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Abstract: Alopecia areata (AA) is an autoimmune disease of the hair follicles. It is 
characterized by a well-defined non-scarring alopecic patch or patches that may extend to 
the entire scalp or lead to total body hair loss. Due to its unpredictable clinical course, AA 
causes substantial psychological harm. Despite the high prevalence of this disease and 
extensive research, its exact pathomechanism is unclear, and current treatments have 
a high relapse rate that has deemed AA incurable. Over the past few decades, researchers 
have investigated multiple potential factors that may help alleviate its pathogenesis and 
provide effective treatment. Given its complex immunopathogenesis, AA is considered an 
autoimmune disease with multiple factors. This review gathers current evidence that empha
sizes molecular mechanisms, possible causative etiologies, and targeted immunotherapies for 
AA. Understanding its underlying mechanisms may shed light on new strategies to effec
tively manage AA in the future. 
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Introduction
Alopecia areata (AA) is an immune-mediated hair loss disorder that affects 1.7% of 
the general population. Its prevalence ranges from 0.1–0.2% worldwide.1 AA’s 
manifestations vary, from a well-defined alopecic patch, multiple patches, total 
scalp alopecia (alopecia totalis, AT), to complete body hair loss (alopecia universa
lis, AU).2 The disease impacts quality of life and has major psychological effects 
for men and women, especially in social acceptance and psychological well-being.3

AA is diagnosed upon physical examination and trichoscopy; however, a scalp 
biopsy may also be performed in undecided cases.4,5 Histopathological features of 
acute AA include hair follicle (HF) peribulbar lymphocytic infiltration, with peri- 
follicular CD4+ T cells and intrafollicular CD8+ T cells.6 In chronic AA there is an 
increase in miniaturized hairs situated in the papillary dermis with peribulbar 
lymphocytic infiltration.7,8 Immunosuppressive agents such as systemic corticoster
oids, cyclosporine, and contact immunotherapy highlight the autoimmune nature of 
AA, as patients exhibit marked improvement after administration of these agents.9

Although much research into AA has been conducted, its exact pathomechan
isms are unknown. Emerging evidence suggests that a collapse in HF immune 
privilege (IP) is the leading cause of AA. When this process develops, HFs present 
surface autoantigens, resulting in inflammatory cells attacking HFs and eventually 
resulting in an alopecic patch. Other factors such as genetics, stress, and environ
ment are also responsible for development of AA.10 AA is considered an 
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autoimmune disease with multiple players and a complex 
immunopathogenesis. This review explores the molecular 
mechanisms involved in the pathogenesis of AA, its asso
ciated factors, and current immunotarget therapies. We 
integrate all existing evidence to gain insights into AA 
immunopathogenesis and its immunotherapeutic options.

Hair Follicle Immune Privilege Collapse
The hair growth cycle is divided into three phases: ana
gen (growth stage), catagen (transition stage), and telo
gen (resting stage). When telogen hairs are shed, new 
anagen hairs grow to replace them, beginning a new 
cycle.11–13 Current evidence suggests that the collapse 
of IP in HF is the principal event in AA pathogenesis. 
Currently, the concept of IP is believed to be a major 
factor in immune tolerance, particularly in the brain, 
eyes, gonads, fetomaternal placenta, and HFs. IP acts 
by suppressing immune-mediated inflammation and 
favoring immune tolerance from harmful effects of inap
propriate immune recognition.14 In the hair bulge, prox
imal HF epithelia exhibit an IP area during anagen.15 IP 
protects epithelial stem cells, which are essential for 
remodeling capacity and HF regeneration. A previous 
study supported these hypotheses using a murine model 
for skin graft transplantation. It was observed that 
despite the rejection of epidermal pigment changes, 
donor HF melanocytes survived and evaded immune 
rejection.16

IP protects HF components from immune attacks by 
various mechanisms. Physical barriers, including the 
extracellular matrix, have reduced lymphatic permeabil
ity and guard hair bulbs against infiltrating immune 
cells.15,17 It also downregulates major histocompatibility 
complex (MHC) class I expression and MHC class 
I pathway molecules (β2-microglobulin and transporter 
associated with antigen processing [TAP-2]). 
Downregulation of MHC class I is caused by the local 
production of immunosuppressive factors, such as α- 
melanocyte-stimulating hormone (α-MSH), transforming 
growth factor-β (TGF-β), indoleamine-2,3-dioxygenase 
(IDO), protein red encoded by IK gene (red/IK), inter
leukin (IL)-10, calcitonin gene-related peptide, insulin- 
like growth factor-1, and somatostatin.18,19 Reduction of 
MHC class II expression on HF Langerhans cells impairs 
antigen-presenting cell (APC) function.20 In addition, IP 
expresses “no danger” signals using type-1 transmem
brane glycoprotein CD200, which lowers APC activity 
and pro-inflammatory cytokines secretion.21

The IP environment normally suppresses natural killer 
(NK) cell activation by downregulating MHC class I chain- 
related gene A (MICA) and UL16-binding protein (ULBP) 
in resident immune cells. These would otherwise bind to 
NKG2D-activating receptors on CD8+ T cells and NK cells 
inducing inflammation and damaging local tissues. 
Supporting evidence shows that there are few perifollicular 
NK cells in healthy HFs.22 Next, killer cell Ig-like receptors 
(KIRs), which are MHC class I inhibitory receptors, were 
significantly higher in controls than in AA patients.23 KIRs 
help NK cells distinguish between normal cells and target 
cells, which prevents damage to healthy cells. Lastly, 
macrophage migration inhibitory factor, a pleiotropic cyto
kine presented in several IP sites, prevents the release of 
cytolytic perforin granules from NK cells.24

The HF IP environment is highly regulated and usually 
prevents autoimmune hair loss. Emerging evidence sug
gests that the collapse of HF IP contributes to AA patho
genesis. MHC class I and class II expression on the hair 
matrix and follicular epithelium are found in AA-affected 
patients.20 The local production of immunosuppressive 
factors including α-MSH, TGF-β, IDO, and red/IK are 
downregulated in peri-lesional and lesional AA.25,26 

Histological features from AA patient scalp biopsies 
showed infiltrating peri-follicular CD4+ T cells, intrafolli
cular CD8+T cells,6 mast cells,27 NK cells,23 and APCs.28 

MICA immunoreactivity occurred throughout AA-affected 
HFs, which activated NKG2D+ NK cells and CD8+ T cells 
around AA lesions, but not in normal HFs.23

Overview of Immune System 
Activation in Alopecia Areata
Cytotoxic CD8+NKG2D+ T cells and interferon-γ (IFN- 
γ) have been demonstrated to play an important role in 
the development of AA. CD8+NKG2D+ T cells infiltrate 
the hair follicle of AA, initiating an IFN-γ response and 
upregulation of γ-chain (γc) cytokines, especially IL-2 
and IL-15.29 These immune responses interfere with the 
maintenance of the HF IP by inducing ectopic expression 
of MHC molecules and the NKG2D ligands in the HF 
and promote the activation and survival of CD8 
+NKG2D+ T cells. Concurrently, several immune path
ways are also responsible for the autoreactivity in AA, 
Figure 1 outlines activation of the immune system in 
AA. The following section provides a summary of all 
relevant factors involved in AA pathogenesis including 
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autoantigens, immune cells, cytokines, T helper 2 (Th2) 
response, genetics, stress, and environment.

Autoantigens
Two studies affirmed the hypothesis that a dysregulation in 
immune system homeostasis contributes to the development 
of AA. C3H/HeJ mouse models were used to demonstrate 
hair loss after full-thickness skin grafts from normal mice to 
AA-affected mice.30 In addition, grafting AA-affected scalps 
onto severe combined immunodeficient (SCID) mice 
resulted in hair growth.31 Although these models implicated 
T cells within the skin grafts in triggering immune activation, 
the involvement of autoantigens in cytotoxic T cell responses 
and disease development are still inconclusive.

AA specifically occurs during the anagen phase of hair 
growth, where HF melanocytes, keratinocytes, and dermal 
fibroblasts are the assumed targets of autoreactive cytotoxic 
T cells. The evidence for melanocyte-related peptides being 
autoantigens can be seen in numerous studies. Melanocyte- 
derived epitopes, including the melanoma antigen and gly
coprotein 100, were recognized by T cells and contributed to 
hair loss in human AA scalp grafted onto SCID mice.32 

Protein identification by mass spectrometry revealed that 
keratinocyte-derived trichohyalin and tyrosinase-related pro
tein-2 promoted significantly greater cytotoxic T cell 
response compared with healthy controls.33,34 Moreover, 
the fact that AA preferentially targets pigmented hair over 
non-pigmented hair, in addition to the preferential regrowth 
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Figure 1 Immune system activation in AA. After the NKG2D receptor is recognized by the NKG2D associated ligands (MICA, ULBP3, and ULBP6), it promotes aggregation 
of CD8+NKG2D+ T cells. Activated CD8+NKG2D+ T cells mainly produce IFN-γ to upregulate MHC class I and II expression via the JAK-STAT pathway and generate 
GZMB to induce apoptotic cell death. Concurrently, CD8+NKG2D+ T cells increase an upregulation of γ-chain cytokines (IL-2 and IL-15), which create a positive feedback 
loop by promoting the activation of IFN-γ–producing CD8+NKG2D+ T cells. NK cells and CD4+ T cell subtypes (Th17 and T reg cells) also produce IFN-γ. NK cells attack 
hair follicles upon the binding of NKG2D ligand to NKG2D receptor and through CXCR3 ligands expression (CXCL9, CXCL10, and CXCL11). While CD4+ T cell 
subtypes, initiated by upregulation of MHC class II, trigger several pro-inflammatory cytokines and chemokines. PDCs play a role in the pathogenesis by producing a large 
amount of type I IFN to enhance the activation of CD8+, CD4+, and NK cells. However, TNF-α, created by CD4+ and CD8+ T cells, also have negative effects by suppressing 
PDCs activity and interfering with the keratinocytes differentiation. 
Abbreviations: AA, alopecia areata; CXCL, chemokine (C-X-C motif) ligand; CXCR3, C-X-C Motif Chemokine Receptor 3; GZMB, granzyme B; IFN, interferon, IL, 
interleukin; JAK, Janus kinase; MHC, major histocompatibility complex; MICA, major histocompatibility complex class I chain-related gene A; NK, natural killer; PDCs, 
plasmacytoid dendritic cells; Treg cells, regulatory T cells; STAT, signal transducer and activator of transcription; Th cells, T-helper cells; TNF, tumor necrosis factor; ULBP, 
UL16-binding protein.
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of white hair after treatment, provides the best evidence to 
support the essential role of melanocyte-related peptides as 
autoantigens in AA.35–37

Immune Cells
CD8+NKG2D+ T Cells
CD8+NKG2D+ T cells are key regulators of AA 
pathogenesis.29,38–40 As NKG2D is an activating receptor 
expressed in both NK cells and CD8+ T cells, 
CD8+NKG2D+ T cells recognize the NKG2D ligands 
(MICA, ULBP3, and ULBP6), which upregulate MHC 
expression and contribute to HF IP collapse. Research 
has been conducted to determine if CD8+NKG2D+ 

T cells initiate AA.29,38–40 A study using C3H/HeJ mice 
showed the AA-affected scalp lesions were infiltrated by 
CD8+NKG2D+ T cells. Flow cytometry data on the leuko
cyte populations also reported a significant increase in 
CD8+NKG2D+ T cells and total cellularity in AA- 
affected mice compared to controls.27,41

Specifically, measurements of AA lesional skin gene 
expression signatures indicate HF cytotoxic T cell infiltra
tion, increased production of IFN-γ, and the upregulation 
of several γc cytokines that promote the activation and 
survival of IFN-γ–producing CD8+NKG2D+ T cells.29 

IL-2 and IL-15 are cytokines known to stimulate autoreac
tive T cells. When injected into human scalp grafted onto 
SCID mice, IL-2 stimulated CD8+NKG2D+ T cells and 
demonstrated clinical and histological features of AA.42 

Serum IL-15 levels in AA patients were significantly 
higher than in control group, and there was a positive 
correlation between serum levels and severity.43 Biopsies 
of AA scalp lesions demonstrated increases in IL-2 and 
IL-15 expression compared to non-lesional scalps.44 

Notably, blocking the production of these pro- 
inflammatory cytokines suppressed AA progression and 
reduced the accumulation of CD8+NKG2D+ T cells in 
C3H/HeJ grafted mice.29 Lastly, granzyme B (GZMB) 
levels, an apoptogenic effector produced by cytotoxic 
cells, were elevated in both AA-affected C3H/HeJ mouse 
models and human HFs.45,46 These experiments demon
strated that CD8+NKG2D+ T cells could induce AA.

T Helper 17 and Regulatory T Cells
Several autoimmune diseases, including AA, are asso
ciated with the CD4+ subtypes called Th17 and regulatory 
T (Treg) cells.47,48 After the upregulation of MHC class II, 
CD4+ T cells were found abundant in the dermis and 

around HFs.48 Th17 cells secrete the pro-inflammatory 
cytokines IL-17, IL-22, and IL-23, which induce inflam
mation and contribute to autoimmunity,49 whereas Treg 
cells suppress excessive lymphocyte activity to prevent 
autoimmune reactions.50 Using quantitative real-time 
polymerase chain reaction, increased IL-17 and IL-22 
levels in affected scalp were found to have a positive 
correlation with disease severity.51 In addition, human 
Th17 cells also readily produced IFN-γ, resulting in pro
moting autoimmunity.52 It is suggested that increased 
Th17 levels and decreased Treg levels are pro- 
inflammatory and can induce local autoimmune 
reactivity.53 Studies also showed that Th17 levels were 
higher during active disease than when it is dormant,46 

while Treg levels were higher in severe AA patients than 
in mild AA patients.54

Plasmacytoid Dendritic Cells
The role of plasmacytoid dendritic cells (PDCs) in AA 
pathogenesis is the subject of intensive study. They 
express the cell surface markers CD4, CD123, human 
leukocyte antigen (HLA)-DR, blood-derived dendritic 
cell antigen-2 (BDCA-2), Toll-like receptor (TLR) 7, and 
TLR9 within endosomal compartments. After the activa
tion of TLR7 and TLR9, PDCs generate large amounts of 
type I IFN (IFN-α/IFN-β) approximately 1000 times 
higher than other cell types.55,56

PDCs regulate myeloid dendritic cells, CD4, CD8, NK, 
and T cell functions, thus, linking innate and adaptive 
immune responses.57 This is demonstrable in AA, where 
intradermal injections of PDCs into C3H/HeJ mice were 
found to contribute to AA development.28 

Immunohistochemical analysis revealed the presence of 
a specific PDC marker, anti-BDCA-2, in the peribulbar 
regions in all cases. Moreover, intense and diffuse expres
sion of MxA, an indirect marker of PDC activity, was 
observed in the hair bulbs and peribulbar regions of AA- 
affected patients.55

Cytokines
IFN-γ
As mentioned above, IFN-γ has been implicated in the 
development of AA, being a critical Th1 effector cytokine 
in AA pathogenesis. It is mainly produced by NK and 
natural killer T (NKT) cells. In the anagen phase hair 
bulb, IFN-γ specifically drives immune response by upre
gulating the expression of MHC I, NKG2D receptors, and 
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chemokine (C-X-C motif) ligands (CXCLs) in HFs.38,39,58 

A positive feedback autoreactivity of IFN-γ-producing 
cells resulted in maintaining lymphocytic infiltration and 
inducing Th1 activities, followed by increasing the disease 
duration and progression.29 Sundberg et al administered 
IFN-γ to C3H/HeJ mice and observed AA-like character
istics over the next 36 days.59 Similarly, an experimental 
study failed to transfer AA-affected skin grafts from C3H/ 
HeJ mice to IFN-γ-deficient mice.60

Semiquantitative reverse-transcriptase PCR (RT-PCR) 
revealed that IFN-γ mRNA was significantly increased in 
AA skin than in normal skin.61 Inhibiting cytokine signal
ing 3, a potent regulator of cytokine signaling, suppressed 
AA by inhibiting CD8+ T cells from producing IFN-γ.35 

Administering IFN-γ antibodies inhibited AA develop
ment in graft recipients.29 Serum IFN-γ levels also posi
tively correlated with the degree of inflammation and 
severity of AA.62 All evidence indicates that even IFN-γ 
alone may cause HF IP collapse.

IFN-γ has also been proposed to inhibit the Janus 
kinase (JAK)/signal transducer and activator of transcrip
tion (STAT) pathways. This inhibits angiogenesis and stem 
cell proliferation and activation in the HF, which results in 
balding.63 An in vitro study using cultured dermal sheath 
cells from C3H/HeJ mice showed that exogenous IFN-γ 
enhanced STAT1 activation.29 It also suggested that IFN-γ 
can influence JAK/STAT signaling to prematurely termi
nate the anagen phase in HFs.39,58

TNF-α
Another pro-inflammatory cytokine implicated in AA 
pathogenesis is tumor necrosis factor (TNF)-α. It is 
secreted primarily by CD4+ and CD8+ T cells and has 
potent anti-proliferative effects on epithelial cells and 
keratinocytes.64,65 In HFs, TNF-α interferes with the hair 
growth cycle, contributing to catagen morphology.66–69 It 
suppresses PDC development and dysregulates IFN-α 
production.55,70 TNF-α induces both IFN-α and IFN-γ 
production, while interfering with keratinocyte differentia
tion and the hair growth cycle.

CXCR3
The C-X-C Motif Chemokine Receptor 3 (CXCR3) and its 
ligands CXCL9, CXCL10, and CXCL11 are chemokine 
products of IFN-induced inflammation.46,71 CXCR3 is 
mainly expressed on Th1, CD4+ T cells, CD8+ T cells, 
NK, and NKT cells, while resident cells, including den
dritic cells, secrete CXCR3 ligands. These chemokines 

induce Th1-mediated immune responses by promoting 
infiltration of cytotoxic T lymphocytes, NK cells, NKT 
cells, and macrophages into HFs.71,72 Some of these cells 
also produce IFN-γ, creating a positive feedback loop by 
stimulating the production of CXCL9, CXCL10, and 
CXCL11.71 Significant increases in CXCR3 and its ligands 
were detected using RT-PCR in 10-week skin grafts where 
AA was induced.46 CXCR3 was also found to be upregu
lated in effector T cells derived from AA skin lesion, while 
the epithelial cells showed an increase in CXCR3 ligand 
expression compared to that in healthy tissues. Moreover, 
inhibition of CXCR3 function with blocking antibodies 
alleviated AA development in skin grafted mice.73

Role of the Th2 Response
In addition to Th1, Th2 immune responses are also regu
lated by the cytokine pathways involved in AA 
pathogenesis.44,74 Both Th1 and Th2 cytokine expression 
have been demonstrated in animal models of AA.75 

Moreover, the significant association between AA and 
atopic diseases, a group of conditions providing predomi
nant Th2-type inflammation, also supports Th2 involve
ment in AA.76 Though Th2 immune responses are not the 
primary pathomechanisms of AA, Th2 detection distin
guishes between AA variants, predicts the prognosis, and 
evaluates treatment efficacy. Th2-dependent expression, 
comprising IL-4, IL-5, IL-6, immunoglobulin (Ig) E, 
C-C motif chemokine ligand (CCL) 17, IL-13, IL-31, 
CCL13, CCL17, CCL18, CCL22, and CCL26, was 
detected in AA patients.74,77–80 A prior study found that 
chronic AA or AU patients had higher serum IgE and IL-4 
levels than those in healthy controls.77 The Th2 cytokines 
IL-13, CCL18, and CCL26 were significantly upregulated 
in AA lesions.74 Song et al observed IL-13, CCL13, 
CCL17, CCL22, and CCL26 expression (all Th2-related 
cytokines) were increased in AA, and that AA severity 
was positively correlated with IL-13 and CCL13 
expression.78 Serum CCL17 is also significant, as it is 
low in patients that respond to AA treatments, moderate 
in mild AA, and high in severe AA.79

Role of Genetics
AA development appears to have a genetic predisposition. 
The heritable incidence of AA ranges from 10%–42%.81–84 

The estimated lifetime risk is ~5%–8% among first-degree 
relatives and 42%–55% in identical twins.85–88 A person’s 
genetic susceptibility to AA is mainly conferred by HLA 
alleles, especially the DQB and DR alleles in chronic AT/ 
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AU.89 In murine models, genetic AA susceptibility was 
found in chromosomes 17 (Alaa1), 9 (Alaa2), 8 (Alaa3), 
and 15 (Alaa4). Only the Alaa1 site on C3H/HeJ mice, 
a strain that spontaneously develops an adult-onset form of 
AA, matched with the HLA locus in humans.90 Additionally, 
non-HLA candidate genes, such as the MICA, influence AA 
susceptibility.91

Genome-wide association studies reported an associa
tion between genetic variants and AA. The data identi
fied variations in several genes controlling Treg cell 
activation and proliferation, including cytotoxic 
T lymphocyte-associated antigen 4, IL-2/IL-21, IL-2 
receptor A (IL-2RA; CD25), and Eos (Ikaros family 
zinc finger 4; IKZF4). Regions containing genes 
expressed in the HF itself (PRDX5 and STX17), were 
associated with AA development. This study also 
demonstrated that ULBP3 gene upregulation on chromo
some 6q25.1 are NKG2D-activating ligands.92 

Furthermore, a follow-up study identified IL13 and 
KIAA0350 as susceptible loci for AA.93 Lastly, the 
gene encoding the lymphoid protein tyrosine phospha
tase (PTPN22), which normally suppresses T-cell prolif
eration, and IL-1 cluster genes (IL-1 receptor antagonist) 
were associated with severe forms of AA.94

Role of Stress
Psychological stress activates the brain-HF (BHA) and 
hypothalamic-pituitary-adrenal (HPA) axes. In BHA, the 
neuropeptide substance P (SP), released from sensory 
nerve fibers, is one of the most effective mediators in 
perifollicular mast cell activation. It inhibits hair growth 
during anagen and facilitates HF regression during 
catagen.95,96 Nerve growth factor (NGF), a potent SP 
releaser, triggers HF keratinocyte apoptosis and downre
gulates keratinocyte growth factor expression.97 Both 
mediators cause neuroinflammation and result in perifolli
cular mast cell degranulation and APC accumulation.

Psychological stress also activates the HPA axis, result
ing in the secretion of corticotropin-releasing hormone 
(CRH), a neuropeptide hormone involved in systemic 
stress responses. In human HFs, CRH promotes the degra
nulation of mast cells, which releases histamine, TNF-α, 
IL-6, and IL-1 into the microenvironment, promoting 
neuroinflammation.98–101 Thus, stress-induced neuroendo
crine factors, including SP, NGF, and CRH, contribute to 
perifollicular neurogenic inflammation followed by the 
collapse of IP in the HFs.14

Role of Environment
Although immunogenetics are the principal factors affect
ing patient susceptibility to AA, environmental factors 
including viral infections, trace elements or micronutri
ents, immunization, and allergies are also thought to influ
ence the disease. After viral infection, Th1 immune 
responses result in supraphysiologic IFN production. 
Using RT-PCR, Skinner et al detected cytomegalovirus 
(CMV) DNA in scalp biopsy specimens from AA patients, 
but not in other hair and scalp diseases.102 Nevertheless, 
further study using in situ hybridization failed to produce 
a correlation between CMV and AA.86,103 In self-reports 
of prior Epstein-Barr virus (EBV) infection, 12 of 6256 
individuals developed AA within 6 months of experiencing 
EBV infection.104 Swine flu virus was also reported to 
induce AA by the overproduction of IFN-γ, contributing 
to Th1 immune hyperactivity.105

A deficiency of trace elements and micronutrients in 
the diet may also trigger the onset of AA by disrupting 
immune functions. Zinc, selenium, folate, and vitamin 
D deficiencies have been suggested to influence AA 
onset. In one meta-analysis, serum levels of zinc and 
selenium were significantly lower in AA patients than in 
controls.106 Moreover, zinc levels were inversely corre
lated with disease duration, the severity of AA, and its 
resistance to therapies.107 In a recent review, serum folate 
and vitamin D levels were lower in AA patients when 
compared to healthy participants. However, inconsistent 
results were found, and additional research may be 
required.

Research into vaccination-induced AA is inconclusive. 
One study reported an association between immunization, 
especially the hepatitis vaccine, and AA.108,109 A case 
series indicated that the recombinant hepatitis B vaccine 
was associated with AA.108 The results of a study using 
a C3H/HeJ mouse model also supported this finding that 
clinical AA developed in older female mice shortly after 
hepatitis B vaccination.109

Atopic diseases such as allergic rhinitis, asthma, and 
atopic dermatitis are also recognized as pathogenic events 
in AA. Several studies demonstrated a significant associa
tion between AA and atopic diseases.76,110,111 

A retrospective study found that 38.2% of AA patients 
had allergic diseases.110 The data from a matched case- 
control study revealed AA patients had a significantly 
higher prevalence of atopic diseases than control 
subjects.111 Li et al detected higher percentages of total 
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IgE and dust mite-specific IgE antibodies in patients with 
early-onset and severe AA.112

Immunotherapies
Current therapeutic modalities for AA include corticoster
oids, topical minoxidil, anthralin, cyclosporine, photoche
motherapy, and contact immunotherapies.113,114 Since 
there are no Food and Drug Administration-approved 
medications for AA, several targeted immune therapies 
have been developed in recent years as new treatment 
options. Pathogenetic factors and immunotherapies of 
AA are summarized in Table 1. Understanding the mole
cular mechanisms of AA permits new insight for develop
ing novel treatments. Some of which have achieved 
remarkable clinical results. Herein, we summarized all 
immune-modulating treatments for AA.

Contact Immunotherapies
Diphenylcyclopropenone (DPCP) and squaric acid dibutyl 
ester are currently considered effective modalities for indu
cing hair growth. After the allergic reaction induced by these 
substances, suppressor T cells are recruited and express 
CD8+ and CD1a+, which inhibit APC migration in affected 
HFs. Moreover, an alteration of cytokine expression levels is 
observed after treatment. Serum IL-2, IL-4, IL-8, IL-10, and 
TNF-α levels are increased after administering topical immu
notherapies, whereas serum IFN-γ, IL-12, and Th17 cytokine 
expression are decreased.115–118 Happle et al reported the 
efficacy of DPCP in 1983,119 and it has since gained popu
larity and is recommended as the first-line topical sensitizer 
for treating AA.120 In the literature, the efficacy of DPCP for 
hair regrowth ranges from 6%–77%.121 The use of DPCP 
combination therapy with anthralin, minoxidil, and imiqui
mod to enhance the therapeutic response was investigated, 
but a wide range of efficacies was reported.122–127 

Additionally, since DPCP treatment protocols may take 
some time to achieve an acceptable treatment response for 
AA, modified protocols have since been established and have 
obtained satisfactory results.128–132

Janus Kinase Inhibitors
Recently, the efficacy of leveraging Janus Kinase inhibi
tors (JAKis) in various autoimmune and hematologic 
diseases has seen increased interest. JAKis are selective, 
competitive inhibitors of adenosine triphosphate-binding 
sites on JAK/STAT.133 It predominantly blocks the 
downstream IFN-γ and γc cytokine receptors and reduces 
the recruitment of CD8+NKG2D+ T cells.29,134 It also 

interferes with Th1 cell and Th17 cell differentiation. 
Notably, activation and proliferation of HF stem cells 
are promoted by JAKis, which accelerates HF reentry 
into the anagen phase.135 Treatment of AA with JAK1/2 
(IFN-γ pathway) and JAK3 (γc cytokines) inhibitors 
showed promising results. The therapeutic efficacy of 
oral tofacitinib and oral ruxolitinib in treating severe 
and recalcitrant AA has an overall response rate of 
30%–75%, with transient and minimal side effects.63,136

Lipid-Lowering Agents
Besides their efficacy in reducing atherosclerotic cardiovas
cular risk, statins are also anti-inflammatory and immunomo
dulatory agents. In vitro and in vivo studies showed that 
statins downregulate Th1 cytokines and upregulate Th2 cyto
kines via modulation of the JAK/STAT pathway. 
Furthermore, it can directly modulate APCs to increase Treg 
cell activation.137 Evidence also suggests that statins down
regulate leukocyte activation, proliferation, differentiation, 
adhesion, and extravasation into target tissues.138 The combi
nation of statins and ezetimibe (non-statin lipid-lowering 
medication) showed promising results with 30%–80% hair 
regrowth in 28% of recalcitrant AA patients.139 However, 
another study reported unsatisfactory results as none of the 
patients achieved hair regrowth.140 The relapse rate was sig
nificantly lower in statin-treated patients than in the control 
group.141 Thus, lipid-lowering agents, when combined with 
other therapies, show promise for preventing disease relapses; 
however, further studies to elucidate this are required.

Phosphodiesterase-4 Inhibitors
Apremilast, a selective phosphodiesterase-4 (PDE4) inhibi
tor, has been shown to inhibit the production of IFN-γ and 
downregulate target organ MHC class II expression.142 In 
humanized mouse models, the injection of apremilast into 
skin grafts decreased IFN-γ and TNF-α production.143 

Nonetheless, treatments on moderate to severe AA and 
recalcitrant AA showed unsatisfactory results as most 
patients failed to achieve hair regrowth.144,145 Despite the 
selective inhibition of PDE4, there is no evidence supporting 
the efficacy of apremilast in AA treatment.

Interleukin 2
IL-2 modulates Treg activity in vivo through a STAT- 
dependent mechanism.146 Castela et al investigated the 
efficacy of low-dose recombinant IL-2 injections in five 
severe AA patients. All patients showed partial hair 
regrowth without serious adverse events, and 
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Table 1 Pathogenetic Factors and Targeted Immunotherapies of Alopecia Areata

Pathogenetic 
Factors

Roles Immunotherapies Mechanism of Treatment

Autoantigens ● Stimulating autoreactive cytotoxic 

T lymphocytes

● Not available -

Immune cells

- CD8+NKG2D+ 

T cells
● Increasing the production of IFN-γ and γ- 
chain cytokines via JAK/STAT pathway 

● Inducing apoptotic cell death by producing 
GZMB

● Anti-CD2 ● Binding with CD2, causing deactivation of T cells 
● Inducing apoptosis in both CD4+ and CD8+ 

memory T cells

● Anti-CD11a ● Inhibiting T cell activation and migration

- Th17 cells ● Secreting proinflammatory cytokines (IL- 

17, IL-22, and IL-23)

● Contact 

immunotherapy

● Decreasing the level of IFN-γ, IL-12, and Th17 

cytokines 

● Reducing the inflammatory cells 
● Disturbing APCs migration

● Anti-IL-12/IL-23 ● Inhibiting Th1 differentiation, proinflammatory 
cytokines, and Th17 cell proliferation

- Treg cells ● Suppressing excessive lymphocyte activity ● Statins ● Downregulating Th1 cytokines and upregulating 
Th2 cytokines via modulation of the JAK/STAT 

pathway 

● Increasing activated Treg cells 
● Inhibiting of leukocyte adhesion and extravasation 

into HF

● Low-dose IL-2 ● Recruiting Treg cells (CD4+CD25+FoxP3+)

- PDCs ● Producing type 1 IFN (IFN-α and β) 
through TLR7 and TLR9 stimulation

● Not available -

Cytokines

- IFN-γ ● Inducing MHC expression that stimulates 

NKG2D receptors 
● Signaling through JAK/STAT pathway which 

helps promoting adaptive immune response

● JAKis ● Terminating T cell-mediated immune response 

● Blocking IFN-γ signaling and γ-chain cytokines 
● Restoring anagen phase of the hair follicle

● PDE4 inhibitors ● Reducing IFN-γ by upregulation of cAMP 
● Downregulating MHC class II expression

● Anti-IFN-γ ● Blocking IFN-γ which leads to the downregulation 
of MHC expression and immune-cell recruitment

- TNF-α ● Providing anti-proliferative effect on 
epithelial cells and keratinocytes 

● Abrogating hair growth and inducing 

catagen phase of HF 
● Suppressing the development of PDCs

● Anti-TNF-α ● Activating Treg cells 
● Inhibiting proinflammatory cytokines such as IFN-γ, 

IL-6, and IL-1

- CXCR3 ● Promoting Th1-mediated immune 
responses by the accumulation of immune 

cells

● Not available -

Th2 immune 
response

● Under investigation ● Not available -

Abbreviations: APCs, antigen presenting cells; cAMP, cyclic adenosine monophosphate; CXCR3, C-X-C Motif Chemokine Receptor 3; GZMB, granzyme B; HF, hair follicle; 
IFN, interferon; IL, interleukin; JAK, Janus kinase; JAKi, Janus kinase inhibitors; MHC, major histocompatibility complex; NK, natural killer; PDCs, plasmacytoid dendritic 
cells; PDE, phosphodiesterase; Treg cells, regulatory T cells; STAT, signal transducer and activator of transcription; Th cells, T-helper cells; TNF, tumor necrosis factor; TLR, 
Toll-like receptor.
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immunochemical analysis revealed a significantly 
increased number of Treg cells in the majority of patients 
(80%).147 One explanation for the partial hair growth 
response is that IL-2 not only suppresses autoimmune 
responses by Treg activation but also worsens AA by 
increasing NK cell activity.148

Anti-IFN-γ Antibodies
Blocking major inflammatory cytokines may reduce MHC 
expression and immune cell recruitment. Anti-IFN-γ ther
apy is proposed to treat several autoimmune diseases, 
including AA. AA patients observed hair regrowth after 
administration with anti-IFN-γ antibodies, while AT and 
AU patients were non-responders.149

Anti-TNF-α
The anti-TNF-α biologic, etanercept, blocks TNF-α- 
mediated processes. It functions to activate Treg cells 
and inhibit pro-inflammatory cytokines. Despite the theo
retical benefit, various clinical trials showed it has unde
sirable effects.150 Moreover, some cases showed 
progressive balding due to activation of self-reactive 
T cells, which means that patients treated with anti-TNF 
-α may develop further immune-mediated skin lesions 
such as psoriasis, granuloma annulare, vasculitis, and 
AA.151,152

Anti-IL-12/IL-23
Ustekinumab is a human Ig monoclonal antibody that 
binds with the p40-subunit of IL-12 and IL-23. Blocking 
these cytokines downregulated Th1 differentiation, pro- 
inflammatory cytokines, and Th17 cell proliferation.153 

However, minimal improvements in extensive AA and 
pediatric AA were noted, while other patients even 
reported developing AA after initiating 
ustekinumab.154–156

Anti-CD2
Alefacept is a recombinant fusion protein of lymphocyte 
function-associated antigen-3 (LFA-3) and an IgG dimer 
that acts to inactivate T cells by binding to CD2. It also 
induces apoptosis in both CD4+ and CD8+ memory effec
tor T lymphocytes.157 There was a partial response after 
using alefacept in one patient.158 However, a randomized 
controlled trial (RCT) demonstrated unsuccessful treat
ment with an insignificant lowering of CD4+ count in 
severe AA patients.159

Anti-CD11a
Efalizumab inhibits the interaction of CD11a, which 
blocks T-cell activation and migration. In theory, it was 
proposed to attenuate AA. There are case reports of recal
citrant AT and long-standing AU patients that responded to 
efalizumab with no side effects.160,161 Nevertheless, in an 
RCT, the results revealed no differences from placebo.162

Conclusion
Multiple immunomodulators are involved in the pathogen
esis of AA, including autoantigens, inflammatory cells, 
cytokines, and chemokines. IP maintains the HF microen
vironment to protect the regenerative capability of HFs. 
The collapse of HF IP is the key factor contributing to 
disease. While AA constitutes an example of autoimmune 
hair loss, the underlying causes of HF IP collapse may be 
more important. Despite the complex disease etiology and 
our incomplete understanding of the relationship between 
these factors and hair loss, we presume that genetic pre
disposition, stress, and environmental factors affect 
immune activation and influence AA occurrence.163–169 

Further, novel targeted therapies that treat AA have been 
reviewed. However, a complete response without relapse 
remains challenging. Understanding the underlying 
mechanisms may shed light on our future understanding 
of AA pathogenesis as well as new and effective strategies 
for the management of this disease.
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