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Abstract: An effective method to control the non-linear shrinkage of micro-injection molded small-
module plastic gears by combining multi-objective optimization with Moldflow simulation is pro-
posed. The accuracy of the simulation model was verified in a micro-injection molding experiment
using reference process parameters. The maximum shrinkage (Y1), volume shrinkage (Y>), adden-
dum diameter shrinkage (Y3), and root circle diameter shrinkage (Y;) were utilized as optimization
objectives to characterize the non-linear shrinkage of the studied gear. An analysis of the relationship
between key process parameters and the optimization objectives was undertaken using a second-
order response surface model (RSM-Quadratic). Finally, multi-objective optimization was carried out
using the non-dominated sorting genetic algorithm-II (NSGA-II). The error rates for the key shrinkage
dimensions were all below 2%. The simulation results showed that the gear shrinkage variables, Y7,
Y, Y3, and Yy, were reduced by 5.60%, 8.23%, 11.71%, and 11.39%, respectively. Moreover, the tooth
profile inclination deviation (fy,T), the profile deviation ( ffaT)/ and the total tooth profile deviation
(Fx) were reduced by 47.57%, 23.43%, and 49.96%, respectively. Consequently, the proposed method
has considerable potential for application in the high-precision and high-efficiency manufacture of
small-module plastic gears.

Keywords: micro-injection molding; small-module gear; plastic gear; non-linear shrinkage; tooth
profile accuracy

1. Introduction

In recent decades, with the rapid development of high-performance engineering
plastics [1,2], small-module plastic gear has been widely applied in cutting-edge fields, such
as aerospace [3], medical devices [4], and automobiles [5]. Compared with small-module
metal gear, small-module plastic gear has obvious advantages, such as self-lubrication,
strong shock and vibration resistance, and low noise [6,7]. Micro-injection molding is likely
to become the main processing method for small-module plastic gear in the future because
it enables production in large quantities [8,9]. However, because of the high shrinkage of
engineering plastics and the irregular surface shape of gear teeth, plastic gear can undergo
significant non-linear shrinkage during micro-injection molding [10-13]. Moreover, the
specific surface area of small module gear teeth is small, which leads to complex and
changeable interface heat transfer events during the cooling process [14,15]. Hence, the
non-linear shrinkage of micro-injection molded small-module plastic gears is difficult
to control.

Because of the small size of the small-module gear itself, the non-linear shrinkage
phenomenon during the micro-injection molding greatly influences the tooth profile ac-
curacy of small-module plastic gears [16]. In addition to the rational design of the mold
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structure and the selection of materials, the scientific selection of injection molding process
parameters is an effective way to control shrinkage. There are many process parameters that
affect the molding quality of small-module plastic gears. There is a complex, time-varying,
nonlinear and strong coupling relationship between process the parameters and molding
quality goals [17,18]. For this reason, it is particularly difficult to find a reasonable set of
optimal process parameters. The traditional optimization method involves the constant
adjustment of process parameters by injection molding personnel, based on experience, to
obtain ideal parameter combinations. However, the traditional method is unable to achieve
global optimal parameters, which greatly prolongs trial time, increases trial cost, and wastes
raw materials [19,20]. Therefore, determining how to quickly obtain the optimal process
parameters for micro-injection molding on a scientific basis is of great practical significance
for the high-precision and high-efficiency manufacture of small-module plastic gears.

The problem highlighted has attracted the attention of many researchers. In recent
years, computer-aided engineering (CAE) technology and optimization design theory
have been continuously developed [21,22]. CAE simulation technology has been used to
replace the traditional continuous mode test method [23]. Combined with optimal design
theory, it has been used in the optimization of injection molding process conditions, not
only to improve the quality of plastic parts, but also to shorten the molding cycle [24].
Hakimian et al. simulated and analyzed the micro-injection molding process of 0.6 mm-
tooth-thickness micro-gear based on Moldflow and optimized the process of maximum
warpage and shrinkage using the Taguchi method [25]. Combining grey relational analysis
and simulation analysis, Mehat et al. studied the influence of process parameters on the
warping deformation of plastic gears [26].

In general, most current research considers warpage deformation and maximum shrink-
age to be the process optimization goals of the gear when applying simulation models [25-28].
It is difficult to directly assess the degree of optimization of gear tooth profile accuracy. Opti-
mization results deviate significantly from those observed in actual industrial production if
optimization is based on simulation which is unverified by experiments. In many studies, the
test samples are mainly subjected to orthogonal tests [15,25,29,30]. However, in orthogonal
tests, problems of sample point accumulation can occur, and the test samples may not ade-
quately represent all the important variables. Therefore, it is necessary to combine simulation
with experiment, and to use CAE simulation and multi-objective optimization to control the
non-linear shrinkage of small-module plastic gears. In addition, it is impossible to directly
characterize and optimize tooth profile accuracy through simulation results. Therefore, it is
important to identify optimization objectives that can be easily characterized and which fully
reflect tooth profile accuracy.

This paper focuses on the challenge of low tooth profile accuracy caused by non-linear
shrinkage associated with the micro-injection molding of small-module plastic gears. We
propose a novel method for shrinkage control that combines multi-objective optimization
with Moldflow simulation to improve tooth profile accuracy, as shown in Figure 1. Local
shrinkage, overall shrinkage, and key dimension shrinkage of small-module plastic gears
are the main factors affecting tooth profile accuracy [15]. We use the maximum shrinkage
(Y7), volume shrinkage (Y3), addendum diameter shrinkage (Y3), and root circle diameter
shrinkage (Y}) as the optimization objectives for characterizing the non-linear shrinkage of
the studied gear. Approximation surrogate models representing the relationships between
the process parameters and the optimization objectives were established. The four optimiza-
tion objectives were optimized in a non-normalized approach using the non-dominated
sorting genetic algorithm-II (NSGA-II). Finally, micro-injection molding experiments on
the studied gears were carried out using reference and optimal process parameters. As a
result, shrinkage of the studied gear was well controlled. Measurements of size and tooth
profile accuracy indicated that key dimension shrinkage errors between the simulation
and experimental tests were less than 2%. Moreover, tooth profile inclination deviation
fHat, tooth profile deviation fg, and total tooth profile deviation F,r were reduced by
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47.57%, 23.43%, and 49.96%, respectively. Consequently, the proposed method can inform
the high-precision and high-efficiency manufacture of small-module plastic gears.
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Figure 1. The tooth profile accuracy improvement method for micro-injection molded small-module
plastic gears.

2. Materials and Methods
2.1. 3D model and Material of Studied Gear

In this study, small-module involute cylindrical gear (module = 0.5 mm) was studied.
A three-dimensional (3D) model and the dimension parameters of the studied gear are
shown in Figure 2. Polyformaldehyde (POM) is most commonly used for production of
plastic gears. It is a thermoplastic crystalline polymer with high strength and good wear
resistance. The studied gear was made from POM-100 P, produced by DuPont, US, which
is the most used high-performance crystalline engineering plastic for small-module plastic
gears [31-33]. The physical properties of the materials used are shown in Table 1.

5
-
ey |
{l
—— 18]35
eyl — A-A

Figure 2. The 3D model and dimension parameters of the studied gear: Module (m) = 0.5 mm;
number of teeth (z) = 20; modification coefficient (x) = 0; pressure angle (x) = 20 °.
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Table 1. Properties of DuPont POM-100 P.

Parameters Test Method Value
Water absorption (%) ASTM D-570 0.25
Hardness (R) ASTM D-785 120
Tensile strength (MPa) ASTM D-638 69
Elasticity coefficient (MPa) ASTM D-638 3360
Deflection coefficient (MPa) ASTM D-790 3090
Shear strength (MPa) ASTM D-732 66
Tensile impact strength (k]/ m?) ASTM D-1822 420
Thermal expansion coefficient (10> m /m°QC) ASTM D-696 12.2

2.2. Moldflow Simulation

Autodesk Moldflow Insight (AMI) 2021 software, US, [34,35] was used for the simula-
tion of small-module plastic gear micro-injection molding. For small-module gears, the
polymer filling process is extremely short, and the process cannot be observed visually, so it
is difficult to characterize experimentally. However, the polymer flow molding process can
be studied visually using Moldflow. To facilitate later extraction of the 3D shrinkage gear
model, a built 3D model of the studied gear was imported into the Moldflow software using
an .stp extension. The gating system of the simulation model was established according
to the actual forming gating system. A double-layer mesh was used for meshing, and the
global edge length was 0.15 mm. The mesh chord angle was 20 degrees. The minimum
curvature size was 10% of the global size. The mesh model was optimized by reducing
the aspect ratio through operations such as merging nodes and integrating nodes. The
injection gate position was then set according to the actual micro-injection molding. The
gear simulation model is shown in Figure 3.

Plastic
injection port

AV
VeV
NP

Vv,
Vi)
Al

A
i

«

Figure 3. Simulation model of the studied gear.

The analysis type chosen for this study was “thermoplastic injection molding”. The
analysis sequence was “Filling + Packing + Warpage”. Then, POM 100-P from DuPont was
selected in the software material library. Parallel computing was specified to improve the
computing speed.
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2.3. Experimental Design

Studies have found that the local shrinkage, overall shrinkage and key dimension shrink-
age of plastic gears directly affect the tooth accuracy [25]. For this reason, the maximum
shrinkage (Y1), volume shrinkage (Y>), addendum diameter shrinkage (Y3) and root circle
diameter shrinkage (Y4) were taken to be optimization objectives for multi-objective opti-
mization. The maximum shrinkage (Y;) and volume shrinkage (Y;) were obtained directly
from the simulation results. The key dimension shrinkage was also assessed to verify the
accuracy of the simulation model. The 3D model of the gear after shrinkage was extracted
through Moldflow simulation. The diameter of the addendum and root circle were mea-
sured by CAD software. The addendum diameter shrinkage (Y3) and the root circle diameter
shrinkage (Y1) were calculated using Equations (1) and (2).

d, —d,
da

Y = x 100 1)

d;—d'
Y, = fd %100 )
f

where d, and d;, are the addendum circle diameters of the studied gear and the shrinkage
gear, and d ¥ and d} are the root circle diameters of the studied gear and the shrinkage gear.
Based on previous research and long-term practical experience in the production of
small-module plastic gears, the mold temperature, melt temperature, packing pressure,
packing time, and cooling time were selected as input factors. Compared to traditional
single-factor experimental designs and orthogonal experimental designs, the Box-Behnken
design (BBD) method facilitates the analysis of individual and interactional effects of pa-
rameters on responses with fewer experiments and lower computational cost [36,37]. Thus,
the BBD method was utilized to quantitatively analyze the influence of key process param-
eters on the shrinkage of small-module plastic gear. The micro-injection molding process
levels were selected according to the range of process parameters recommended by the
Moldflow material library, and production experience, as shown in Table 2. The 46 groups
of BBD simulation results are shown in Table 3. It was found that the optimal results for
Y1, s, Y3 and Yy appeared in 39, 13, 12 and 41 groups of trials, respectively. Therefore, the
interaction between the objectives was substantial, and the four objectives could not be
minimized at the same time through conventional single-objective optimization.

Table 2. Factors and levels of key process parameters.

Factors Minimum Level Intermediate Level Maximum Level
A Mold temperature (°C) 60 80 100
B Melt temperature (°C) 190 210 230
C  Packing pressure (MPa) 60 70 80
D Packing time (s) 1 3 5
E Cooling time (s) 10 20 30

2.4. Approximate Surrogate Model

An approximate surrogate model can effectively save time required for CAE simula-
tion. If the accuracy of the established model is reliable, the model can be applied to predict
the properties of unknown points in space. In this study, Kriging models [38], radial basis
function (RBF) models [39], linear response surface models (RSM) [40], RSM-Quadratic,
RSM-Cubic and RSM-Quartet models between process parameters, and optimization objec-
tives, were established using the Isight platform, US [41,42].
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Table 3. Box-Behnken experimental design and simulation results.
Runé Factor Response of Optimize Objectives
o A(°Q) B (°C) C (MPa) D (s) E (s) Y; (mm) Y, (%) Y3 (%) Yy (%)
1 80 210 80 3 10 0.1452 13.16 6.07273 6.33143
2 80 230 70 3 10 0.1452 14.37 6.01818 6.35429
3 80 210 70 3 20 0.1483 13.49 6.12727 6.40000
4 100 190 70 3 20 0.1553 13.55 6.45455 6.67429
5 80 230 60 3 20 0.1479 14.59 6.16364 6.42286
6 100 230 70 3 20 0.1536 16.35 6.30909 6.69714
7 80 210 80 1 20 0.1687 17.18 6.89091 6.97143
8 100 210 70 3 10 0.1519 13.78 6.25455 6.51429
9 60 210 70 3 30 0.1453 13.49 5.98182 6.21714
10 80 210 60 1 20 0.1711 17.38 6.96364 7.04000
11 80 190 70 1 20 0.1726 15.86 7.05455 7.15429
12 60 210 70 5 20 0.1431 13.33 5.70909 5.96571
13 80 190 80 3 20 0.1486 12.21 6.09091 6.40000
14 60 190 70 3 20 0.1494 12.75 6.10909 6.46857
15 80 190 70 3 30 0.1523 12.68 6.29091 6.60571
16 80 230 70 5 20 0.1433 14.40 5.81818 6.08000
17 60 210 70 1 20 0.1681 16.96 6.83636 6.92571
18 100 210 80 3 20 0.1484 13.64 6.16364 6.40000
19 80 210 70 1 30 0.1699 17.27 6.94545 6.99429
20 100 210 70 5 20 0.1507 13.81 6.21818 6.42286
21 80 210 70 3 20 0.1483 13.49 6.14545 6.46857
22 80 190 60 3 20 0.1560 13.08 6.43636 6.62857
23 100 210 70 3 30 0.1515 13.78 6.29091 6.58286
24 60 210 70 3 10 0.1453 13.49 5.96364 6.21714
25 80 210 80 3 30 0.1448 13.16 5.96364 6.21714
26 80 230 80 3 20 0.1422 14.18 5.87273 6.17143
27 80 210 60 3 10 0.1516 13.81 6.23636 6.46857
28 80 210 70 3 20 0.1483 13.49 6.05455 6.37714
29 80 210 60 3 30 0.1516 13.81 6.16364 6.49143
30 80 210 70 3 20 0.1483 13.49 6.10909 6.44571
31 80 190 70 3 10 0.1523 12.68 6.25455 6.53714
32 80 210 70 3 20 0.1483 13.49 6.18182 6.46857
33 80 210 60 5 20 0.1498 13.89 6.05455 6.33143
34 80 210 70 5 10 0.1463 13.51 5.90909 6.26286
35 100 210 70 1 20 0.1711 17.47 7.00000 7.08571
36 80 230 70 3 30 0.1449 14.49 5.98182 6.37714
37 80 210 70 3 20 0.1483 14.83 6.07273 6.46857
38 80 190 70 5 20 0.1493 12.65 6.00000 6.14857
39 60 230 70 3 20 0.1416 14.04 5.83636 6.12571
40 60 210 80 3 20 0.1418 13.02 5.78182 6.17143
41 80 210 80 5 20 0.1426 13.18 5.76364 5.94286
42 80 210 70 5 30 0.1462 13.51 5.92727 6.17143
43 100 210 60 3 20 0.1543 13.93 6.34545 6.56000
44 80 210 70 1 10 0.1699 17.27 6.94545 7.01714
45 60 210 60 3 20 0.1483 13.72 6.05455 6.33143
46 80 230 70 1 20 0.1660 18.39 6.78182 6.85714

To determine if a model is representative, it is necessary to verify the convergence
accuracy of the model through error analysis. The method used to verify the accuracy of
the surrogate model involves comparison of the approximation of the predicted value and
the test sample. This study mainly used R-square (R?) to evaluate the accuracy of the built
surrogate model. The most suitable surrogate model was selected through error analysis to
predict the shrinkage of the gear more accurately. Moreover, the approximate surrogate
model was suitable for further multi-objective optimization to minimize the shrinkage of
the small-module plastic gear.
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2.5. Multi-Objective Optimization

Since practical engineering problems are complex and involve uncertain factors, most
problems can be studied with multi-objective optimization strategies. Multi-objective opti-
mization algorithms provide more satisfactory solutions than single-objective optimization
methods [43,44]. Multi-objective optimization methods have attracted the attention of
researchers in different disciplines and fields. Many population-based algorithms have
been proposed which have been used to solve the multi-objective optimization problem
(MOP) in engineering applications.

The improved non-dominated sorting genetic algorithm, NSGA-II [45,46], has good
exploration performance and an efficient sorting process. The principle of the NSGA-II
algorithm is shown in Figure 4. The algorithm not only uses crowding degree and a crowd-
ing degree comparison operator to replace the fitness sharing strategy under the control of
sharing radius, but also introduces an elite strategy to ensure that the best individual is
not lost. Therefore, in this study, the NSGA-II multi-objective optimization algorithm was
selected to optimize gear shrinkage. For the algorithm settings, the population side was set
to 12, the number of generations was set to 20, and the number of samples was 240, which
meets the recommended value of between 20 and 200. The crossover probability crossover
rate was set to 0.9, the recommended value was 0.6~1, and the remaining settings were set
by default.

Non-dominated Crowding distance
sorting sorting

Pt+1
[ (o
-

=) Rejected

[]
R, [ ]

Figure 4. Schematic diagram of NSGA-II algorithm.

The mathematical model of the process optimization problem of gear shrinkage in this
study was expressed as Equation (3).

F= min[Yl (mm),Y2(%),Y1(%),Y1 (0/0)]
60 < A < 100(°C)
190 < B < 230(°C) 3)
s.t{ 60 < C < 80(MPa)
1< D <5(s)
10 < E < 30(s)

2.6. Experimental Verification of Simulation Model and Optimization Method

First, the reliability of the gear simulation model required to be verified through
micro-injection molding pre-testing with reference process parameters. The self-built micro-
injection molding experiment platform is shown in Figure 5a, and the mold structure is
shown in Figure 5b. Figure 5c is the actual mold of the studied gear. According to the
recommended process for assessing materials, the reference process parameters are shown
in Table 4. The diameter of the addendum circle and root circle were measured using a
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digital super-depth microscope (KEYENCE VHX-1000C, US). The addendum diameter
shrinkage (Y3 ) and the root circle diameter shrinkage (Ys ) of the gear samples were
calculated using Equations (1) and (2), respectively. The reliability of the simulation model
was verified by comparing the key dimensions shrinkage between the simulation and
experiment under reference process parameters.

1 (a) Mold temperature Process Control
1 sensor Window Gearmold  Hopper

B

Figure 5. (a) Micro-injection molding experiment platform of small-module plastic gears. (b) Cavity
layout of the mold. (c) The actual mold of the studied gear.

Table 4. Reference process parameters.

Parameters Value
Mold temperature (°C) 80
Melt temperature (°C) 210
Packing pressure (MPa) 70
Packing time (s) 3
Cooling time (s) 20

The results of multi-objective optimization require to be verified, and injection mold-
ing experiments were carried out under the obtained optimal process parameters. The
optimization results of the NSGA-II algorithm were verified by Moldflow simulation. The
accuracy of the optimized method was verified by comparing the key dimensions shrinkage
and the tooth profile accuracy of the gear from the micro-injection molding experiments
under reference and optimal process parameters. The tooth profile accuracy was automat-
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ically measured using an FPG 3002B small-module gear measuring machine [47]. Tooth
profile accuracy [48,49] includes the deviation of tooth profile inclination (fg,7), tooth
profile deviation (fs,1) and total tooth profile deviation (F,r). The gear clamping and
specific clamping method for the small-module gear are shown in Figure 6.

Figure 6. FPG 3002B small-module gear measuring machine and clamping method of small-
module gear.

3. Results and Discussion
3.1. Simulation Model Accuracy

Since the flow channel was injected symmetrically, the shrinkage of the two gears was
basically the same. For this reason, we only selected a single gear for analysis. The shrinkage
results of the studied gear obtained by Moldflow analysis are shown in Figure 7. From
Figure 7a, it can be seen that the shrinkage of the gear was different at different positions.
The tooth part of the gear shrank the most. During the cooling process, the cooling rate
indicated by the gear teeth was very high due to the large temperature difference between
the mold and the polymer melt. Accordingly, the gear teeth measurements indicated that
the volume of the polymer molecular chain changed greatly. The degree of shrinkage near
the addendum and the root circle of the studied gear was the largest, which is consistent
with previous research findings [15,25]. In addition, the shrinkage of the part where the
gear shrank the most was 0.4183 mm. The test results for the key dimensions of the gear
obtained by simulation are shown in Figure 7b. The volume shrinkage of the gear obtained
by simulation was 13.49% (Figure 7c).

The teeth morphology of the gear simple under reference process parameters was
observed using a 200-x microscope, as shown in Figure 8a. It can be seen that the forming
quality of the gear teeth was intact, so the gear samples could be adopted to verify the
simulation model. The addendum and root circle diameters of the gear samples measured
under the 50-x microscope are shown in Figure 8b. The key dimension shrinkage of the
gear derived through simulation and experiment was calculated using Equations (1) and
(2), as shown in Table 5. It was found that the errors between the experiment and the
simulation were all less than 2 %. Therefore, the simulation model was able to accurately
simulate the shrinkage of the studied gear.
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Figure 7. Simulation results under the reference parameters. (a) Shrinkage cloud diagram. (b) Volume
shrinkage. (¢) Addendum diameter and root circle diameter.

Figure 8. (a) The tooth morphology of the gear sample. (b) Key dimension results of experiment
under reference process parameters.
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Table 5. Comparison of key dimension shrinkage rates obtained by simulation and experiment.

Y3 (%) Y, (%)
Simulation 6.363 6.503
Experiment 6.334 6.571
Error (%) 0.300 1.035

3.2. Approximate Surrogate Models and Effect Analysis of Process Parameters

The data in Table 2 was input into Isight software. The Approximate module was
used to build the approximate surrogate models. Since the input factors are different
types of physical quantities, the adaptation type was selected as anisotropic. To select the
approximate surrogate model with the highest accuracy, the accuracy of the established five
typical approximate surrogate models was compared; the results are shown in Table 6. It
was found that the accuracy of the RSM-Linear model was clearly lower, and the accuracy
of the optimization objectives was less than 85%. This indicated that there was a strong
non-linear relationship between the optimization objectives and the process parameters. It
was found that that the accuracy of volume shrinkage (Y>) in the Kriging models and the
RBF models was below 90%. The RSM-Quadratic, RSM-Cubic, and RSM-Quartet models
all achieved the required accuracy. However, compared with the RSM-Quadratic model,
the accuracy improvement using the RSM-Cubic and RSM-Quartet models was not very
significant; however, the computational complexity increased substantially. Accordingly,
the RSM-Quadratic model was applied to represent the response relationship between the
process parameters and the optimization objectives of the studied gear. The RSM-Quadratic
coefficients of the optimization objectives are shown in Table 6.

Table 6. The accuracy of the Kriging models, RBF models, and the RSM-Linear, RSM-Quadratic,
RSM-Cubic and RSM-Quartet models.

Accuracy (%)
Approximation Surrogate Model
Yq Y, Y3 Yy
Kriging 94.734 81.693 93.985 90.850
RBF 94.638 87.661 95.089 91.870
RSM-Linear 67.662 52.482 74.930 80.850
RSM-Quadratic 98.229 92.838 98.031 94.562
RSM-Cubic 98.151 92.037 97.856 95.086
RSM-Quartet 98.015 91.609 97.660 94.590

Therefore, the following RSM-Quadratic model was employed to represent the rela-
tionship between the input factors and the responses:

k k k
2 . .
f=ao+ Y axi+ ) aix; + )Y aiixixj,i < 4)
i=1 i=1 i=j
where f is the output response, a; = 0,1,...,k are coefficients of regression, and

x;,1=0,1,...,k are input factors. The RSM-Quadratic coefficients of the optimization
objectives are shown in Table 7.

The significance of the RSM-Quadratic coefficients was evaluated, as shown in Table 8.
The p-value for Y3, Y, Y3, and Yy, as a function of D?, was 0.000. Therefore, besides A, B, C
and D, there was a strong interaction between D and D. To simplify the RSM-Quadratic,
only A, B,C, D, E and D? were considered in the regression equations for the optimization
objectives. The regression equations for Yi, Y», Y3, and Y, are Equations (5)—(8).

Y1 (mm) = 0.37925 — 0.00094A — 0.00116B — 0.00445C — 0.01898D + 0.00024D*  (5)

Y5(%) = 33.06385 — 0.26211A — 0.10297B — 0.03879C — 1.97750D + 0.42343D%  (6)
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Y3(%) = 14.13387 — 0.02770 A — 004364B — 0.00744C — 0.81237D + 0.07602D*  (7)
Yy (%) = 11.46747 — 0.04402A — 0.04514B — 0.08270C — 0.59975D + 0.03973D?  (8)

Table 7. RSM-Quadratic coefficient table.

Polynomial Term Y1 Y, Y3 Y,
Constant 0.37925 33.06385 14.13387 11.46747
A —0.00094 —0.26211 —0.02770 —0.04402
B —0.00116 —0.10297 —0.04364 —0.04514
C —0.00445 0.03879 —0.00744 0.08270
D —0.01898 —1.97750 —0.81237 —0.59975
E 0.00018 0.01842 0.02115 0.03480
A2 1.12500 0.00029 0.00003 —0.00002
B2 1.29167 0.00011 0.00006 0.00005
2 —1.16667 —0.00150 —0.00012 —0.00049
D? 0.00024 0.42343 0.07602 0.03973
E2 0.00000 —0.00123 2.66667 0.00009
AB 0.00000 0.00094 0.00008 0.00023
AC 0.00000 0.00051 0.00011 —0.00003
AD 0.00000 —0.00019 0.00216 0.00186
AE 0.00000 0.00000 0.00002 0.00009
BC 0.00000 0.00057 0.00007 —0.00003
BD 0.00000 —0.00487 0.00057 0.00143
BE 0.00000 0.00015 —0.00009 —0.00006
CD 0.00000 —0.00638 —0.00273 —0.00399
CE 0.00000 —3.73429 —0.00009 —0.00034
DE 0.00000 —2.61961 0.00023 —0.00086

Table 8. The estimated regression coefficients for Y1, Y5, Y3, and Y.

p-Value
Polynomial Term
Y Y2 Y3 Yy

Constant 0.000 0.000 0.000 0.000
A 0.000 0.001 0.000 0.000
B 0.000 0.000 0.000 0.000
C 0.000 0.006 0.000 0.000
D 0.000 0.000 0.000 0.000
E 0.736 0.936 0.567 0.837
A2 0.143 0.371 0.468 0.649
B? 0.095 0.726 0.124 0.292
C? 0.699 0.245 0.440 0.015
D? 0.000 0.000 0.000 0.000
E? 0.978 0.338 0.869 0.649
AB 0.002 0.053 0.188 0.003
AC 0.736 0.586 0.343 1.000
AD 0.015 0.968 0.001 0.012
AE 0.822 1.000 0.848 0.538
BC 0.343 0.541 0.567 0.837
BD 0.736 0.304 0.343 0.048
BE 0.866 0.873 0.447 0.681
CcD 0.012 0.499 0.029 0.007
CE 0.822 1.000 0.702 0.223
DE 0.955 1.000 0.848 0.538

Figure 9 shows the error analysis results of the RSM-Quadratic of the Gaussian spatial
correlation function. The abscissa is the predicted value of the RSM-Quadratic and the
ordinate is the actual measured value. The blue horizontal line is the average response
value of the model, and the white background indicates that the model has high accuracy.
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The black line with a slope of 1 represents the ideal model. The closer the red dot is to the
black slash, the more accurate and representative the surrogate model is. The red dots in
the figure are evenly distributed on both sides of the black line and are very close. This
indicates that the fitting accuracy of the RSM-Quadratic established in this study was very
high. Therefore, the RSM-Quadratic established in this study can be used to predict the
shrinkage of the studied gear micro-injection molding. It will save time spent on multiple
Moldflow simulation attempts.
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Figure 9. Residual analysis diagram of each response target of the RSM-Quadratic. (a) Maximum
shrinkage (Y7). (b) Volume shrinkage (Y>). (¢) Addendum diameter shrinkage (Y3). (d) Root circle
diameter shrinkage (Yy).

Then, the main effect diagram and variance analysis were used to analyze the influence
of the process parameters on the optimization objectives. The main effect diagram is shown
in Figure 10. Figure 10a,c,d are the main effect diagrams of maximum shrinkage, addendum
diameter shrinkage and root circle diameter shrinkage, respectively. It was found that there
was a positive correlation between the mold temperature and the maximum shrinkage,
the addendum diameter shrinkage and the root circle diameter shrinkage. However, there
was a negative correlation between the melt temperature, packing pressure and packing
pressure and the maximum shrinkage, addendum diameter shrinkage and root circle
diameter shrinkage. The maximum shrinkage, addendum diameter shrinkage and root
circle diameter shrinkage increased first and then decreased with increase in cooling time.
Figure 10b is the main effect diagram of the volume shrinkage. It can be seen that the
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volume shrinkage of the studied gear first increased and then decreased with increase in
the packing pressure.
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Figure 10. Main effect diagram: (a) Maximum shrinkage (Y7). (b) Volume shrinkage (Y3).
(c) Addendum diameter shrinkage (Y3). (d) Root circle diameter shrinkage (Yj).
Table 9 is the variance analysis table of the maximum shrinkage in which the contribu-
tion ratio of the mold temperature and the dwell time is shown to be 5.05% and 81.61%.
Table 10 is the variance analysis table of volume shrinkage in which the contribution ratio
of the melt temperature and packing time is shown to be 13.68% and 73.71%. Table 11 is the
variance analysis table of the addendum diameter shrinkage in which the contribution ratio
of the mold temperature and the packing time is shown to be 7.99% and 80.59%. Table 12 is
the variance analysis table of root circle diameter shrinkage in which the contribution ratio
of the mold temperature and the packing time is shown to be 9.81% and 75.44%. Therefore,
it can be concluded that the packing pressure had the greatest influence on the non-linear
shrinkage of the small-module plastic gears.
Table 9. ANOVA for maximum shrinkage.
Source DF Sum of Squares Mean Square F-Value p-Value Contribution (%)
A 2 0.000183 0.000092 78.80 0.000 5.05
B 2 0.000166 0.000083 71.14 0.000 4.58
C 2 0.000146 0.000073 62.71 0.000 4.03
D 2 0.002958 0.001479 1271.16 0.000 81.62
E 2 0.000000 0.000000 0.04 0.962 0.00
Error 35 0.000041 0.000001
Total 45 0.003624
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Table 10. ANOVA for volume shrinkage.

Source Sum of Squares Mean Square F-Value p-Value Contribution (%)
A 2 2.012 1.0060 8.12 0.001 1.87
B 2 14.744 7.3719 59.53 0.000 13.68
C 2 1.450 0.7248 5.85 0.006 1.35
D 2 79.427 39.7137 320.71 0.000 73.71
E 2 0.133 0.0664 0.54 0.590 0.12
Error 35 4.334 0.1238
Total 45 107.751
Table 11. ANOVA for addendum diameter shrinkage.
Source Sum of Squares Mean Square F-Value p-Value Contribution (%)
A 2 0.47856 0.23928 77.67 0.000 7.99
B 2 0.23341 0.11671 37.88 0.000 3.90
C 2 0.20798 0.10399 33.75 0.000 3.47
D 2 4.82563 2.41281 783.21 0.000 80.59
E 2 0.00081 0.00040 0.13 0.878 0.01
Error 35 0.10782 0.00308
Total 45 5.98814
Table 12. ANOVA for root circle diameter shrinkage.
Source Sum of Squares Mean Square F-Value p-Value Contribution (%)
A 2 0.39574 0.19787 39.07 0.000 9.81
B 2 0.15007 0.07504 14.82 0.000 3.72
C 2 0.19460 0.09730 19.21 0.000 4.82
D 2 3.04317 1.52158 300.43 0.000 75.44
E 2 0.00077 0.00039 0.08 0.927 0.02
Error 35 0.10782 0.00308
Total 45 4.03381

Then, the interactive effects of the micro-injection molding process parameters on
the shrinkage of the small-module plastic gears was further investigated. The interaction
effect plots for the maximum shrinkage (Y1), volume shrinkage (Y>), addendum diameter
shrinkage (Y3) and root circle diameter shrinkage (Ys) were obtained, as shown in Figure 11.
If the two straight lines are not parallel or intersect, there is an interaction effect between the
process parameters; the greater the degree of non-parallelism, the stronger the interaction
effect. It can be seen that there was a large interaction between the process parameters, so
the optimal combination of process parameters cannot be determined using a traditional
single factor design.

3.3. NSGA-II Algorithm Optimization Results

The optimal process parameters obtained by NSGA-II were a mold temperature of
61.44 °C, a melt temperature of 193.64 °C, a packing pressure of 79.84 MPa, a packing time
of 4.48 s and a cooling time of 20 s. Figure 12 shows the simulation results under the optimal
parameters. The maximum shrinkage of the studied gear was 0.1400 mm (Figure 12a),
which was reduced by 5.60% compared to the shrinkage of the gear under the reference
process parameters. The volume shrinkage of the studied gear was 12.38% (Figure 12b),
which was reduced by 8.23% compared to the shrinkage of gear under the reference process
parameters. The addendum diameter shrinkage (Y3) and root circle diameter shrinkage
(Yy) calculated according to Figure 12c were 5.618% and 5.762%, which were reduced by
11.71% and 11.39%, respectively. Compared with the optimization objectives predicted by
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the approximate surrogate models, the relative errors were all less than 5%, as shown in

Table 13.
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Figure 11.

Interaction effect plot: (a) Maximum shrinkage (Y7).

(b) Volume shrinkage (Y2).

(c) Addendum diameter shrinkage (Y3). (d) Root circle diameter shrinkage (Y).
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Figure 12. Simulation results under the optimal parameters. (a) Shrinkage cloud diagram. (b) Volume
shrinkage. (¢) Addendum diameter and root circle diameter.
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Table 13. Simulation results and prediction results.
Yl (mm) Yz (%) Y3 (o/o) Y4 (o/o)
Prediction 0.1409 11.92 5.631 5.885
Actual 0.1400 12.38 5.618 5.762
Error (%) 0.643 3.715 0.231 2.134

3.4. Optimization Method Validation

The measurement results for the key dimension shrinkage of the gear samples in the
micro-injection molding experiment under reference and optimal process parameters are
shown in Figure 13a. It was found that the addendum diameter shrinkage (Y3) and the root
circle diameter shrinkage (Yy) decreased by 9.44% and 9.91%, respectively. Moreover, the
tooth profile inclination deviation (fp,7), tooth profile deviation (f,) and total tooth pro-
file deviation (F,7) were reduced by 47.57%, 23.43%, and 49.96%, respectively (Figure 13b).
Figure 13c shows the tooth profile deviation curve of the gear sample with the highest tooth
profile accuracy under optimal process parameters. It can be seen that the deviation near
the addendum circle and the root circle was larger, while the deviation near the graduation
circle was smaller, which was also close to the simulation results. Consequently, the tooth
profile accuracy of the small-module plastic gears could be significantly improved using
the proposed method.
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Figure 13. (a) Key dimensions’ shrinkage in the experiment under optimal process parameters.
(b) Optimization results of tooth profile accuracy. (c) Tooth profile deviation curve of gear sample
with the highest tooth profile accuracy under optimal parameters.
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4. Conclusions

In summary, this paper has proposed an effective method to improve the tooth profile
accuracy of micro-injection molded small-module plastic gears. First, based on the Box—
Behnken design method, a simulation of the micro-injection molding of the studied gear
was carried out. Next, the response relationship between the process parameters and
the optimization objectives was analyzed using the RSM-Quadratic. The optimization
objectives were non-normalized optimized using the NSGA-II algorithm. Finally, an
experimental analysis of the micro-injection molding of the studied gear was carried out
under reference and optimal process parameters to verify the optimization method. The
main conclusions of this study are as follows.

1. The shrinkage of the gear was different at different positions. The tooth part of the
gear shrank the most. Moreover, the shrinkage degree near the addendum and the
root circle of the small-module plastic gear was the largest. The relative errors of
the key dimension shrinkage between the micro-injection molding experiment and
simulation were all less than 2%.

2. The factor that had the greatest influence on the shrinkage of the small-module plastic
gears was the packing time, and there was a complex interaction between the process
parameters. The accuracy of the RSM-Quadratic for the optimization objectives
reached more than 92 %.

3. The simulation results showed that the Y7, Y5, Y3, and Yy values of the studied gear
were reduced by 5.60%, 8.23%, 11.71%, and 11.39%, respectively. Moreover, the tooth
profile inclination deviation (fg.r), tooth profile deviation (ff,7) and total tooth
profile deviation (F,T) were reduced by 47.57%, 23.43%, and 49.96%, respectively.
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