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Abstract 

The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, 
the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In 
the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenic-
ity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading patho-
gens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune 
response have made great progress. In the review, we provide an overview of DTMUV and summarize current 
advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate 
immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, 
interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is 
to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.

Keywords:  Tembusu virus, Duck, Pathogenesis, Innate immunity, Immune evasion

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

1  Introduction
In April 2010, an outbreak of an unknown duck egg-drop 
disease occurred in the coastal provinces of southeast 
China, characterized by a substantial decrease in egg lay-
ing and neurological symptoms in infected egg-laying 
and breeder ducks [1]. At necropsy, hyperemia and hem-
orrhage of the ovary, follicle atresia and rupture were 
observed in the diseased ducks. The morbidity rate of this 
illness was up to 90%, and the mortality varied from 5 to 
30% depending on the management conditions. Finally, 
the duck Tembusu virus (DTMUV) was identified as the 
causative agent [1]. Tembusu virus was first isolated from 
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Culex mosquitoes as early in 1955 in Malaysia (prototypi-
cal strain MM1775) [2], there are few reports associated 
about this virus until an infectious disease was identi-
fied caused by it in a broiler farm in Malaysia in 2000 
(named the Sitiawan virus), characterized by encephalitis 
and retarded growth of chicks [3]. After 10 years with no 
appearance of the virus, there were large scale outbreaks 
of Tembusu virus in ducks in the major duck-raising 
areas of China in 2010, with a rapid spread and huge eco-
nomic losses [1]. Subsequently, some outbreaks caused 
by DTMUV in Southeast Asia were reported [4, 5]. 
Indeed, the increase of emerging and re-emerging infec-
tious diseases are seriously threatening the development 
of the duck industry [6–14].

Host innate immunity serves as the first line of defense 
against invading pathogens, and pattern recognition 
receptors (PRRs), the crucial components of the innate 
immunity system, can recognize the pathogens, activate 
the specific signaling cascades, and induce the produc-
tion of type I interferons (IFN-I) and proinflammatory 
cytokines, ultimately leading to the establishment of 
innate immunity and the development of adaptive immu-
nity [15].

Since the outbreak of DTMUV in 2010, comprehen-
sive studies have been performed on the etiology, epide-
miology, clinical symptoms, and pathology of the virus. 
However, the research on the molecular pathogenesis of 
DTMUV is still at the developmental stage. The complex 
interactions between the virus and host immune response 
are critical for understanding the virus  pathogenesis. In 
recent years, much work has been done in this area, espe-
cially research on host innate immune responses induced 
by DTMUV infection. In this review, the advances in the 
study of DTMUV and its interaction with host innate 
immunity are summarised, which can facilitate future 
studies on DTMUV pathogenesis and provide new insights 
into the prevention and treatment of the disease.

2 � Overview of DTMUV
DTMUV is an enveloped, positive sense, single-stranded 
RNA virus belonging to the genus Flavivirus in the family 
Flaviviridae, which also includes West Nile virus (WNV), 
dengue virus (DENV), Japanese encephalitis virus (JEV), 
and Zika virus (ZIKV) [1]. The DTMUV genome is 
approximately 11  kb, encoding three structural proteins 
(capsid, C; pre-membrane, PrM; and envelope, E) and 
seven non-structural proteins (NS1, NS2A, NS2B, NS3, 
NS4A, NS4B, and NS5) [16]. The DTMUV strains are 
virulent and have strong pathogenicity in ducks, caus-
ing systemic infection. The infected ducklings display 
retarded growth and neurological symptoms, while lay-
ing ducks display a severe drop in egg production [1]. 
Various breeds of ducks can be infected with DTMUV, 

and age-related differences in susceptibility to the virus 
were significant. Several studies showed that the suscep-
tibility of ducklings and goslings to DTMUV gradually 
decreased with increasing age within 7-week-old ducks 
[17–19], but in different week-old breeding ducks, 14- to 
16-week-old reserve breeding ducks were more resistant 
to DTMUV than 55-week-old egg-laying ducks [20, 21]. 
The increasing pathogenicity and expanding host range 
of emerging DTMUV strains are observed: the virus can 
infect not only ducks, but also chickens and geese [22]. 
Moreover, DTMUV replicates well in several mammalian 
cell lines, such as BHK-21, Vero, and 293T cells, and it 
can even infect mice under artificial conditions [23, 24].

DTMUV has strong transmission ability, which can 
spread among ducks through contact and vertical trans-
mission [25]. Notably, Li et  al. reported that DTMUV 
can also be transmitted by aerosol [26], similar to H9N2 
avian influenza virus (AIV) [27, 28], Newcastle disease 
virus (NDV) [29, 30], and Marek’s disease virus [31]. This 
transmission mode partly explains why DTMUV was 
capable of spreading to majority of duck-raising areas in 
China within a short time after the outbreak. Many mem-
bers of the genus Flavivirus are arboviruses. Tang et  al. 
isolated a mosquito-origin Tembusu strain from duck 
farms with known DTMUV outbreaks [32], and a Tem-
busu strain was also isolated from house sparrows living 
around the poultry farms, suggesting that DTMUV can 
be spread not only by mosquitoes, but also by sparrows 
[33]. A large number of serological and etiological detec-
tion methods has been established since the DTMUV 
outbreak, including ELISA [34], neutralizing antibody 
detection [35], quantitative real-time PCR (qPCR), and 
reverse-transcription loop-mediated isothermal amplifi-
cation (RT-LAMP) [36, 37]. The common molecular diag-
nostic methods for DTMUV were compared by previous 
studies, in which the RT-LAMP and qPCR usefulness for 
rapid diagnosis was demonstrated, especially the former 
was more useful in DTMUV field detection [38]. Based 
on the various detection methods, a large amount of epi-
demiological information on DTMUV was obtained, and 
the results showed that co-infection with DTMUV, H9N2 
AIV, and NDV was common [39], and DTMUV infection 
may escalate the avian pathogenic Escherichia coli inci-
dence in ducks [40]. The phylogeographical analysis indi-
cated that current DTMUV strains circulating in Asia are 
genetically classified into 3 clusters, including cluster 1, 
cluster 2 (2.1 and 2.2) and cluster 3 [41].

In animal experiments, qPCR demonstrated that the 
load of DTMUV in the spleen was higher than in other 
organs in early infection [17, 42]. The virus could last 
from 2 hours post infection (hpi) to 18 days post infec-
tion (dpi) in the spleens of egg-laying shelducks. Fur-
thermore, DTMUV particles were observed mostly in 
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lymphocytes and macrophages by transmission elec-
tron microscope analysis [43]. Recently, Ma et al. veri-
fied that monocytes/macrophages were the key targets 
of DTMUV infection [44]. Therefore, the viral load in 
the spleen first rapidly increases after TMUV infection, 
which provides a good cell model for in-depth study of 
viral pathogenesis.

It has been reported that endocytosis through 
endosomes is an efficient mechanism used by many 
viruses to break through the physical barrier of the cel-
lular plasma membrane to enter the cell and initiate 
productive infection. Normally, flavivirus entry occurs 
by receptor-mediated endocytosis [45]. Heat shock pro-
tein A9 and glycoregulatory protein 78 have been identi-
fied as binding receptors for DTMUV in DF-1 cells [46, 
47], and clathrin-mediated endocytosis was also nec-
essary for DTMUV entry into BHK-21 cells. The acidic 
pH in the endosome induced structural alterations in the 
viral E protein, leading to membrane fusion and uncoat-
ing [48]. Therefore, the viral RNA genome was translated 
to initiate virus replication, at the same time the ubiqui-
tin-proteasome system also played an important role in 
DTMUV replication [49]. In addition to mediating virus 
entry, E protein is essential for DTMUV pathogenesis 
[50]; especially, mutations in several important amino 
acid sites, which can significantly affect viral pathogenic-
ity. Yan et  al. reported that a single mutation at amino 
acid residue 156 (S-P) reduced the ability of viral repli-
cation and transmission in ducks, and further analysis 
confirmed that the potential mechanism was composed 
by the disruption of N-linked glycosylation at position 
154 and changes in the conformation of the “150 loop” 
of the E protein [51]. Recently, it has been found that the 
threonine-to-lysine mutation of residue 367 in E pro-
tein can attenuate DTMUV [52]. As research continues, 
the effects of other proteins on viral replication will be 
discovered.

To date, the categories of DTMUV vaccine are various, 
including inactivated vaccines [53, 54], attenuated live 
vaccines [55, 56], and DNA vaccines [57–59]. This dis-
ease still occurs in some duck farms due to lack of immu-
nization or immunization failure, although there are 
several commercial inactivated and attenuated live vac-
cines in China. Considering that many flaviviruses such 
as WNV, DENV, and JEV are pathogens of zoonoses, the 
positive antibodies of DTMUV were detected in duck 
farm workers [60], DTMUV may be a potential threat to 
public health. Therefore, more attention should be paid 
to epidemiological investigation and evolution analysis.

3 � DTMUV infection triggers host innate immune 
responses

Innate immune responses are required to protect the 
host from pathogenic infections in the early stages. PRRs 
mainly comprise five family members: toll-like receptors 
(TLR), retinoic acid-inducible gene I (RIG-I)-like recep-
tors (RLR), nucleotide binding oligomerization domain 
(NOD)-like receptors (NLR), C-type lectin receptors 
(CLR), and absent in melanoma 2 (AIM2)-like receptors 
(ALR). The different PRRs in the cell membrane, endo-
some, and cytoplasm can sense various pathogen-associ-
ated molecular patterns (PAMPs) such as the RNA and 
DNA of viruses, lipopolysaccharide and peptidoglycan of 
bacteria, etc. Upon activation of PRRs, they will interact 
with the specific adaptor proteins, resulting in activa-
tion of immune signaling pathways and establishment of 
innate immunity characterized by the induction of the 
IFN-I, antiviral molecules, and inflammatory cytokines 
[15, 61]. To date, studies on the interaction between 
DTMUV and innate immunity have increased.

3.1 � TLR‑mediated signaling pathway in recognition 
of DTMUV

TLR, a group of conserved type I transmembrane pro-
teins, is one of the most critical PRRs which can sense the 
different invading pathogens outside the cell membrane 
and internally in endosomes and lysosomes. Currently, 
10 TLR have been reported in human, and 10 TLR in 
chicken, while only 5 TLR (TLR 2 [62], TLR3 [63], TLR4 
[64], TLR5 [65], and TLR7 [66]) in duck. Furthermore, 
there are some differences between avian and mam-
mal TLR, including the absence of TLR8 and TLR9 and 
the presence of TLR1La, TLR1Lb, TLR15, and TLR21 
in chickens [67, 68]. TLR7 recognizes single-stranded 
RNA (ssRNA), Pekin duck TLR7 is most highly expressed 
in the spleen, bursa of Fabricius, and lung, sharing 85% 
identity with chicken TLR7 and 66% with human based 
on amino acid alignment [66]. Muscovy duck TLR3 
shares 87.3% amino acid identity with chicken and 62% 
with human, with a broad expression spectrum [63]. 
TLR3 detects double-stranded RNA (dsRNA) and elicits 
responses.

Activated TLR3 and TLR7 recruit their individual 
adaptor protein, called Toll-interleukin (IL)-1-resistance 
(TIR) domain-containing adaptor inducing IFN-β (TRIF) 
and myeloid differential protein-88 (MyD88), respectively 
[69, 70]. TRIF activation leads to the formation of the 
complex of tumor necrosis factor (TNF) receptor-asso-
ciated factor 6 (TRAF6) [71], receptor-interacting pro-
tein 1 (RIP1), the TAK1-binding proteins 2 (TAB2)  and 
TAB 3, and the NF-kB essential modifier (NEMO) [72]. 
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Eventually, NF-kB is activated and enters the nucleus 
after ubiquitination and degradation of IκB. At the same 
time, TRIF recruits TRAF3, in this period, TRIF interacts 
directly with TRAF family member-associated NF-κB 
activator (TANK) and TANK-binding kinase 1 (TBK-1) 
[73], as well as the kinases TBK-1 and IKKε phosphoryl-
ate IFN regulatory factor (IRF) 7. Ultimately, activated 
NF-κB and IRF7 induce the production of IFN-I and 
inflammatory cytokines, leading to the establishment 
of the innate immune response. However, duck TLR7-
MyD88 signaling pathway triggers IFN-I production 
through the downstream molecule IRF-1 (Figure 1).

In our previous study, DTMUV infection can stimu-
late the expression of a large number of innate immune-
related genes in the brain and spleen of Cherry Valley 
ducks. According to the qPCR analysis, the expression 
of TLR3 increased 28.54- and 1.57-fold at 2 dpi in brain 
and spleen, respectively [74]. The TLR3 expression was 
also measured in the brain, liver and spleen of goslings 
infected with DTMUV, and it was found that TLR3 
upregulated most significantly compared to other PRRs 
(88.43-fold in brain, 57.79-fold in liver, and 12.58-fold in 
spleen) [75]. The expression of PRRs in chicken embryo 
fibroblasts (CEF), 293T cells, and chicks were detected 
by Chen et  al. after DTMUV infection by qPCR at the 
indicated time. The results showed that DTMUV could 
significantly upregulate transcript levels of TLR3, but its 
effect on the expression of TLR1, TLR2, TLR5, TLR7, 
TLR15, or TLR21 in CEF cells is relatively low. Moreover, 

in the 293T cells which can stably express shRNA target-
ing TLR3, the functions of TLR3 in innate immune dur-
ing DTMUV infection were confirmed, suggesting that 
DTMUV can efficiently trigger TLR3-dependent signal-
ing pathways [76]. Increasing intracellular signal trans-
ducers were identified, numerous studies showed that 
many proteins could be involved in DTMUV infection. 
For example, the TRIF in duck embryo fibroblasts (DEF) 
cells infected with DTMUV was upregulated [77], duck 
TRAF3 can interact with the upstream molecule TRIF, 
and leading to the production of IFN-β, overexpression of 
TRAF3 inhibited the replication of DTMUV [78], while 
the overexpression of duck TBK1 and IRF7 dramatically 
reduced the replication of DTMUV in DEF cells [79–81]. 
The results above clearly demonstrated that a TLR3-
mediated signaling pathway was essential for defending 
against DTMUV infection.

In addition to TLR3, other TLRs were found to be 
involved in the recognition of DTMUV through tran-
scriptomics and proteomics analysis. Yu et al. analyzed 
the transcriptomic data of DTMUV-infected DEF 
cells collected at 12 and 24  hpi, and they found that 
DTMUV significantly downregulated expression of 
TLR5, while the expression of TLR7 was upregulated 
[82]. There is a RNA-sequencing study of goslings 
infected with DTMUV, in which only TLR7 experi-
enced a significantly upregulated trend, and qPCR 
verified that the change of TLR7 in the liver (29.15-
fold) is much higher than in the spleen (2.85-fold) and 

Figure 1  Duck Tembusu virus (DTMUV) infection triggers the innate immunity signaling pathways in the cell. Both MDA5 and TLR3 can 
recognize DTMUV and elicit signaling cascades through adaptor proteins MAVS and TRIF, respectively, leading to the induction of IFN-I production. 
The JAK-STAT signaling pathways mediated by IFN-I induce the abundant expression of various ISGs, including Mx, OASL, IFITMs, Viperin etc., and 
they are capable of inhibiting DTMUV replication. However, the specific role of other PRRs such as RIG-I, TLR7, DDX/DHX, and HMGBs is unclear, it 
needs further study. To date, DTMUV has evolved several strategies to escape from host immune responses. The protein NS1 of DTMUV can bind 
MAVS to impair the IFN-I expression level. NS2A and NS2B3 target the transcription molecule STING to inhibit the IFN-I, resulting in the immune 
evasion. Additionally, DTMUV may downregulate the expression of TLR3 by microRNA-148a-5p.
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brain (3.24-fold). More importantly, the signaling pro-
teins MyD88, TRAF3, and NF-κB were significantly 
upregulated [75], and DTMUV infection significantly 
increased the expression of IRF-1, indicating that the 
virus might induce MyD88 signaling pathway [83]. 
Differentially expressed proteins in DTMUV-infected 
BHK-21 cells were quantitatively identified by Sun 
et al. by iTRAQ, the production of TLR9 increased at 
48 hpi [84], which suggested that TLR9 can be poten-
tially implicated in DTMUV infection in mammalian 
cell lines.

It has been showed in previous studies that the TLR3, 
TLR5, and TLR7 involved in DTMUV recognition can 
be changed by flavivirus infection [85–87]. However, 
whether these PRRs-mediated signaling pathways have 
positive effect on defending against DTMUV in vivo is 
uncertain, because the absence of some PRRs is ben-
eficial to host survival. For example, TLR3-deficient 
mice can survive longer than wild mice following lethal 
influenza virus infection, because of the reduced pro-
inflammatory cytokine responses (called “cytokines 
storm”) which caused damage and pathology to the 
host [88, 89]. Strikingly, the robust production of pro-
inflammatory cytokines was observed during DTMUV 
infection in vivo and in vitro [74, 82]. Further study is 
needed on the effect of pro-inflammatory cytokines 
such as interleukin (IL) 6 and chemokine 8 during viral 
infection.

3.2 � RLR‑mediated signaling pathway in recognition 
of DTMUV

RLR family is constituted by RIG-I, melanoma differ-
entiation-associated gene 5 (MDA5), and Laboratory 
of genetics and physiology 2 (LGP2). RIG-I and MDA5 
are expressed in the cytoplasm and primarily recognize 
5′-triphosphate ssRNA and dsRNA [90, 91]. The pro-
tein structures of RIG-I and MDA5 are similar, both of 
them possess tandem caspase activation and recruit-
ment domain (CARD) at N-terminal, followed by a cen-
tral DExD/H box RNA helicase domain and a repressor 
domain at C-terminal [92], but the protein structure of 
LGP2 is different from RIG-I and MDA5′s, which lacks 
the CARD and is generally considered to be a negative 
regulator of IFN production [93]. Upon recognition of 
ligands, RLR recruits and interacts with the mitochon-
drial antiviral-signaling protein (MAVS) adaptor protein 
via CARD, and then the activated MAVS triggers a com-
plex signaling transduction pathway, which is similar to 
the events described downstream of TRIF in Figure  1. 
Finally, the activation of NF-κB and IRF7 stimulate the 
expression of IFN-I [92].

It has been observed that RIG-I and MDA5 were 
involved in the host innate immune response to DTMUV 

in ducks. The importance of MDA5 might be more than 
RIG-I based on the degree of changes, and the roles they 
played might differ with time and tissues [74, 75]. Com-
parative transcriptomic analysis showed that MDA5 and 
RIG-I respectively increased 19.76 fold and 17.52 fold, at 
24 hpi in DEF cells infected with DTMUV, and transcrip-
tion factors NF-κB and IRF-7 also showed upregulation 
[82]. DTMUV could significantly upregulate the expres-
sion of MDA5 in CEF cells, and while in the DTMUV-
infected 293T cells lack MDA5, the expression of IFN-β 
expression decreased. It is also demonstrated that the 
production of IFN-β in 293T cells reduced significantly 
since MAVS, IRF3, IRF7, and NF-κB are disrupted, they 
were all required in DTMUV-induced upregulation of 
IFN-I [76]. Overexpression of duck MAVS significantly 
reduced DTMUV replication, its disruption increased 
virus titer in DEF cells [94], and the knockdown of MAVS 
impaired the activation of IRF1, NF-κB, and IFN-β 
induced by DTMUV [95], which suggested that DTMUV 
can efficiently trigger RLR- and MAVS-dependent sign-
aling pathways. LC–MS/MS was used to analyse quan-
titative proteomic of ovarian follicles collected from 
shelducks infected with DTMUV, the KEGG analysis of 
differential expression proteins showed that RLR signal-
ing pathways were involved in DTMUV infection [96]. 
Additionally, the RIG-I, MDA5, LGP2, and stimulator of 
interferon gene (STING) were all significantly increased 
at 5  dpi in goslings infected with DTMUV, especially 
LGP2, which changes most based on transcriptome data 
[75]. Except for this study, there are few studies on the 
role of LGP2 in DTMUV infection, while the LGP2 genes 
of duck and goose were successively identified, and it is 
also demonstrated that the mRNA expression levels were 
significantly upregulated in the brain, spleen and lung 
after H5N1 AIV infection [97, 98]. Therefore, the specific 
role of LGP2 in DTMUV infection may be revealed in 
future studies.

3.3 � Other PRRs relevant to DTMUV infection
In addition to TLR and RLR, other PRRs including 
DExD/H-box RNA helicase family, NLR, and high-mobil-
ity group box protein (HMGB) also play crucial roles in 
response to microbial infection. DExD/H-box RNA heli-
case has many members, including RIG-I and MDA5. 
Furthermore, DDX/DHX proteins with conserved heli-
case domains but lacking the CARD, belong to this family 
as well, such as DDX1, DDX3 and DDX5. DDX proteins, 
which can regulate the replication of many viruses [99, 
100]. Recently, several studies demonstrated the expres-
sion changes of several DDX proteins after DTMUV 
infection. Sun et  al. reported that DDX3X and DDX5 
were significantly decreased in DTMUV-infected BHK-
21 cells, and they found that DDX3X overexpression 
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could inhibit DTMUV propagation by modulating the 
IFN-I via TBK1 protein  [84], which was consistent with 
results showing duck DDX3X affecting DTMUV replica-
tion [101]. However, other quantitative proteomic anal-
yses revealed that DDX5 was upregulated (1.84 fold) in 
DEF cells infected with DTMUV [102]; the result was dif-
ferent from DDX5 detection in mammalian cells, indicat-
ing that there might be a difference in the innate immune 
responses to DTMUV between avians and mammals. 
Additionally, DDX42, DDX60, DHX15, and mov10 RISC 
complex RNA helicase were differentially expressed after 
DTMUV infection [82, 102], suggesting that these heli-
case proteins should be involved in DTMUV infection, 
but the specific roles were unclear.

In general, NLR was found to sense bacterial PAMP, 
but in the goslings infected with DTMUV, NOD1 was 
upregulated (3.57 fold in the spleen, 6.45 fold in the liver, 
and 3.11 fold in the brain), and its downstream CASP1, 
CARD9 and others in NOD-like pathways also showed 
expression differences [75]. Meanwhile, NLRP3 and 
NLRC5 were found to be involved in DTMUV infection 
[82]. HMGB proteins including HMGB1 and HMGB3 
have been reported to affect DTMUV replication as well 
[102, 103]. Although various PRRs might be involved in 
DTMUV infection, only the expression changes of these 
PRRs were focused on, and their specific function needs 
further investigation.

3.4 � IFN‑stimulated genes (ISGs) defense against DTMUV 
infection

As is well known, IFN-I plays a pivotal role in innate 
immune responses to viral infection. The synthesized IFN 
have been secreted, which can bind to specific receptors on 
neighboring uninfected cells. This leads to the activation of 
the receptor associated tyrosine kinases JAK1 and TYK2, 
and therefore phosphorylates signal transducers and activa-
tors of transcription (STAT) 1 and STAT2. The phospho-
rylated STAT1 and STAT2 proteins combine with IRF9 
to form IFN-stimulated gene factor 3 (ISGF3), this com-
plex translocates to the nucleus to promote an abundant 
expression of IFN-stimulated genes (ISGs), which encode 
distinct antiviral proteins [104, 105]. There are several 
studies demonstrating that duck JAK1 and TYK2 kinases 
exhibited antiviral activity against DTMUV infection, and 
knockdown of two signal transducers significantly inhibited 
DTMUV-induced IFN-stimulated response element pro-
moter activation [106, 107]. Meanwhile, DTMUV infection 
can upregulate the STAT1 transcript level [82], indicat-
ing that JAK-STAT signaling pathway can defend against 
DTMUV by inducing the production of hundreds of ISGs 
[75]. In this review, the advances in interaction between 
some ISGs and DTMUV were summarised.

3.4.1 � Mx
Myxovirus resistant (Mx) protein serves as an antivi-
ral molecule and is produced by various cells such as 
hepatocytes, endothelial cells, and immune cells [108]. 
The Mx mRNA level was significantly upregulated in 
DTMUV-infected DEF cells [82]. Hu et  al. reported 
that Mx protein increased by 24.43 fold in DEF cells 
at 42 hpi [102], and goose Mx was identified as the key 
in the inhibition of DTMUV replication by transcrip-
tomic analysis. At the same time, the overexpression 
and knockdown assay in  vitro further confirmed that 
the Mx played crucial roles in the anti-DTMUV effect 
of IFN signaling pathways [109]. Further mechanism 
research of Mx demonstrated that two amino acids at 
the 125 (Lys) and 145 (Thr) positions in the GTP-bind-
ing domain were vital for the antiviral function of Mx 
against DTMUV [110].

3.4.2 � OASL
The 2′-5′-oligoadenylate synthase (OAS) family proteins 
belong to a nucleotidyltransferase superfamily [111]. 
There are four OAS family members in mammals: OAS1, 
OAS2, OAS3, and OAS-like (OASL) [112], while in poul-
try only OASL was identified [113, 114]. All of these four 
OAS members have an NTase domain at N-terminal and 
one–three OAS domain, but OASL has two ubiquitin-
like (UBL) domains at C-terminal, which is different from 
others. OAS family proteins demonstrate extensive anti-
viral ability, which can act against many viruses such as 
DENV, WNV, and JEV, through RNase L-dependent and 
RIG-I-dependent signaling pathways [112]. In DTMUV-
infected DEF cells, the mRNA and protein levels of OASL 
were significantly increased [82, 102]. The antiviral activ-
ity assays of duck OASL showed that OASL overexpres-
sion slightly inhibited DTMUV replication, whereas 
OASL knockdown increased viral replication in DF-1 
cells [114]. A study found that DTMUV infection could 
significantly upregulate the mRNA expression level of 
goose OASL in vivo [113], and the further study showed 
that goose OASL could efficiently inhibit DTMUV rep-
lication in vitro, while has been proved to be independ-
ent of OAS enzyme activity and the UBL domains [115]. 
Recently, Rong et  al. demonstrated that duck OASL 
inhibited the replication of a set of RNA viruses, such as 
influenza virus and NDV, by activating and magnifying 
the OAS/RNase L pathway in a UBL-dependent man-
ner. Functional analysis indicated that three aspartic acid 
residues in the N-terminal were very important for the 
switching of avian and mammalian OASL to activate the 
OAS/RNase L and OASL/RIG-I pathways [116]. How-
ever, whether or not duck OASL can efficiently inhibit 
DTMUV replication, the underlying signaling pathway 
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and molecular mechanism utilized by duck OASL should 
be further explored.

3.4.3 � IFITM
Interferon-inducible transmembrane (IFITM) pro-
teins are a subfamily of large transmembrane proteins 
consisting of IFITM1, IFITM2, IFITM3, IFITM5, and 
IFITM10. IFITM1, IFITM2, and IFIMT3 are generally 
considered to be involved in antiviral immunity [117, 
118]. IFITM proteins are known to restrict the replica-
tion of a large number of viruses by blocking viral entry, 
including restriction of virus fusion with the late endo-
somal or lysosomal and penetration into the cytoplasm 
[119, 120]. IFITM1 and IFITM3 have been recently iden-
tified in goose. Goose IFITM3 was activated in goose 
peripheral blood mononuclear cells infected with 
DTMUV or treated with TLR agonists. Both IFITM1 
and IFITM3 were upregulated in the sampled tissues 
after DTMUV infection, especially the cecum and cecal 
tonsil, where DTMUV was intensively located, indicat-
ing that DTMUV is responsible for the high expression 
levels of goose IFITM1 and IFITM3. Notably, the lowest 
viral copy numbers were seen in the lung, where a high 
expression of IFITM3 and IFN-I appeared. These data 
suggested that goose IFITM1 and IFITM3 might posi-
tively facilitate IFN-mediated defenses against DTMUV 
[121]. Similar conclusions were drawn by the investiga-
tion of Chen et al., they revealed that DTMUV infection 
induced robust expression of IFN-I, IFN-III, and IFITMs 
in vivo and in vitro. It is also demonstrated that the dis-
ruption expression of endogenous IFITM1 or IFITM3 
markedly enhanced DTMUV replication in DF-1 cells 
while IFITM2 not, and the overexpression of chicken or 
duck IFITM1 and IFITM3 can inhibit the replication of 
DTMUV in DF-1 cells, which indicated that in IFITM 
family proteins, IFITM1 and IFTIM3 play crucial roles in 
anti-DTMUV infection [122].

3.4.4 � IFIT5
Interferon-induced protein with tetratricopeptide 
repeats 5 (IFIT5) protein serves as an ISG in host innate 
immunity, and it is also an important adaptor protein, 
bridging RIG-I to MAVS to enhance RLR signaling path-
ways [123, 124] and upregulating NF-κB to promote 
IFN production [125]. Most mammals have four mem-
bers: IFIT1, IFIT2, IFIT3, and IFIT5. However, IFIT5 is 
the single member found in birds [126]. Tissue distribu-
tion analysis demonstrated that duck IFIT5 was ubiqui-
tously expressed in tissues of 5-day-old ducklings, with 
the highest expression in the heart, followed by the thy-
mus, cerebrum, liver, and lung [127]. The recombinant 
duck IFIT5 inhibited the replication of highly patho-
genic H5N1 AIV in DF-1 cells [128]. Several differentially 

expressed proteins involved in the immune response 
were observed between DTMUV-infected and control 
duck ovarian follicles. Of these proteins, the upregula-
tion of IFIT5 and OASL was validated at the mRNA and 
protein levels [96], suggesting both proteins might be 
involved in the immune response to DTMUV in duck 
ovarian follicles.

3.4.5 � Viperin
Viperin, also known as RSAD2 and cig5, is a highly con-
served antiviral protein involved in innate immunity 
[129]. It has been confirmed that viperin protein has a 
broad antiviral effect on a wide range of viral pathogens 
such as human immunodeficiency virus [130], influenza 
virus [131], and hepatitis C virus  (HCV) in  vitro and 
in  vivo [132]. Duck viperin can be  strongly induced by 
NDV infection in  vitro and in  vivo [133], and it can be 
induced by DTMUV infection in DEF cells [82, 102]. Zhu 
et  al. revealed that the overexpression of duck viperin 
reduced DTMUV replication by inhibiting viral budding 
in BHK-21 cells. In their study, the binding proteins com-
plex was determined by mass spectrometry, and six pro-
teins were found, including DDX3X and DDX5, which 
might be involved in the inhibition of DTMUV, possibly 
indicative of a viperin anti-DTMUV pathway in ducks 
[134]. These results reflect the importance of DDX3X and 
DDX5 during DTMUV infection as well.

In addition to the well-known ISGs described above, 
there are many other ISGs like double-stranded RNA-
dependent protein kinase (PKR) and zinc finger CCCH-
type antiviral protein induced expression changes by 
DTMUV infection investigated by many some transcrip-
tomic and proteomic studies [82, 102], and they all have 
strong antiviral ability [135, 136]. However, whether 
these ISGs are capable of impairing DTMUV infection is 
not clear.

4 � The strategies of DTMUV escape from innate 
immunity

The previous literature demonstrated that the DTMUV 
infection can elicit intense immune responses, but cir-
cumventing host antiviral innate immune barriers to 
establish a successful infection is firstly needed [44]. 
There are several evasion strategies has been evolved by 
DTMUV to disrupt innate immunity and facilitate pro-
ductive infection.

4.1 � The effect of DTMUV on PRRs expression
As described above, MDA5- and TLR3-dependent sign-
aling pathways can induce large amounts of IFN-I and 
ISGs to resist DTMUV infection. Exosomes,  which are 
small membrane vesicles formed by the inward budding 
of the plasma membrane in endocytosis, play a critical 
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role in innate immunity and intercellular communication 
[137]. In the study of Guo et  al., microRNA (miRNA)-
148a-5p in DEF derived exosomes could target TLR3 and 
downregulate the expression of TLR3 and IFN-β, indicat-
ing that this miRNA is a negative regulator of TLR3, and 
impairs the TLR3-mediating innate immune response. 
The result suggested that DTMUV might inhibit PRRs by 
inducing miRNA expression to achieve immune evasion, 
although the expression of miRNA148a-5p was decreased 
partially due to the inhibition of highly expressed TLR3 
in DEF cells and DEF-derived exosomes infected with 
DTMUV [138]. As far as we know, this is the only study 
on DTMUV regulating PRRs expression. However, the 
V protein of most paramyxoviruses can directly interact 
with MDA5 and inhibit its activity [139–141]. Whether 
proteins of DTMUV can directly or indirectly interact 
with MDA5 or TLR3 remains unclear.

4.2 � Inhibition of IFN production by targeting important 
adaptor molecules

Adaptor proteins are essential for TLR- and RLR-
mediated induction of IFN-I. The overexpression of 
MAVS, TRIF, TRAF3, NF-κB, and IRFs can promote 
the production of IFN-I to inhibit DTMUV replication. 
However, DTMUV can inhibit IFN-β induction during 
early infection by targeting several adaptor proteins. 
Wang et al. reported that the NS1 protein of DTMUV 
could target the adaptor protein MAVS, and disrupt 
the interaction with MAVS and RIG-I/MDA5, lead-
ing to inhibition of IFN-I expression [142]. In addi-
tion to MAVS, STING is also an important adaptor 
protein, it activates the IRF-3 and NF-κB to stimulate 
IFN-I production and is necessary for early efficient 
induction of IFN-I mediated by RLR [143, 144]. It has 
been demonstrated in the nowadays studies that both 
NS2A protein and NS2B3 polyprotein of DTMUV can 
inhibit IFN-β induction by interacting with the STING 
protein, but the specific mechanism was different. 
The NS2A protein and TBK1 competed binding to 
duck STING, disrupted STING dimer formation and 
reduced TBK1 phosphorylation, leading to the inhibi-
tion of IFN-β production. The amino acid residues at 
164, 167, and 361 in STING were important for NS2A 
binding with STING [145]. However, NS2B3 polypro-
teins inhibited IFN induction by hydrolyzing duck 
STING, and further mapping analysis showed the scis-
sile bond located between the R84 and G85 residues of 
STING [146]. It is suggested by the immune evasion 
strategies employed by DTMUV via targeting MAVS 
and STING were critical for host innate immune 
responses to DTMUV infection.

Similarly, the Zika virus circumvented host innate 
immunity with NS3 and NS2B3 respectively targeting 

MAVS and STING [147]. The NS3/4A protein of HCV 
cleaves the MAVS and TRIF proteins, leading to the 
blocking of RLR and TLR3 signaling [148, 149]. The fla-
viviruses have evolved many strategies to escape host 
immune responses, including delaying PRR detection 
during the early stages of infection, inhibition of IFN 
gene transcription, and suppression of IFN signaling. 
Especially there are several non-structural proteins of 
flaviviruses can efficiently impair the JAK-STAT signal-
ing pathway by targeting the signal transducers [150]. 
Therefore, we speculate that DTMUV may be capable of 
escaping immune responses by other approaches, espe-
cially the effect of DTMUV on the JAK-STAT signaling 
pathway.

5 � Conclusions and perspectives
Since 2010, the studies of the disease associated with 
DTMUV have made great progress, especially on etiol-
ogy, epidemiology, diagnostic methods, and immune pre-
vention and control. Recently, as an increasing number of 
immune molecules were available in the innate immune 
system of ducks, there is a deeper understanding on the 
interaction between DTMUV and duck innate immunity. 
To summarize, a large number of innate immune-related 
genes, including PRRs, transcription molecules, IFN-I, 
and ISGs, are significantly upregulated after DTMUV 
infection in vivo and in vitro. Meanwhile, there are solid 
and reliable experimental results showing that MDA5- 
and TLR3-mediated signaling pathways induced the 
production of IFN-I to defend against DTMUV infec-
tion and various ISGs such as Mx, OASL, IFITM1, and 
IFITM3 can inhibit the replication of DTMUV. It is nota-
ble that DTMUV has developed several strategies during 
its adaptive evolution to circumvent host innate immu-
nity, which should be our focus. Researches on evasion 
mechanisms of DTMUV also provide scientific reference 
for the related study of zoonotic viruses in the flavivirus 
genus.

However, despite great progress being made, there 
are still many problems worth further exploration, for 
example: whether other PRRs can recognize DTMUV 
through studies on other TLR and NLR and their adap-
tor molecules in ducks during DTMUV infection, the 
specific mechanism of the up-regulated ISGs in regu-
lating DTMUV replication, the roles of the neglected 
downregulated proteins and pro-inflammatory 
cytokines including TLR5, DDX3X, IL-6, IL-12, IL-28, 
and IL-29 in defending against DTMUV infection, the 
interaction between individual protein of DTMUV and 
innate immunity, and whether there are more immune 
evasion strategies employed by DTMUV. We believe 
that with the development of research, these questions 
will be addressed, and the understanding of DTMUV 
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disease will be deepened. Certainly, the purpose of 
interaction research is to elucidate the pathogenicity of 
DTMUV, to explore more immune mechanisms such as 
antiviral signaling pathways and antiviral proteins, and 
finally to translate these findings to the clinic to prevent 
and treat this disease.
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