources among individuals of the more variable population, will 
lead to a simultaneous slight reduction of assimilation by heavy individuals. This 
additionally reduces the chance to persist with the minimum numbers.

The analysis of the model in which individual variability is a result of intraspe-
cific competition indicates large ranges of parameter values enabling the long-last-
ing coexistence of two competing species and their simultaneous extinction. First 
of all, this concerns the situation when, independent of the way of incorporation 
of individual variability of the two species, they are equally variable. Besides, the 
coexistence of two species is also possible when these species differ in their individ-
ual variability, but on the condition that the values of the model parameters respon-
sible for this promote long extinction times (both species should be sufficiently vari-
able). This is the case in the lower-left part of Fig. 19 and in the upper-right part of 
Fig. 26.

In all cases of species coexistence or competitive exclusion of species, the system 
consisting of two populations with asymmetric distributions describing the variabil-
ity of them behaves in a purely deterministic way. If there is coexistence of species, 
both of them go extinct at the same time. When the more variable species excludes 
the less variable one, it happens always. Not more often than opposite outcome of 
competition as it was observed in case of symmetric distributions.

At this point, it is worth remembering another peculiar property of the popula-
tion dynamics described by this model. Each population will die sooner or later, 
although for certain values of the model parameters, the extinction times can be very 
long (exceeding 1000 time steps, or over 1000 generations, which is a lot for a local 
population with nonoverlapping generations). Thus, in the situation when both pop-
ulations go extinct simultaneously, we can say of a long coexistence of two species 
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only when their extinction times are long. However, a large area of coexistence and 
simultaneous extinction of the two competing species is in the upper-right part of 
Fig. 19 and near the right edge or the upper edge of it, that is, when the species dif-
fer in individual variability and the differences are even big but the variability of 
each of them is small. In this case, we observe a relatively short coexistence of both 
competitors and a simultaneously but relatively quick extinction of both of them. It 
is difficult to speak of the coexistence of species. In this case, we rather have to do 
with a simultaneous demographic catastrophe of both species in a short time.

In both models presented in this paper, there are no direct interactions between 
individuals of different species. Interactions between individuals, which are assumed 
in the models, are confined to each species separately. Intraspecific competition for 
resources produces individual variability within each population. Interspecific inter-
actions operate through the use of common resources. The resource conditions of 
each species changes because the other species uses the same resources. This is a 
very simple (maybe the simplest) way of introducing interspecific competition into 
an individual-based model of this kind. In classical models, the situation is different. 
There are specific parameters which are responsible for interspecific competition 
in classical models. Their values can be different for different species, indicating 
that they differently react to competition from the side of other species. There is no 
easy way to introduce such parameters into individual-based models presented in 
this paper. Let us notice, however, that the global competition is assumed in these 
models. This together with the assumption about the use of common resources prob-
ably means that both species can’t be very different in the average values of model 
parameters. Maybe the only difference between them can be expressed in the varia-
bility of these parameters. The situation is much more simpler for local competition, 
which we can assume in the case of sedentary organisms (for instance terrestrial 
plants). If interactions occur in pairs of individuals and their strength depends, for 
instance, on the size of neighbour and the distance to it, we can very easily differen-
tiate the intensity of interactions between individuals of the same and different spe-
cies for instance in the way proposed by Wszomirski et al. (1999).
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