
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Contents lists available at ScienceDirect

Medical Hypotheses

journal homepage: www.elsevier.com/locate/mehy

A possible application of hinokitiol as a natural zinc ionophore and anti-
infective agent for the prevention and treatment of COVID-19 and viral
infections
Ba X. Hoang⁎, Bo Han
Department of Surgery, Nimni-Cordaba Tissue Engineering and Drug Discovery Laboratory, University of Southern California, Los Angeles, CA, USA

A R T I C L E I N F O

Keywords:
COVID-19
SARS-COV-2
Hinokitiol
Zinc
Zinc ionophore
Antiviral

A B S T R A C T

Zinc and the combination with zinc ionophore have been reported in basic research and several clinical in-
vestigations as a potentially viable and economical preventive and therapeutic options for COVID-19 treatment.
Zinc is a vital microelement that actively supports respiratory epithelium barrier integrity, innate and adaptive
immune functions, and inflammatory regulations. Moreover, zinc may also prevent viral entry, suppress viral
replication, and mitigate the damages due to oxidative stress and hyperinflammatory reaction in patients with
respiratory infections. Hinokitiol (β-thujaplicin) is a natural monoterpenoid and is considered as a safe zinc
ionophore to help zinc transport into cells. It has been widely used in skin and oral care, and therapeutic
products for its potent antiviral, antimicrobial, antifungal, anti-inflammatory, and anticancer applications.

The ongoing COVID-19 pandemic and the significant morbidity and mortality exist in the high-risk group of
patients associated with other respiratory infections such as influenza, respiratory syncytial virus, and dengue
fever. There is an urgent need for the development of inexpensive, safe, and effective therapeutics to prevent and
treat these viral infections. Considering that hydroxychloroquine (HCQ), the most studied zinc ionophore drug
for COVID-19, is linked to potentially serious side effects, we propose the implementation of hinokitiol as a zinc
ionophore and anti-infective agent for the prevention and treatment of COVID-19 and other viral infections.

Background to hypothesis

The World Health Organization (WHO) assumes that at least one-
third of the world’s population is affected by zinc deficiency [1]. Fur-
thermore, zinc deficiency is responsible for approximately 16% of all
respiratory infections worldwide [2]. This suggests potential benefits of
zinc supplementation for the treatment and prevention of respiratory
infections, including COVID-19.

Ionophore is a fat-soluble substance that can transport non-fat so-
luble elements across the cell membrane. Zinc-ionophores shuttle free
zinc in or out of cells, depending on the free zinc concentration gra-
dient, and also serve as intracellular zinc transporters for zinc com-
partmentation to enhance the zinc-dependent effects. An iincreasee in
intracellular zinc ion and the administration of zinc ionophores have
been proved to impair the replication of a wide range of RNA viruses,
including rhinoviruses, influenza, coxsackievirus, mengovirus, pi-
cornavirus, herpes, and coronaviruses [3].

Hinokitiol (β-thujaplicin) is a naturally occurring monoterpenoid

found in the wooden part of trees in the Cupressaceae family. It is a
tropolone derivative and is widely used in oral care and therapeutic
products for its potent, broad-spectrum antiviral, antimicrobial [4],
antifungal, anti-inflammatory [5,6], and anticancer properties [7].
Additionally, it has been approved as a food additive and does not
accumulate in the body. It has no allergic, toxic, and unfavorable effects
recorded in the published literature throughout years of applications
[4]. Hinokitiol is regarded as a safe zinc ionophore to help zinc influx
into cells to increase the intracellular pool of labile zinc [8].

Statement of hypothesis

We propose and hypothesize that hinokitiol, as a natural and
harmless zinc ionophore and anti-infective agent, can be used as a
single agent or ideally in combination with an organic or inorganic zinc
compound for the treatment and prevention of COVID-19 and other
viral infections.
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Evaluation and discussion of hypothesis

Antiviral properties of zinc ionophore

The antiviral activity of zinc depends on the intracellular avail-
ability of zinc. Intracellular Zn2+ homeostasis is achieved by the op-
posing actions of two families of zinc transporters, ZIP involving in zinc
uptake and ZnT mediating intracellular zinc trafficking and efflux
[9,10]. The intracellular free Zn2+ concentration is maintained at a
relatively low level by metallothioneins [11], and it can serve as
modulators of signal transduction [12]. Zinc has direct antiviral prop-
erties that include the stimulation of a variety of antiviral signaling
events, including viral polymerase function, viral protein production
and processing, and viral inactivation [13,14]. For example, in vitro, a
dose of zinc greater than 2 μM inhibited SARS-CoV replication by in-
hibiting RNA polymerase. For the herpes virus, zinc inhibitory activity
has been attributed to reducing NF-κB function by interfering with the
protein ubiquitination pathway [15]. Clinical studies using zinc sup-
plements have been carried out in ‘common cold” viruses such as in-
fluenza and coronaviruses. The amount of ionic zinc present at the in-
fection sites is highly correlated to the study outcome, and is dependent
on the zinc formulation [16,17].

Zinc ionophores can help transport zinc ions across the lipid mem-
brane in the cell. This influx of zinc ions has been demonstrated in a
zinc ionophore dose-dependent manner. In cell culture studies, the
addition of zinc ionophores, such as hinokitiol, pyrrolidine, dithio-
carbamate and pyrithione, stimulated zinc import [18,19]. The com-
bined effects of zinc and zinc ionophores were found to inhibit the re-
plication of various RNA viruses, including influenza virus, respiratory
syncytial virus, and several picornaviruses [8,20 15,21]. Zn2+ and
pyrithione at low concentrations inhibit the replication of SARS-cor-
onavirus (SARS-CoV) and equine arteritis virus [22].

The antimalarial drug chloroquine (CQ) and its metabolite hydro-
xychloroquine (HCQ) are currently being tested in several clinical stu-
dies as promising candidates to limit SARS-CoV-2-mediated morbidity
and mortality [23]. CQ is not only known as a zinc ionophore [24] to
transport zinc inside cells, but it is also as an autophagy inhibitor by
blocking lysosomal acidification. Furthermore, CQ carriers free zinc in
the lysosome, leading to the disruption of lysosome integrity [25]. CQ
inhibits pH-dependent SARS-CoV-2 replication and interferes with the
delivery of virus particles into host cells. With the assistant of CQ,
higher intracellular zinc levels might result in a more efficient inhibi-
tion on RNA dependent RNA polymerase (RdRp). Consequently, the
effective inhibition of intracellular SARS-CoV-2 replication may po-
tentially result in better clinical outcomes of COVID-19 patients treated
with CQ or HCQ [26,27].

Hinokitiol is a safe and viable zinc ionophore for the treatment
and prevention of COVID-19 and other viral infections

Hinokitiol, a tropolone-related compound found in heartwood cu-
pressaceous plants, exhibits multiple biological activities such as anti-
inflammatory, antitumorigenic, antiviral, antifungal, antimicrobial and
antioxidants activities [5,28,29]. Hinokitiol was discovered in Japan in
1936 [30]. It has been broadly used in consumer oral care products and
as an antimicrobial hand-washing solution [4]. Early clinical uses of
hinokitiol consisted of treatments for lung gangrene, tuberculous fis-
tula, pulmonary tuberculosis, and decubitus ulcers. Because of its low
toxicity compared to other zinc ionophores, Hinokitiol has been applied
in consumer oral care products without restriction in both the EU and
the United States. It is also an approved food additive in Japan since
1956.

Hinokitiol treatments cause a rapid and efficient influx of Zn2+ into
cells. The presence of Hinokitiol facilitated a threefold increase of in-
tracellular Zn2+ within a few minutes. Hinokitiol inhibits viral re-
plication by impairing viral polyprotein processing; however, this

capability depends on the availability of zinc ions. Thus, an increase in
intracellular zinc levels provides the basis for a new antipicornavirus
mechanism [8]. Other studies indicated that a prolonged presence of
zinc and its ionophores during viral replication is needed to exert an-
tiviral effects against several human viruses, such as influenza, rhino-
virus, coxsackievirus, herpes simplex virus, hepatitis E virus and men-
govirus [5,28,29].

Other anti-infective properties of Hinokitiol

Hinokitiol has potent antimicrobial activity against many bacteria
and fungi, including antibiotic-resistant pathogens [31,32]. It inhibited
the growth of common human pathogens such as Escherichia coli,
Streptococcus pneumonia, Streptococcus mutans, and Staphylococcus
Aureus when inoculated these bacteria in optimal growth conditions
[33]. The effective amount (50 µg/ml) was only one 20th against the
dose to show the bactericidal activity, which was the same dose re-
commended for fragrance usage [34]. Hinokitiol has been proved to
have inhibitory effects on Chlamydia trachomatis and may be clinically
beneficial as a topical drug [35]. Low dose of hinokitiol (200 μM) has
substantial antimicrobial and cytotoxic activities against oral pathogens
and oral squamous cell lines and has no cytotoxic effect on normal
human cells, indicating the potential for applications in oral health care
[32,36]. Hinokitiol has a damaging effect in vitro on S. mansoni cer-
cariae in a concentration- and time-dependent by preventing the cer-
cariae from the penetrating the host skin [37]. Apart from anti-micro-
bial effects, various bioactivities of hinokitiol have been reported, such
as repellent activity for ticks, the cytotoxic effect on tumor cells and
lymphocyte blastogenesis.

Hinokitiol is generally considered safe. No developmental toxicity
or carcinogenic effects was observed [38,39].

Conclusion

The evaluation of existing published scientific evidence as well as
the good safety profile of both zinc and hinokitiol in therapeutic, nu-
tritional and cosmetic products imply that the composition of these two
readily available and inexpensive substances can be immediately im-
plemented as a preventive and therapeutic option for COVID-19 and
other viral infections. Apart from its direct antiviral effect, hinokiotiol,
as a single ingredient or preferably in combination with zinc com-
pound, can provide anti-inflammatory, antibacterial, and antifungal
activities that are frequently associated with the complicated cases of
the diseases with high morbidity and mortality.

We believe that continuing research for the development of optimal
therapeutic formulas and the most effective methods for administration
of zinc-hinokitiol composition is essential to improve treatment and
prevention of the COVID-19 pandemic and other respiratory viral in-
fections.
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