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Inhibition of UV-Induced Stress Signaling and
Inflammatory Responses in SKH-1 Mouse Skin
by Topical Small-Molecule PD-L1 Blockade

Sally E. Dickinson'”"*, Prajakta Vaishampayan', Jana Jandova'~, Yuchen (Ella) Ai',
Viktoria Kirschnerova', Tianshun ZhangS, Valerie Calvert®, Emanuel Petricoin 111°, H-H. Sherry Chow'”,
Chengcheng Hu'"?, Denise Roe'®, Ann Bode”, Clara Curiel-Lewandrowski'**? and Georg T. Wondrak'-**

The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also
hold promise for preventive intervention targeting solar UV light—induced skin damage. In this study, we have
explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharma-
cological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using
immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that
PD-L1 is upregulated in cutaneous squamous cell carcinoma. Topical application of the small-molecule PD-L1
inhibitor BMS-202 significantly attenuated UV-induced activator protein-1 transcriptional activity in SKH-1
bioluminescent reporter mouse skin, also confirmed in human HaCaT reporter keratinocytes. RT-qPCR anal-
ysis revealed that BMS-202 antagonized UV induction of inflammatory gene expression. Likewise, UV-induced
cleavage of procaspase-3, a hallmark of acute skin photodamage, was attenuated by topical BMS-202. Nano-
String nCounter transcriptomic analysis confirmed downregulation of cutaneous innate immunity- and
inflammation-related responses, together with upregulation of immune response pathway gene expression.
Further mechanistic analysis confirmed that BMS-202 antagonizes UV-induced PD-L1 expression both at the
mRNA and protein levels in SKH-1 epidermis. These data suggest that topical pharmacological PD-L1 antago-

nism using BMS-202 shows promise for skin protection against photodamage.
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INTRODUCTION
Nonmelanoma skin cancer, primarily comprised of cuta-
neous squamous cell carcinoma (cSCC) and basal cell
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carcinoma, is the most common malignancy worldwide
(Madan et al, 2010). Diagnosis and treatment of these kera-
tinocytic neoplasms result in healthcare costs of $8.1 billion
per year in the United States (Guy et al, 2015). Cutaneous
exposure to solar UVR is the lead causative factor in skin
carcinogenesis, and inflammatory dysregulation is an
accepted key mechanism underlying the detrimental effects
of acute and chronic UV exposure (Cadet et al, 2012;
Clydesdale et al, 2001; Rhodes et al, 2009; Wondrak et al,
2006). We are interested in pursuing molecular methods to
prevent and treat cSCCs, which account for 20% of all
nonmelanoma skin cancers and kill more than 15,000 people
a year (Karia et al, 2013; Mansouri and Housewright, 2017).

PD-L1 (also known as CD274 or B7-H1) is a transmembrane
protein involved in the regulation of T-cell responses. Binding
of PD-L1 to its receptor, PD-1, on the surface of T cells sup-
presses T-cell proliferation and activity, an interaction often
referred to as an immune checkpoint. The PD-1/PD-L1 inter-
action as a negative regulator of immune cell activation (and
therefore an effector of immune evasion) is now an established
target in the cancer therapy field.

Expression of PD-1 is typically restricted to immune cells
(including T cells, B cells, and NK cells), and immunother-
apies using systemic mAbs against PD-1 have been approved
for many advanced malignancies, including cSCC, basal cell
carcinoma, and melanoma (Blum et al, 2018; Constantinidou
et al, 2019; Vaishampayan et al, 2023). In contrast, PD-L1 is
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either basally expressed or inducible in most cells of the
body. Overexpression of PD-L1 in ¢SCC is common, and
recent literature has shown a correlation between increased
PD-L1 expression and advanced clinical risk assessment in
these tumors (Dickinson et al, 2021; Schaper et al, 2017;
Slater and Googe, 2016; Stravodimou et al, 2021). In addition
to PD-1—directed interventions, blockade of PD-L1 by im-
munotherapeutics is now used clinically in many types of
cancer (including melanoma and basal cell carcinoma) and is
being studied for use as adjuvant therapy for treatment of
cSCC (Lin et al, 2021; Vaishampayan et al, 2023).

In normal skin, PD-L1 expression has been studied exten-
sively in mouse models and only recently in human samples.
The PD1/PD-L1 pathway is critical for regulating skin
inflammation, and PD-L1 on keratinocytes has been shown to
regulate autoimmunity (Imai et al, 2015; Okiyama and Katz,
2014). Transgenic overexpression of PD-L1 in mouse kerati-
nocytes has been shown to reduce acute skin inflammatory
responses, yet increase the rates of skin tumorigenesis and
risk of death after skin stimulation with a chemical carcin-
ogen (Cao et al, 2011a). Thus, others have suggested that PD-
L1 in keratinocytes may allow for resolution of inflammatory
signaling upon acute stress in the skin while paving the way
for immune evasion of precancerous cells during skin cancer
progression (Cao et al, 2011h).

Although little is known about the overall trajectory of PD-
L1 expression during the development of cSCC, there is ev-
idence that this ligand may have the potential as a target for
skin cancer prevention strategies (Cao et al, 2011b;
Malaspina et al, 2011; Ritprajak and Azuma, 2015). Recent
evidence indicates that exposure to acute UV through solar-
simulated light (SSL) in human and mouse skin causes sig-
nificant upregulation of PD-L1 protein in epidermal kerati-
nocytes from its low baseline expression levels. This suggests
that a primary environmental causative factor driving skin
carcinogenesis, UV light, is sufficient to modulate PD-L1 in
the epidermis (Dickinson et al, 2021). In this study, we pre-
sent evidence that PD-L1 expression is increased in chroni-
cally sun-damaged, noncancerous human skin, thus
supporting the role of PD-L1 as a potential target for immu-
noregulation and skin cancer prevention. Although clinically
relevant mAbs to PD-L1 are effective for systemic treatment
of existing tumors, antibodies are not ideal for preventive
strategies or for topical application to at-risk areas. We
therefore tested whether topical application of a PD-
L1—specific small-molecule pharmacological inhibitor, BMS-
202, can affect UV-induced stress responses in vitro and in
mouse skin. Our findings provide evidence that topical BMS-
202 provides protection against UV-induced inflammatory
stress responses in acutely treated skin, an effect that is also
associated with downregulation of UV-induced keratinocytic
PD-L1 expression.

RESULTS

PD-L1 expression is significantly increased in human cSCC

as well as sun-damaged epidermis compared with that in
sun-protected skin

First, differential PD-L1 expression in human skin comparing
normal skin with cSCC was examined by immunohisto-
chemical (IHC) analysis using an in-house library of banked
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clinically annotated specimens. Immunohistochemistry of
PD-L1 in normal sun-protected (SP) skin was compared with
that from samples of low-risk or high-risk cSCCs. Determi-
nation of cSCC risk status was defined by pathological
microanatomical assessment of each tumor specimen.
Epidermal or tumor percentage staining was scored by a
board-certified dermatopathologist (Figure Ta and b).
Although normal human epidermis shows no PD-L1 expres-
sion, low-risk and high-risk cSCCs significantly upregulate
this immune checkpoint protein, an observation consistent
with earlier reports (P < .001) (Dickinson et al, 2021).

To test whether PD-L1 upregulation by UV exposure oc-
curs early in the progression from normal skin to cSCC, we
also examined human biopsies of chronically sun-damaged
skin. Immunohistochemistry of clinically assessed sun-
damaged skin samples revealed a mild upregulation of
PD-L1 detectable in basal keratinocytes of the epidermis
(Figure Tc). Further analysis of epidermal lysates from a
second set of skin samples was performed using reverse-
phase protein array (RPPA) to more quantitatively measure
PD-L1 protein expression changes. PD-L1 analysis included
biopsies from clinically assessed SP, mild sun-damaged,
moderate sun-damaged, or severe sun-damaged skin. A
waterfall plot depiction of these results illustrates the clus-
tering of the majority of SP samples characterized mostly by
low PD-L1 expression, whereas the sun-damaged samples
exhibited higher PD-L1 expression (Figure 1d, left). Box and
whisker plot depiction indicates that sun-damaged
epidermis expresses significantly more PD-L1 than SP
epidermis (Figure 1d, right) (P < .0001), whereas PD-L1
expression between sun-damaged subgroups did not differ
significantly. Furthermore, analysis of additional samples
derived from the same donor set, exposed to acute SSL (2
MED) and then RPPA probed for PD-L1 expression, revealed
statistically significant PD-L1 upregulation in response to
UV that occurred irrespective of SP or sun-damaged status
(data not shown).

The PD-L1 antagonist BMS-202 blocks UV-induced
AP-1—responsive stress signaling, expression of

inflammatory mediators, and apoptosis in mouse skin

A recent report has indicated that acute SSL exposure causes
strong stimulation of epidermal PD-L1 expression in mouse
and human skin as assessed by immunohistochemistry
(Dickinson et al, 2021). Because the sun-damaged skin
mentioned earlier indicates that PD-L1 upregulation may
occur early in the etiology of skin cancer progression, we
were interested in assessing whether topical pharmacological
inhibitors of PD-L1 could affect UV responses in the skin.
Among numerous small-molecule PD-L1 antagonists avail-
able commercially, after screening on the basis of physico-
chemical properties (absence of UVA/UVB absorbance [data
not shown], favorable logP [3.6], minimal systemic avail-
ability upon topical application, lack of cellular toxicity, and
prior systemic use in animal models), we selected BMS-202
as a potent nonpeptidic inhibitor to examine how blocking
the activity of PD-L1 would affect skin UV responses
(Figure 2a) (all pharmacokinetic data to be published else-
where) (Ashizawa et al, 2019; Guzik et al, 2017; Zak et al,
2017).
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The activator protein-1 (AP-1) transcription factor plays a
part in normal cellular metabolism but is also stimulated in
response to cellular stressors, including environmental UV
exposure (Cooper and Bowden, 2007; Dickinson et al, 2009;
Shaulian and Karin, 2001; Snell et al, 2023; Zhong et al,
2001). Notably, PD-L1 is regulated by several transcription
factors and signaling pathways known to be stimulated by
UV, including AP-1 (Green et al, 2012; Ritprajak and Azuma,
2015). We maintain transgenic mice that harbor a ubiqui-
tously expressed luciferase reporter gene under the control of
the AP-1 transcription factor-driven TPA-Response Element.
This transgene has been bred onto the outbred SKH-1 hairless
immunocompetent mouse line and displays a luciferin-
dependent bioluminescent response when exposed to UV
light. This model is a valuable tool for testing topical agents
in vivo for their stimulatory or inhibitory effects on stress
responses in the skin (Jandova et al, 2021; Snell et al, 2023).
We therefore treated these AP-1 reporter mice topically with
either vehicle or BMS-202, with or without subsequent UVB
exposure. Mice were imaged for bioluminescence using
luciferin injection 24 hours later. Notably, BMS-202 signifi-
cantly inhibited the UV-induced AP-1—related inflammatory
stress response, causing an almost 5-fold attenuation in

Log, baseline PD-L1 in epidermis
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Figure 1. PD-L1 expression in human
skin increases as a function of cSCC
progression and is detectable in SD
versus SP skin. (a) PD-L1 expression
from a clinical cohort stratified as
normal skin, low-risk cSCC, or high-
risk cSCC (IHC; 9 representative donor
specimens, bar = 100 pm, analysis
performed as previously published
[Dickinson et al, 2021]). (b)
Quantitative analysis of tissue staining
(panel A), normal skin: n = 20, low-
risk SCC: n = 40, and high-risk SCC:
n =31 (**P < .001, Kruskal—Wallis
nonparametric data analysis). (c) PD-
L1 expression in SD skin (IHC; bar =
100 pm, 3 representative donors). (d)
Proteomic (RPPA) analysis of PD-L1
expression in human epidermal
samples stratified by SD status (SP or
SD). Left: waterfall plot depicting
epidermal PD-L1 expression per
human skin biopsy; right: box-and-
whisker depiction indicating median
(line in box) with interquartile range as
well as maximum and minimum
values (***P < .001). See Materials
and Methods for clinical details.
¢SCC, cutaneous squamous cell
carcinoma; IHC,
immunohistochemistry; RPPA,
reverse-phase protein array; SCC,
squamous cell carcinoma; SD, sun
damaged; SP, sun protected.
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bioluminescent signal intensity (Figure 2b). We also
confirmed this response in vitro using HaCaT human kerati-
nocytes stably transfected with the AP-1—responsive lucif-
erase construct (Chen et al, 1998), which also showed
significant inhibition of UVB-induced signal intensity as a
consequence of BMS-202 treatment (Figure 2c).

After the AP-1 luciferase assays mentioned earlier, we also
probed the expression of select inflammatory and immune-
related genes by independent RT-gPCR analysis of SKH-1
mouse skin, which had been treated with vehicle + SSL or
8 mM BMS-202 + SSL and harvested 24 hours later. These
analyses included cytokines (11183, Il6, 1110, Tnfe) and other
inflammatory mediators (Ptgs2, TIr4), all of which displayed
strong downregulation of UV-induced expression as a result
of BMS-202 treatment (Figure 2d).

Next, we probed for SSL-induced induction of epidermal
cell death by IHC staining for cleaved caspase-3, an estab-
lished marker of UV-induced apoptotic cell death observable
in SKH-1 mouse skin (Dickinson et al, 2011; Janda et al,
2016). As expected, staining intensity was negligible in
control samples, whereas exposure to vehicle + SSL dis-
played dramatic stimulation of cleaved caspase-3 at
24 hours. Remarkably, treatment with BMS-202 led to a
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Figure 2. Topical application of the PD-L1 inhibitor BMS-202 antagonizes SSL-induced stress signaling, inflammatory gene expression, and caspase-3 cleavage
in SKH-1 mouse skin. (@) BMS-202 molecular structure. (b) Bioluminescent AP-1 reporter mice display SSL-induced inflammatory signaling suppressed by

topical BMS-202 (8 mM). Top: representative transgenic AP-1 luciferase SKH-1 reporter mice. Bottom: quantification of bioluminescence intensity. All groups
(n = 3) were treated with vehicle (acetone) or vehicle + BMS-202. (c) BMS-202 suppression of inflammatory signaling in AP-1 luciferase reporter HaCaT cells
(representative of 3 independent experiments; 3 experimental replicates per group). (d) Gene-specific gene expression analysis by RT-qPCR indicates BMS-202
suppression of SSL-induced genes in SKH-1 mouse skin (n = 3 mice per group). (e) BMS-202 suppression of SSL-induced caspase-3 cleavage—representative
skin images (left, bar = 100 pm) and quantification (right, n = 3 mice per group). Bar graphs depict mean & SD (**P < .001 and *** P < .0001). AP-1, activator

protein-1; SSL, solar-simulated light.

significant reduction in epidermal positivity for this apoptotic
marker, reducing the percentage of epidermal cells staining
positive for cleaved caspase-3 from over 60% to approxi-
mately 10% (Figure 2e).

Topical BMS-202 treatment suppresses UV-associated gene
expression changes in SKH-1 mouse skin as identified by
NanoString transcriptomic analysis

Next, to more broadly assess the consequences of topical
BMS-202 treatment on gene expression in UV-exposed SKH-
1 mouse skin, NanoString nCounter analysis using the
nCounter Mouse Inflammation V2 panel (probing 254 genes
for focused screening of the inflammation and immune
response, including 6 internal reference controls) was per-
formed. To this end, SKH-1 mice were treated topically with
8 mM BMS-202 or carrier and exposed to SSL as described in
the Materials and Methods, and comparative NanoString
expression analysis was performed 24 hours after irradiation.
Overall expression analysis employing heatmap (z-score) and
volcano plot depictions show significant changes between
the treatment groups (Figure 3).

Clustered analysis of statistically significant expression
changes indicated that 75 genes displayed BMS-202
responsiveness in SKH-1 mouse skin (>4-fold differential vs
vehicle control [upregulated: 23; downregulated: 52])
(tabular summary is presented in Tables 1 and 2). Using
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nCounter Advanced Analysis software, overall (Figure 4a and
b) and single pathway score profiling identified specific UV-
responsive gene expression networks differentially modu-
lated as a function of BMS-202 treatment (Figure 4c).
Remarkably, major pathways known to be activated in the
skin upon exposure to solar UV were downregulated in
response to BMS-202, including activation of NF-kB, innate
immune response, chemokine activity, inflammatory
response, and angiogenesis. In contrast, immune response,
known to be antagonized by solar UV exposure, was upre-
gulated in UV-exposed skin as a consequence of BMS-202
treatment (Figure 4c). Expression heatmaps including gene
identity assigned to the inflammatory response and immune
response by nCounter pathway analysis are depicted in
Figures 5 and 6, respectively.

Consistent with these pathway score analyses, down-
regulated expression in response to BMS-202 treatment
impacted genes (fold downregulation) in the following do-
mains, among others: signal transducer and activator of
transcription signaling (signal transducer and activator of
transcription 1 gene Stat7 [2.8], signal transducer and acti-
vator of transcription 2 gene Stat2 [2.5], signal transducer and
activator of transcription 3 gene Stat3 [7.4]), AP-1 signaling
(Fos [4.11, Jun [5.9]), other transcription factors (Myc [3.3],
Nf2el2 [3.5], Hifla [9.6], Nfatc3 [4.1]), MAPK signaling
(Raf1 [5.7], Racl [7.3], Gnas [11.5], Gnb1 [5.8], Mapk8
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[3.1], MapkT [3.71, Map3k7 [3.7], Map3k1 [4.5], Mapkapk2
[5.11, Map2k1 [5.8], Mapki4 [5.9], Mapk3 [6.3], Map3k5
[6.4], Map2k4 [6.4]), inflammation and tissue remodeling
(Nfkb1 [5.9], matrix metalloproteinase 9 gene Mmp9 [8.2],
matrix metalloproteinase 3 gene Mmp3 [3.8], Ptgs1 [3.1],
Ptgs2 [1.7], Tgfb1 [13.3], Tgfb3 [2.7], Pdgfa [5.2]), innate
immune signaling (TIr2 [2.4], TIr8 [3.4], Myd88 [2.71, Ly96
[coreceptor of Tlr4; 11.0]), and chemokine and cytokine
signaling (Il1b [2.9], 1r1 [5.5], llTrap [3.6], ll6ra [3.4],
1110rb [3.2], 1118 120.0], Cxcl1 [4.1], Cxcl5 [11.6], Ccl7 [8.1],
Ccl2 15.3], Ccl3, Ccl8 15.0], ll6ra [3.4]) (Table 1).

Genes displaying upregulated expression by at least 4-fold
in response to BMS-202 exposure compared with those for
vehicle + SSL included IFN-related immune mediators (I/fna
[89.3], Ifnb1 [16.4], Ifng [10.6], Ifi44 [5.2]), ILs (1[21 [50.1],
119 [28.9], 1123a [6.5]), chemokines (Ccr3 [20.5], Cxcl10
[4.3]), and other immune factors (Defars1 [51.0], C8b [26.2],
C9 [18.6], MbI2 [15.7], TIr9 [8.3], Nos2 [6.1], Tnfsf14 [4.8])
(Table 2).

BMS-202 suppresses UV-induced PD-L1 expression in
cultured human keratinocytes and mouse epidermis

Given the pronounced UV responsiveness of epidermal PD-
L1 expression detected in previous studies using mouse and
human skin (Dickinson et al, 2021) and the remarkable
inhibitory effects of BMS-202 on UV-induced stress re-
sponses, we next tested the effects of BMS-202 on UV-
induced cutaneous PD-L1 expression.

Remarkably, treatment with BMS-202 blocked SSL-
induced PD-L1 expression in HaCaT keratinocytes at the
mRNA and protein level (Figure 7a and b), an observation
that was reproducible in human primary keratinocytes in
culture (HEKa cells (Figure 7c). Immunoblot analysis using
SKH-1 mouse epidermis confirms that PD-L1 protein, found
at low levels in untreated skin, becomes strongly induced 24
hours after SSL exposure (Figure 7d). Strikingly, topical BMS-
202 significantly antagonized UV-induced PD-L1 upregula-
tion at the protein level in the SKH-1 mouse epidermis
(Figure 7e). This antagonistic effect is more pronounced if the
compound is applied before and after UV. Importantly, IHC
staining for PD-L1 confirms epidermal stimulation of this
protein by acute SSL and its pronounced inhibition by BMS-

202 topical application (24 hours after SSL harvest)
(Figure 7f). This inhibition also occurs at the transcriptional
level as assessed in full-thickness mouse skin by RT-qPCR
(Figure 7g).

DISCUSSION

Immunotherapeutics have played a critical role in advancing
the treatment of many malignancies, including high-risk skin
cancers. The PD-1/PD-L1 immune checkpoint has been
investigated in much detail, and recent literature has shown
that cSCC is among the many tumor types to overexpress PD-
L1 (Dickinson et al, 2021; Vaishampayan et al, 2023; Zerdes
et al, 2018). In contrast, given the keratinocytic origin of
cSCC, the responsiveness of epidermal PD-1/PD-L1 expres-
sion to carcinogenic environmental stressors (including solar
UV light) remains poorly explored, and the effects of PD-1/
PD-L1 modulation on skin photodamage are equally un-
known. Given that antibody-based modulation of the PD-1/
PD-L1 immune checkpoint is now firmly established for
therapeutic interventions targeting malignancies, there is an
unexplored opportunity for molecular approaches aiming at
skin photoprotection and immunoprevention of skin cancer
(Umar, 2014).

Therefore, we first examined PD-L1 expression in human
epidermis both as a function of chronic sun exposure (SP vs
sun damaged) and tumorigenesis (cSCC). Consistent with
earlier published observations, these data indicate that PD-L1
is upregulated in cSCC (Figure 1a and b) (Dickinson et al,
2021). Using a proteomic approach (RPPA) allowing for
high-sensitivity quantification of human tissue analytes, we
then observed that PD-L1 expression is upregulated signifi-
cantly in sun-damaged skin compared with that in SP skin, an
observation indicative of chronic UV-induced PD-L1 induc-
tion before epidermal tumorigenesis (Figure 1c and d).

On the basis of the observation that PD-L1 expression
displays UV responsiveness in human skin, we undertook an
examination of the effects of PD-L1 antagonism on acute
consequences of cutaneous solar UV exposure. To this end,
we selected BMS-202, a small-molecule PD-L1 antagonist
amenable for topical use in SKH-1 mouse skin (Figure 2a).
Strikingly, UV-induced reporter gene expression controlled

www.jidinnovations.org


http://www.jidinnovations.org

SE Dickinson et al.
Topical PD-L1 Inhibition Targeting UV-Induced Skin Damage

Table 1. Genes Downregulated in BMS-202 + SSL Skin Relative to Those in SSL Control (NanoString Analysis)

Gene Gene ID Gene Name Fold Change P-Value
Irf1 16362 IFN regulatory factor 1 —4.1 1.47E-06
Nfatc3 18021 Nuclear factor of activated T cells, calcineurin dependent 3 —4.1 2.50E-05
Cxcl1 14825 Chemokine (C-X-C motif) ligand 1 —4.1 6.68E-06
Fos 14281 FBJ osteosarcoma oncogene —4.1 1.95E-05
Oasla 246730 2'-5' oligoadenylate synthetase 1A —4.3 1.71E-05
Tcf4 21413 Transcription factor 4 —4.4 7.84E-06
Trem2 83433 Triggering receptor expressed on myeloid cells 2 —4.5 7.51E-07
Clqga 12259 Complement component 1, g subcomponent, alpha —4.5 2.91E-06
Grb2 14784 GF receptor bound protein 2 —4.5 1.30E-04
Map3k1 26401 Mitogen-activated protein kinase 1 —4.5 2.21E-04
Cdc42 12540 Cell division cycle 42 —4.6 7.29E-09
Tyrobp 22177 TYRO protein tyrosine kinase binding protein —4.9 7.68E-08
Nr3cl 14815 Nuclear receptor subfamily 3, group C, member 1 —4.9 1.08E-05
Ccl8 20307 Chemokine (C-C motif) ligand 8 —5.0 8.38E-06
Nod?2 257632 Nucleotide-binding oligomerization domain containing 2 —5.1 1.15E-04
Pdgfa 18590 Platelet-derived growth factor, alpha -5.2 2.52E-07
Mapkapk2 17164 MAP kinase-activated protein kinase 2 —5.2 2.01E-06
Ccl2 20296 Chemokine (C-C motif) ligand 2 —5.3 1.22E-07
Mrcl 17533 Mannose receptor, C type 1 —5.4 2.24E-06
1ir1 16177 IL-1 receptor, type | —5.5 5.11E-06
Raf1 110157 v-Raf-leukemia viral oncogene 1 —5.7 7.03E-06
Gnb1 14688 Guanine nucleotide binding protein (G protein), beta 1 —5.8 1.42E-07
Map2k1 26395 Mitogen-activated protein kinase 1 —5.8 5.49E-08
Mapk14 26416 Mitogen-activated protein kinase 14 -5.9 2.33E-06
Nfkb1 18033 NF-kappaB1, p50/p105 —5.9 2.59E-06
Rhoa 11848 Ras homolog family member A —5.9 5.95E-07
Jun 16476 Jun proto-oncogene -5.9 1.97E-06
C4a 625018 Complement component 4A -5.9 4.41E-07
Mapk3 26417 Mitogen-activated protein kinase 3 —6.3 2.30E-07
Map3k5 26408 Mitogen-activated protein kinase 5 —6.4 2.86E-05
Map2k4 26398 Mitogen-activated protein kinase 4 —6.4 3.72E-08
Ract 19353 Rac family small GTPase 1 -7.3 1.92E-08
Shct 20416 src homology 2 domain-containing transforming protein C1 —7.4 1.09E-05
Stat3 20848 Signal transducer and activator of transcription 3 —7.4 6.97E-09
Ccl7 20306 Chemokine (C-C motif) ligand 7 -8.1 2.23E-04
Itgh2 16414 Integrin beta 2 -8.2 1.52E-06
Mmp9 17395 Matrix metallopeptidase 9 —8.2 4.35E-06
Cebpb 12608 CCAAT/enhancer binding protein (C/EBP), beta —8.3 2.18E-06
c3 12266 Complement component 3 -9.0 2.68E-07
Cxcl3 330122 Chemokine (C-X-C motif) ligand 3 -9.1 2.48E-05
Hifla 15251 Hypoxia-inducible factor 1, alpha subunit -9.6 2.24E-08
Cfl1 12631 Cofilin 1, non-muscle -10.8 3.04E-09
Ly96 17087 Lymphocyte antigen 96 -11.0 3.59E-05
Gnas 14683 Guanine nucleotide binding protein, alpha stimulating —11.5 1.31E-06
Cxcl5 20311 Chemokine (C-X-C motif) ligand 5 —11.6 1.65E-07
Ppp1ri2b 329251 Protein phosphatase 1, regulatory subunit 12B —12.1 1.54E-05
Bclé 12053 B-cell leukemia/lymphoma 6 -12.8 2.85E-05
Tgfb1 21803 Transforming GF, beta 1 —13.3 2.02E-05
H2-Eb1 14969 Histocompatibility 2, class Il antigen E beta —14.2 5.42E-08
Fxyd2 11936 FXYD domain-containing ion transport regulator 2 —17.0 3.07E-05
118 16173 IL-18 —20.0 6.86E-06
Mef2c 17260 Myocyte enhancer factor 2C —64.9 7.36E-05

Abbreviations: ID, identification; SSL, solar-simulated light.
Fold changes with adjusted P-values are reported.

by AP-1 transcriptional activity was strongly suppressed by  keratinocytic inflammatory UV responses, gene-specific RT-

topical BMS-202 in vivo (Figure 2b), a result also confirmed  qPCR—based expression

analysis

indicated attenuated

in vitro (Figure 2c). Consistent with BMS-202 suppression of  expression of genes, including 116, I[10, Il1b, Tnf, Ptgs2
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Table 2. Genes Upregulated in BMS-202 + SSL Skin Relative to Those in SSL Control (NanoString Analysis)

Gene Gene ID Gene Name Fold Change P-Value
Ifnal 15962 IFN alpha 1 89.3 1.58E-05
Defa-rs1 13218 Defensin, alpha, 29 51.0 9.12E-06
121 60505 IL21 50.1 7.69E-06
MxT 17857 MX dynamin-like GTPase 1 36.2 3.37E-06
119 16198 IL9 28.9 3.24E-05
C8b 110382 Complement component 8, beta polypeptide 26.2 3.64E-05
Crp 12944 C-reactive protein, pentraxin-related 23.9 3.08E-06
Ccer3 12771 Chemokine (C-C motif) receptor 3 20.5 2.98E-05
c9 12279 Complement component 9 18.6 1.81E-05
Ifnb1 15977 IFN beta 1, fibroblast 16.4 3.73E-06
MbI2 17195 Mannose-binding lectin (protein C) 2 15.7 5.08E-05
Kng1 16644 Kininogen 1 14.9 1.58E-05
Cysltr2 70086 Cysteinyl leukotriene receptor 2 14.4 1.66E-04
Ifng 15978 IFN gamma 10.6 5.95E-05
Chi3[3 12655 Chitinase-like 3 10.5 4.86E-07
TIr9 81897 Toll-like receptor 9 8.3 2.54E-04
1123a 83430 IL 23, alpha subunit p19 6.5 3.23E-04
Nos2 18126 Nitric oxide synthase 2, inducible 6.1 8.12E-04
Mx2 17858 MX dynamin-like GTPase 2 5.3 3.00E-04
Ifi44 99899 IFN-induced protein 44 5.2 3.77E-03
Tnfsf14 50930 TNF superfamily, member 14 4.8 3.15E-03
Cxcl10 15945 Chemokine (C-X-C motif) ligand 10 4.3 4.06E-04
Tslp 53603 Thymic stromal lymphopoietin 4.3 2.15E-06

Abbreviations: ID, identification; mmp9, matrix metalloproteinase 9; SSL, solar-simulated light.

Fold changes with adjusted P-values are reported.

(encoding cyclooxygenase-2), and Tlr4 (Figure 2d). In addi-
tion, another hallmark of acute skin photodamage, that is,
UV-induced keratinocytic apoptosis, was suppressed by
topical BMS-202, as evidenced by reduced epidermal levels
of cleaved caspase-3 compared with that in vehicle-treated
UV-exposed mice (Figure 2e).

A more extensive NanoString-based inflammation-focused
transcriptomic follow-up analysis employing nCounter gene
expression pathway identification (Mouse Inflammation V2
panel) indicated that topical BMS-202 application caused a
pronounced modulation of UV-induced mRNA changes in
SKH-1 skin. These expression changes were characterized by
suppression of innate and inflammatory responses, NF-kB
activation,  chemokine  activity, and  angiogenesis
(Figures 3—6 and Tables 1 and 2). In contrast, immune
response pathway gene expression was upregulated
(including Ifnal, Ifnb1, and Ifng, among others), consistent
with BMS-202 antagonism of PD-L1 blockade of adaptive
immune responses mediated mostly by lymphocytes
(Figure 4). Thus, because UV exposure is known to be asso-
ciated with acute suppression of adaptive immune function,
these data could be indicative of BMS-202 preserving skin
immunity after acute photodamage while suppressing kera-
tinocytic inflammatory responses (AP-1 activation, Ptgs2
expression, etc) (Figure 2). Further studies examining PD-L1
expression in acutely photodamaged mouse skin revealed
that acute UV exposure upregulates PD-L1 expression at both
the mRNA and protein levels in the epidermis, an observation
confirmed by keratinocytes in culture. Strikingly, this effect
was antagonized by BMS-202, with topical application

blocking UV-induced PD-L1 upregulation, an observation
also replicated in cell culture (Figure 7).

The role of PD-L1—related responses to photodamage in
the skin (acute vs chronic responses) remains to be explored.
Given its role as an established checkpoint ligand and its
function in the control of cutaneous adaptive immune re-
sponses that involve numerous cells (eg, antigen-presenting
cells, lymphocytes, mast cells, etc), it is expected that UV-
induced PD-L1 stimulation has a significant impact on skin
inflammatory stress responses. In our study, we observed that
PD-L1 antagonism using BMS-202 causes suppression of UV-
induced inflammation on the basis of AP-1 reporter assays
and transcriptomic analysis. However, the role of keratino-
cytic PD-L1 impacting chronic photodamage responses re-
mains to be addressed by future experiments.

BMS-202 is a small-molecule inhibitor that has been
shown to bind the hydrophobic pocket of PD-L1, causing
aberrant homodimerization and preventing the ability of PD-
L1 to interact with the PD-1 receptor (see structure
[Figure 2a]). BMS-202 is a potent and nonpeptidic inhibitor
with a half-maximal inhibitory concentration of 18 nM and a
Kp of 8 uM. This biphenyl compound binds to the region that
typically interacts with PD-1 (Guzik et al, 2017; Zak et al,
2017) and promotes antitumor activity in mouse models
but has not been used either topically or for preventive pur-
poses (Ashizawa et al, 2019). BMS-202 has been used pre-
viously for systemic interventions in orthotopic xenograft
models and has shown effective tumoral inhibition in several
models if employed as a single or combination agent (Hu
et al, 2020; Padmanabhan et al, 2022; Sun et al, 2023;

www.jidinnovations.org


http://www.jidinnovations.org

SE Dickinson et al.
Topical PD-L1 Inhibition Targeting UV-Induced Skin Damage

a
M Vehicle + SSL [l BMS-202 + SSL
@ ] — “ 41 —eg——
2 — A
L
2 2
g 2
G
= 0 0 0
)
2 8
. O -2 -2 2 1
8 - e
N '-=‘-'3 Immune response Innate immune response Inflammatory response
o
b 5 : a 37 3 31
§ 4] g:‘\ 3 "S' 21 — R — 2 ——t— 2 ——
§ 2 S 11 11 1
£ c
g 0 0 01 0
E-2- : -1 =11 -1
3 § |
S-4{ ° '\‘g -2 — -2 % -2 ——Sy——
c N\
-6 X -3 -3 1 . . =31 . .
SSL SSL + BMS-202 Activation of NFkB Chemokine activity Angiogenesis

Figure 4. NanoString nCounter expression analysis of SKH-1 mouse skin after SSL exposure with or without topical BMS-202 treatment. (a) Heatmap of
pathway scores: clustered analysis of statistically significant expression changes as a function of BMS-202 exposure (8 mM; blue: low scores, orange: high
scores); scores are displayed on the same scale through a Z-transformation. (b) Overall pathway score analysis: covariate plot. (c) Single pathway score analysis
(P < .05). Analysis was performed using 3 independent murine specimens per group. SSL, solar-simulated light.

Zhang et al, 2019). Remarkably, even though BMS-202 has
been shown to disrupt PD-L1 interaction with PD-1 (thereby
blocking immune checkpoint activity), we also observed that
it reduces UV-induced Pd/T mRNA and protein levels, but the
molecular mechanism underlying this effect remains to be
established. It has now been observed that BMS-

202—inspired structural analogs can induce PD-L1 internal-
ization followed by protein degradation that might also
impact mRNA levels, a mechanism of action to be substan-
tiated in epidermal keratinocytes exposed to UV and BMS-
202 (Dai et al, 2022; Gou et al, 2020; Hanks, 2022;
Hudson et al, 2020; Sun et al, 2023). Whether BMS-202 acts

H vehicle + SSL
W BMS-202 + SSL

-3-2-10123
zZ-scores

Figure 5. Heatmap depiction of immune response pathway expression data. Heatmap of the normalized data with z-score (vehicle + SSL vs BMS-202 + SSL),
scaled to give all genes equal variance, generated through unsupervised clustering. Orange indicates high expression; blue indicates low expression. Analysis
was performed using 3 independent murine specimens per group. SSL, solar-simulated light.
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Figure 6. Heatmap depiction of inflammatory response pathway expression data. Heatmap of the normalized data with z-score (vehicle + SSL vs BMS-202 +
SSL), scaled to give all genes equal variance, generated through unsupervised clustering. Orange indicates high expression; blue indicates low expression.
Analysis was performed using 3 independent murine specimens per group. SSL, solar-simulated light.

through this additional blockade of intrinsic PD-L1 activity
contributing to its anti-inflammatory and photoprotective
activity remains to be explored.

An anticipated advantage of a topical pharmacological
approach as pursued in this study is the ability to achieve PD-
L1 antagonism confined to focused application to the
epidermis only, reducing the risk of systemic exposure and
potential off-target effects observable in human patients
during therapeutic use of PD-1/PD-L1—directed mAbs. It re-
mains to be seen whether genetic antagonism exclusively
targeting epidermal PD-L1 is able to mimic the photo-
protective effects achieved in this study by pharmacological
PD-L1 inhibition. If applicable to human skin, further studies
should substantiate the feasibility of preventing UV-driven
photodamage and related pathologies by topical PD-L1
antagonism.

On the basis of PD-L1 responsiveness in sun-damaged
human skin and the findings that topical BMS-202 applica-
tion can suppress solar UV-induced AP-1 activation, inflam-
matory gene expression, PD-L1 upregulation, and caspase-3
cleavage in SKH-1 mouse skin, pharmacological strategies
using topical PD-L1 antagonism warrant further studies tar-
geting human skin photodamage.

MATERIALS AND METHODS

Human specimens, immunohistochemistry, and RPPA

Human tumor samples and skin biopsies were obtained under pro-
tocols approved by the University of Arizona institutional review
board (institutional review board number 1807818073), all samples

were deidentified, and written informed consent was documented.
Samples were classified as normal SP skin (n = 20), low-risk cSCC
(n = 39), or high-risk cSCC (n = 30) using clinical evaluation and
verification from pathological analysis according to the Brigham and
Women'’s Hospital staging system (Karia et al, 2014). IHC staining of
human skins for PD-L1 was performed as described previously using
the SP263 kit (Ventana Medical Systems) (Dickinson et al, 2021).
Staining of tissue sections was measured using ImageProPlus (Media
Cybernetics), a Leica DMR microscope, and a Sony 3CCD color
video camera (Bermudez et al, 2015). For all tissues (epidermis or
cSCCQ), analysis was confined to keratinocytic cells. For human PD-
L1, IHC tissue sections were independently scored by a dermato-
pathologist to determine the percentage of epidermis or tumor tissue
staining positive for PD-L1, with a cutoff >5% per field qualifying
positive staining. For each marker, the percentage positive cyto-
plasmic area (x40 field) was determined per tissue specimen
(averaging 3 fields). IHC images shown are magnified according to
the 100 um bar contained in the respective panel as specified
throughout the figure legends. Statistical significance of differences
in PD-L1 expression (>5% between SP, low-risk cSCC, and high-risk
cSCC) was tested using Kruskal—Wallis nonparametric data analysis
(GraphPad Prism 10.0 software).

A second set of human skin biopsies, confirmed by a dermato-
pathologist to be normal (SP, buttock, n = 21) or sun damaged
(forearm skin, n = 10 each for mild and moderate; n = 8 for severe),
used macrodissection to separate the dermis from the epidermis. PD-
L1 was quantified in epidermal lysates using proteomic analysis
through RPPA as previously described (Baldelli et al, 2021;
Dickinson et al, 2021). Briefly, RPPA was constructed using a 2470
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Figure 7. Effects of BMS-202 on SSL-induced PD-L1 upregulation in cultured human keratinocytes and SKH-1 mouse skin. (@) Pd/7 mRNA expression (24 hr
after SSL) is suppressed dose dependently by BMS-202 treatment in HaCaT keratinocytes. Data depict an experiment run in triplicate (and then repeated 2 more
times; bars represent average + SD). (b) Inhibition of SSL-induced PD-L1 protein upregulation examined by immunoblot analysis after treatment specified in a.
(c) Inhibition of SSL-induced PD-L1 protein upregulation in primary epidermal keratinocytes examined as in b. (d) SSL-induced PD-L1 protein levels in
treatment-naive SKH-1 mouse epidermal lysates examined by immunoblot analysis. (e) Inhibition of SSL-induced PD-L1 protein upregulation in SKH-1 mouse
epidermis due to topical BMS-202 (8 mM) as achieved before (only) or before and after treatment as determined by immunoblot analysis 24 hr after SSL (left).
Data depict individual mouse samples on the left (n = 3), with bar graph analysis on the right (average + SD; representative experiment of 3 independent
repeats). (f) Immunohistochemistry of pre/post-treated SKH-1 skin as in e, stained for PD-L1 (left, bar = 100 pm). The bar graph (right) depicts the quantification
of epidermal staining. (g) Pdl7T mRNA expression (24 hr after SSL) in SKH-1 mouse skin topically treated with 8 mM BMS-202. In bar graphs, *P < 0.05 and **P <
.001. BMS, BMS-202; HEK, human epidermal keratinocyte; hr, hour; SSL, solar-simulated light.

Aushon Arrayer (Aushon BioSystems) equipped with 185 um pins,
and samples were immobilized onto nitrocellulose-coated glass
slides (Grace Biolabs) in technical replicates (n = 3). PD-L1 levels
were measured using a commercially available tyramide-based
Catalyzed Signal Amplification System (Dako) coupled with a fluo-
rescent streptavidin-conjugated IRDye680 dye. Antibody- and Sypro
Ruby Protein Blot—stained arrays were scanned with a laser Pow-
erScanner (Tecan) using the appropriate wavelength channel. Image
analysis was performed using commercially available software
(MicroVigene, version 5.1.0.0, VigeneTech). The software automat-
ically performs spot finding and subtraction of local background and
unspecific signals. Samples were then normalized to the amount of
protein and averaged across replicates. Log,-transformed expression
levels of PD-L1 (clone ETL3N) in the epidermis were shown by
waterfall plot and box-and-whisker plots for the 4 groups of SP skin
and mild, moderate, and severe sun-damaged skin samples. The 2
groups of SP and all sun-damaged samples were compared using
generalized estimating equations to account for potential correlation
of expression levels in SP and sun-damaged samples from the same
patient.

Mouse irradiation

All mice were housed and treated in accordance with The University
of Arizona Animal Care and Use Committee standards under an
approved protocol (number 08-153). UVB exposure was performed
on AP-1 luciferase reporter mice on the SKH-1 genetic background

JID Innovations (2024), Volume 4

at a dose of 2.75 kj/m? using FS40 bulbs (Q-Lab) as described before
with the modification that mice were imaged 24 hours after UVB
exposure using whole-body bioluminescence instead of 48 hours
after UVB using ear punches (Dickinson et al, 2009). SSL irradiation
of SKH-1 mice (Charles River Laboratories, strain code 477) at a dose
of 90 kj/m? UVA/6 kj/m? UVB was performed using UVA-340 bulbs
(Q-Lab) as described before (Dickinson et al, 2016). No differences
between male and female mice were noted in UV-induced PD-L1
cutaneous responses as published before, and most experiments
displayed were conducted in male mice (Dickinson et al, 2021).

AP-1 SKH-1 reporter mouse bioluminescence

Male transgenic SKH-1 mice heterozygous for the TPA-Response
Element—driven luciferase transgene (AP-1 luciferase mice, n = 3)
were treated topically on their backs with 200 pl of 8 mM BMS-202
or vehicle control (acetone). For all mice receiving BMS-202, the
compound was applied twice before (24 hours and 1 hour) as well as
immediately after UV exposure, a dosing regimen ensuring efficient
target modulation, similar to topical nonsunscreen photoprotection
approaches published earlier (Blohm-Mangone et al, 2018; Janda
et al, 2016). Mice were injected intraperitoneally with luciferin
(potassium salt) stock solution in PBS without magnesium or calcium
at a dose <150 mg/kg of body weight 24 hours after UV exposure
and imaged (Lago instrument, Spectral Instruments Imaging) with
Aura software analysis.



AP-1 reporter luciferase assay in HaCaT keratinocytes

HaCaT cells stably transfected with the TPA-Response
Element—driven luciferase plasmid (AP-1 luciferase cells) were
seeded in 6-well plates, grown to 70% confluence, and serum
starved overnight to reduce background signaling. Cells were pre-
treated with BMS-202 or vehicle (DMSO) for 1 hour and then
washed twice with PBS before exposure to 250 kj/m? UVB as
described previously (Dickinson et al, 2009; Janda et al, 2016). Cells
were then washed once more with PBS before being placed into
fresh starvation media with vehicle or BMS-202 until harvest 12
hours later. Cells were lysed in Promega’s Cell Culture Lysis Buffer,
and a total of 10 pg protein per sample replicate was assayed for
luciferase activity according to the manufacturer’s instructions for
the Luciferase Assay System (Promega) using a TD 20/20 lumin-
ometer (Turner Designs). Experimental triplicates were averaged,
and the means from each independent experiment were analyzed by
Student’s t-test for statistical significance. Results are representative
of 3 independent experiments.

RT-qPCR gene expression analysis

Total RNA was isolated from SSL-treated mouse skin using the
Qiagen RNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. RNA integrity was checked by the RNA 6000 Nano
chip kit using Agilent 2100 Bioanalyzer (Agilent Technologies).

Mouse 20X  primer/probes (/l6  [Mm_00446190_m1], /0
[Mm_01288386_m1], 11b [Mm_00434228_m1], Tnf
[Mm_00443258_m1], Tir4 [Mm_00445273_m1], Prgs2

[Mm_00478374_m1], Pdl1 [Mm_00452054_m1], Rps18 [house-
keeping gene; Mm_02601777_g1]) were obtained from Thermo
Fisher Scientific. A total of 500 ng of total RNA was used for cDNA
synthesis using the following cycling conditions: 25 °C for 10 mi-
nutes, 48 °C for 30 minutes, and 95 °C for 5 minutes performed in
MJ Thermocycler PTC-200 (M) Research). Then, 10 ng of cDNA was
used for amplification of target genes by quantitative PCR using the
following conditions: 95 °C for 10 minutes followed by 95 °C for 15
seconds and 60 °C for 1 minute for a total of 40 cycles performed in
the ABI7500 Real-Time PCR System (Applied Biosystems). PCR
amplification of the human housekeeping gene RPS18 was used to
control the quality of the cDNA. Nontemplate controls were
included on each PCR plate. Expression levels of target genes were
normalized to the RPS18 control (ACt = Ct [gene of interest] — Ct
[housekeeping genel). After amplification plots were generated, and
the Ct values (cycle number at which fluorescence reaches
threshold) were recorded and quantified using the comparative
(AACt) Ct method as described in the ABI Prism 7500 sequence
detection system user guide (Cabello et al, 2009; Davis et al, 2015;
Jandova et al, 2020). Statistical significance was calculated
employing the Student’s 2-tailed t-test.

Mouse immunohistochemistry

Caspase-3.  Briefly, deparaffinized mouse skin slides were sub-
jected to antigen retrieval using a Decloaking chamber in Rodent
Decloaker HIER solution (both from Biocare, 115 °C for 30 seconds,
then 90 °C for 10 seconds) followed by blocking with first 3%
hydrogen peroxide (10 minutes) and then 5% normal goat serum in
PBS with Tween 20 (1 hour). Slides were then incubated in a 1:300
dilution of anticleaved caspase-3 antibody (number 9661, Cell
Signal Technology) at 4 °C overnight. Detection utilized a Vectastain
ABC immunoperoxidase kit (PD-6100) with a biotinylated anti-
rabbit 1gG secondary antibody (Vector Laboratories, BA-1000) and
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NovaRED substrate according to the manufacturer’s instructions.
Negative control slides were exposed to secondary antibody only
and displayed no detectable staining (data not shown). Slides were
counterstained in dilute Hematoxylin Gill 1ll for 2 seconds (Leica
Biosystems). For quantification, the average count (caspase 3 posi-
tive per total epidermal cells) in 4 fields per slide (x20 field) was
determined for each mouse skin specimen and calculated per group
(n = 3).

PD-L1.  IHC staining for PD-LT in mouse skins was performed
using the NBP1-43262 antibody (Novus) as described previously
(Dickinson et al, 2021). Epidermal PD-L1 expression is shown as
percentage staining determined by Image) (National Institutes of
Health, open source) quantification using color deconvolution of the
brown stain with a uniform threshold between all samples. Each skin
sample (n = 3, x20 field) was used to measure at least 3 fields per
specimen with exclusion of hair follicles, if present.

Mouse IHC data were analyzed using Kruskal—Wallis nonpara-
metric data analysis (GraphPad Prism 10.0 software). IHC images
shown are magnified according to the 100 pm bar contained in the
respective panel as specified throughout the figure legends.

NanoString nCounter gene expression analysis
SKH-1 mouse skin (full thickness, 3 biological samples [ie, 3 mice
per treatment group]) was treated either with vehicle (acetone) or 8
mM BMS-202 (all 3 times: 24 hours before, 1 hour before, and
immediately after) and harvested 24 hours after acute SSL. First, total
mRNA was prepared using the RNeasy Mini kit (Qiagen). Next, 100
ng was used for NanoString nCounter analysis (using the Mouse
Inflammation V2 panel; probing 254 genes, NanoString Technolo-
gies) comparing gene expression between treatment groups (Ceiss
et al, 2008; Kulkarni, 2011). Total mRNA was hybridized with the
Mouse Inflammation V2 code set at 65 °C overnight. Further puri-
fication and binding of the hybridized probes to the optical cartridge
was performed on the nCounter Prep Station, and finally, the car-
tridge was scanned on the nCounter Digital Analyzer. Reporter Code
Count (RCC) files were then imported into nSolver4.0 software
(NanoString Technologies) and checked for data quality using
default quality control settings; all samples passed data quality
control. All samples were normalized using the geometric mean of
the housekeeper genes. Expression ratios were calculated by
dividing the mean values of all samples in one experimental group
(UV+ BMS-202) by the mean values of all samples in the reference
group (UV+ vehicle control). For data analysis, low count threshold
value was 200. For heatmap depiction (Figures 3, 5, and 6), a z-score
for a specific gene indicates the number of SDs away from the mean
of expression in the reference samples. For pathway score analysis
(Figure 4), each sample’s gene expression profile was then
condensed into a small set of pathway scores using nCounter
Advanced Analysis software (version 2.0.115). Pathway scores were
fit using the first principal component of each gene set’s data, ori-
ented such that each pathway score has positive weights for at least
half its genes. A covariate plot displays selected pathway scores
against the covariate chosen (ie, BMS-202 treatment). Numerical
pathway score represents the average fold expression change for all
genes associated with the specific pathway, with positive scores
indicating enhancement and negative scores indicating attenuation;
scores are displayed on the same scale through a Z-transformation.
Individual samples were run in triplicate format of biological
replicates, and data analysis was performed using the nSolver
analysis software (4.0). For P-value adjustment (Benjamini—Yekutieli
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false discovery rate; P-value threshold = .05), nCounter Advanced
Analysis software (version 2.0.115) was used. Nonparametric data
analysis of murine experimentation was performed using the
Mann—Whitney test. Differences between groups were considered
significant at *P < .05.

Cell culture and SSL treatment

Human HaCaT immortalized keratinocytes were maintained in
DMEM with 10% fetal bovine serum and 1x penicillin/strepto-
mycin. Cells were authenticated using short tandem repeat (STR)
genotype analysis and tested for mycoplasma regularly. Cells were
seeded onto 60 cm dishes at a density of ~200 k/dish and grown for
3 days. Before treatment, cells were serum starved overnight to
enhance UV responsiveness of signaling. Cells were ~80%
confluent at the time of treatment. BMS-202 (10 uM) in DMSO was
added to the media 1 hour before SSL (pretreatment).

For SSL treatment, UVA-340 bulbs (Q-Lab) were used as pub-
lished (Dickinson et al, 2021). Before exposure, cells were washed
with 1x PBS and then incubated in 4 ml PBS (with 0.01% magne-
sium chloride and 0.01% calcium chloride) during irradiation. Cells
were exposed to 40 k)/m? UVA/2.68 kJ/m? UVB and then rinsed
once more with PBS before being placed back into DMEM with 1%
fetal bovine serum + penicillin/streptomycin and vehicle or BMS-
202 (after treatment) and incubated until harvest 24 hours later.
Control cells underwent identical processing except that they were
held in the biosafety cabinet without UV exposure.

Adult human epidermal keratinocytes were purchased from
Thermo Fisher Scientific and maintained in Epilife media on
collagen-coated plates as per the vendor’s instructions. Cells were
treated with BMS-202 and SSL as described for HaCaT cells.

Immunoblot analysis (cell culture and mouse epidermis)

Cells were lysed in RIPA containing 1x HALT protease + phos-
phatase inhibitor cocktail (Thermo Fisher Scientific), and 100 mM
phenylmethylsulfonyl fluoride and protein concentrations were
assessed using BCA assay (Bio-Rad Laboratories). Mouse epidermal
protein lysates for immunoblot analysis were derived from scraped
frozen SKH-1 skins as described previously (Blohm-Mangone et al,
2018). A total of 20 pg of protein/lane was loaded onto 10% gels
for electrophoresis/immunoblotting using established protocols.
Human cell lysate blots were probed with Cell Signaling PD-L1
antibody (number 13684), and mouse epidermal lysate blots
were probed with Invitrogen PD-L1 antibody (number PA5 —
20343). B-Actin (Cell Signaling Technology, number 4970) was
used as a loading control. An anti-rabbit secondary antibody (Cell
Signaling Technology, number 7074) was used for all blots using
standard chemiluminescent protocols (Thermo Fisher Scientific
Pico ECL, number 34577). Densitometric analysis of band intensity
was performed using Image) (National Institutes of Health, open
source).
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