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The aim of this review is to present and discuss the most recent literature about the processing of insect
biomass and its impact on nutritive value, further implementation of meals and fats derived from in-
vertebrates to livestock (poultry and swine), aquaculture (salmonids), and companion animal diets and
their impact on growth performance, metabolic response, and gastrointestinal microbiota shifts. Addi-
tionally, the most important barriers to obtaining unified products in terms of their nutritive value are
considered, i.e., to define insects' nutrient requirements, including various technological groups and
further biomass processing (slaughtering, drying, and storage). Due to the current limitation in the insect
production process consisting of the lack of infrastructure, there is stress on the relatively small amount
of insect products added to the animal diets as a functional feed additive. Currently, only in the case of
pet nutrition may insects be considered a full replacement for commonly used environmentally harmful
and allergenic products. Simultaneously, the least information has been published on this topic. Thus,
more scientific data are needed, particularly when the pet food branch and insect-based diets are rapidly
growing.

© 2022 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Insect biomass is stated as a new alternative source of nutrients
for various animal species. However, we should post the question of
whether this is a real alternative or rather a natural choice for
modern birds or fish present on earth for over 60 million years,
which in wild conditions do not have access to soybean meal, fish
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iation of Animal Science and

vier on behalf of KeAi

nce and Veterinary Medicine. Publ
ttp://creativecommons.org/license
meal, or other raw materials that have been developed in recent
decades of animal production and nutrition. Furthermore, the
production of these commonly used feed materials often causes
environmental degradation (deforestation, ocean overharvesting,
etc.) or are not accepted by consumers due to their genetic modi-
fication. Nonetheless, insect usage as the main protein source has
been frequently published in the available literature (Allegretti
et al., 2018; El-Hack et al., 2020; J�ozefiak et al., 2016; Kim et al.,
2019). Thus, in the present review, the continuation of inverte-
brate administration as a substituent for commonly used and
environmentally harmful ingredients such as soybean meal or fish
meal was not deliberated. Based on the PubMed database (pubmed.
ncbi.nlm.nih.gov), there is clearly shown that the last decade was
the most intensive period for exploring the field of insect usage as a
meal (Fig. 1A). Furthermore, in the scope of 2 insect species that are
themost economically justified from the practical point of view, i.e.,
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://pubmed.ncbi.nlm.nih.gov
http://pubmed.ncbi.nlm.nih.gov
mailto:damian.jozefiak@up.poznan.pl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aninu.2022.06.015&domain=pdf
www.sciencedirect.com/science/journal/24056545
http://www.keaipublishing.com/en/journals/aninu/
https://doi.org/10.1016/j.aninu.2022.06.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aninu.2022.06.015
https://doi.org/10.1016/j.aninu.2022.06.015


Fig. 1. Frequency of the scientific articles publishing based on PubMed database using the following keywords: (A) “insect meal”, or (B) the name of species considered as livestock
by the EU Commission. The bolded lines were used to emphasize the 2 most profitable insect species (Hermetia illucens and Tenebrio monitor).

B. Kiero�nczyk, M. Rawski, Z. Mikołajczak et al. Animal Nutrition 11 (2022) 60e79

61



B. Kiero�nczyk, M. Rawski, Z. Mikołajczak et al. Animal Nutrition 11 (2022) 60e79
Hermetia illucens and Tenebrio molitor, the largest growth in the
number of articles published in scientific journals is observed in the
last 5 years (Fig. 1B). The abovementioned trend is connected to the
recent development of the insect meal producer market, not only in
Asia or North America but also in Europe, where in general the
usage of invertebrates in the animal and human diet was forgotten.
However, it should be emphasized that the limitation of inverte-
brate biomass production and application under field conditions is
currently caused by 1) developing technology for invertebrate
production; 2) processing of the invertebrate biomass for animal
nutrition; 3) limited infrastructure availability; 4) the lack of sys-
temic solutions for the distribution and collection of foodwastes; 5)
no nutrient requirements for invertebrates; and finally, 6) high
variability in biomass nutritive value. Nonetheless, the infrastruc-
ture (production scaling up) seems to be the most important
bottleneck of the insect farming industry, and consequently, there
is no possibility of commonly administered invertebrate protein in
animal diets, e.g., poultry at the suggested level, i.e., up to 20% (de
Souza Vilela et al., 2021). Additionally, the price per tonne of insect
product is not acceptable in intensive rearing conditions of live-
stock, where 70% of all production costs are connected with
nutrition. Based on the latest statistics by the European Feed
Manufacturers Federation (FEFAC), compound feed only for poultry
was produced by the EU-28 in 2019 at the level of approximately 56
million tonnes and was 9% higher than its production in 2013 (EU-
28) (FEFAC.eu). Hence, 1% replacement of feed using insect meals
needs to be produced, e.g., 1.68 million tonnes live black soldier fly
larvae (BSFL; H. illucens). In contrast, insect market production by
2030 is estimated to be 250 thousand tonnes of invertebrate
products, including whole dry insects and incorporated ingredients
(IPIFF.org).

The introduction of novel feedstuffs requires many optimiza-
tions in terms of quality, availability, and supply chains. Therefore,
the mass production of insects for livestock or companion animal
nutrition should be at a consistent level and quality, which enforces
different actions during insect rearing and processing. In this
respect, one of the most important impediments of insect biomass
implementation to animal nutrition is enormous nutritive value
variability (Table 1). It is well documented that the chemical
composition of insects is species (Janssen et al., 2017), development
stage and sex (Liu et al., 2017), diet composition (Adebayo et al.,
2021), and processing technique dependent (Huang et al., 2019).
Nonetheless, the nutrition of larvae seems to be the most crucial to
modulate the nutritive value of the final biomass. Therefore, the
aim of this review is to focus not only on the application of insect-
based raw materials in animal nutrition but also on an overview of
various factors that affect their further nutritive value.

2. Insect nutrition

In the available literature, the usage of manure, sludge,
slaughterhouse wastes, or catering waste as a rearing substrate has
been frequently studied (Gold et al., 2020; Lalander et al., 2019;
Rehman et al., 2019). However, in the European Union, due to the
definition of the selected insect species, i.e.,H. illucens (black soldier
fly), T. molitor (yellow mealworm), Musca domestica (common
housefly), Alphitobius diaperinus (lesser mealworm), Acheta
domesticus (house cricket), Gryllodes sigillatus (banded cricket), and
Gryllus assimilis (field cricket), as livestock by the European
Parliament and the Council, does currently not allow to feed in-
vertebrates using the abovementioned materials (EC No 178/2002;
852/2004; 183/2005), and it will not be presented in this review.
Furthermore, the vast majority of the scientific literature has
focused on compound diets such as chicken feed or vegetable
wastes, which is not sufficiently informative and may make an
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illusory sense of progress in the field of insect nutrition. This is
probably due to the high insects' ability to adapt via flexibility of the
midgut to wide spectra of various organic materials, particularly
H. illucens, which is classified as a saprophagous species (Bonelli
et al., 2020). It must be emphasized that insects should be fed
specific nutrients, not specific feed materials, because they have a
specific nutrient requirement. Thus, a permanent evaluation of the
nutritive value of feed materials (byproducts of the agri-food in-
dustry) during insect rearing is needed. To date, there is scarce
information about the impact of dietary macronutrients (crude
protein or nitrogen-free extract) on the chemical composition of
invertebrates. Some studies have been carried out on the protein-
to-carbohydrate ratio (P:C) in the Lepidoptera, Orthoptera, Cole-
optera, and Blattodea orders (Behmer, 2009; Raubenheimer and
Simpson, 2003; Roeder and Behmer, 2014; Simpson et al., 1988;
Waldbauer and Bhattacharya, 1973). Instead, from the authors'
point of view, the most stress of further research investigations
should be put on recognizing and systemizing the nutrient re-
quirements for economically justified insect species, such as
H. illucens and T. molitor. Cammack and Tomberlin (2017) empha-
sized that an equal P:C ratio causes the fastest development of
H. illucens and a beneficial survival rate when the substrate has 30%
dry matter (DM), contrary to 5:1 or 1:5 ratios. Furthermore, not
only the ratio between nutrients but also their concentration
should be taken into consideration. Barragan-Fonseca et al. (2019)
noted that development duration, as well as larval and pupal
mass, is mostly dependent on protein and carbohydrate levels,
>50% and 80%, respectively. The P:C interaction is responsible for
approximately 20% of the effect on larval development. This finding
is in line with the results of Le Gall and Behmer (2014), who re-
ported that carbohydrates are responsible mainly for the increased
biomass of larvae. Nevertheless, in the scope of the chemical
composition, the crude protein (CP) content of the obtained
H. illucens biomass is negatively related to increased concentration
in the rearing medium (Barragan-Fonseca et al., 2018, 2019; Beniers
and Graham, 2019; Tschirner and Simon, 2015). Simultaneously, the
reports of Meneguz et al. (2018) indicated that not only the level
but also the quality of protein (fruit wastes vs. brewery byproducts)
has a crucial impact on its content in the larvae. Moreover,
Barragan-Fonseca et al. (2021) estimated that both the protein and
carbohydrate levels equally affected the protein content in the
H. illucens biomass, while the variation between larval CP concen-
trations was modulated at the narrow spectrum, i.e., approximately
between 41% and 45%. In contrast, the crude fat content varies over
a considerable range (approximately 6% to above 30%), and
increasing concentrations of protein and carbohydrates in the diet
result in high fat levels (Barragan-Fonseca et al., 2019). This result is
in agreement with Spranghers et al. (2019), who noted a high
correlation (R2 ¼ 0.94) between the sum of carbohydrate and
protein levels and larval growth. Furthermore, the results of Beniers
and Graham (2019) exclude the hypothesis that carbohydrates may
enlarge fat accumulation. It should be highlighted that the above-
mentioned results stated only the beginning of the construction of
the detailed nutrient requirements for selected insect species.
Further research is needed to divide the specific nutritional needs
for species, developmental stages, parental stocks, and intended
biomass usage. Therefore, similar to other animals, insect rearing
requires the nutritive value of feedstuffs and the nutrient compo-
sition of the diets. The impact of the substrates used in insect
rearing is important, but today, it is not clear how their modifica-
tion can influence final product quality and their usage in animal
nutrition. Thus, it is highly recommended to expand the evaluation
of the transfer chain of nutrients from rearing substrate to insect
biomass in the future as a milestone to create a nutrient require-
ment for insect biomass production.

http://IPIFF.org


Table 1
The nutritive value variability of the selected insect species.1

Item Hermetia illucens Tenebrio molitor Musca domestica

Dry matter, % 31.4 ± 5.2 54.0 ± 12.8 24.3 ± 0
Crude protein, % DM 43.3 ± 7.1 53.3 ± 7.4 54.1 ± 10.7
Crude fat, % DM 26.3 ± 11.2 29.8 ± 8.7 21.2 ± 6.3
Crude ash, % DM 12.3 ± 7.9 4.2 ± 1.2 10.2 ± 6.8
Chitin, % DM 4.6 ± 1.5 5.9 ± 1.4 ND ± ND
AMEN for poultry, MJ/kg 17.6 ± 3.6 21.7 ± 0 17.3 ± 0
Gross Energy, MJ/kg 24.9 ± 2.9 24.5 ± 2.3 23.1 ± 4.4
Minerals, g/kg DM
Calcium 27.2 ± 13.7 0.9 ± 0.7 9.8 ± 8.9
Phosphorus 8.9 ± 2.1 7.9 ± 1.5 10.5 ± 2.6
Magnesium 3.6 ± 1.2 2.2 ± 0.6 2.3 ± 0
Potassium 14.7 ± 5.3 9.1 ± 1.0 12.7 ± 0
Sodium 4.1 ± 3.7 1.2 ± 0.5 6 ± 0.9
Chlorine 2.0 ± 0.6 5.7 ± 0 ND ± ND
Sulphur 3.4 ± 1.3 3.5 ± 0 ND ± ND
Manganese, mg/kg DM 214.3 ± 78.5 11.6 ± 3.1 165.0 ± 154.2
Zinc, mg/kg DM 104.2 ± 32.7 110.8 ± 11.2 638.0 ± 567.1
Copper, mg/kg DM 9.4 ± 2.1 16.3 ± 2.9 33.2 ± 1.1
Iron, mg/kg DM 263.1 ± 106.5 70.5 ± 16.9 539.5 ± 91.2
Cobalt, mg/kg DM 0.3 ± 0.3 ND ± ND ND ± ND
Molybdenum, mg/kg DM 0.9 ± 0.3 ND ± ND ND ± ND

Amino acids, g/100 g of protein
Lysine 6.2 ± 0.9 4.6 ± 1.9 6.9 ± 1.5
Threonine 3.9 ± 0.5 3.6 ± 0.9 4.9 ± 1.3
Methionine 1.8 ± 0.4 1.2 ± 0.5 3.8 ± 1.6
Cystine 0.7 ± 0.2 1.4 ± 0.6 1.0 ± 0.3
Tryptophan 1.5 ± 0.4 1.2 ± 0.5 1.4 ± 0.2
Isoleucine 4.3 ± 0.5 4.0 ± 1.3 3.7 ± 1.3
Valine 5.9 ± 0.4 5.3 ± 1.9 4.7 ± 1.8
Leucine 6.9 ± 0.6 6.6 ± 2.3 6.1 ± 0.6
Phenylalanine 4.1 ± 0.9 3.4 ± 1.0 7.1 ± 1.5
Tyrosine 5.9 ± 1.4 5.9 ± 1.5 5.6 ± 1.8
Histidine 3.1 ± 0.8 2.9 ± 1.1 4.0 ± 1.0
Arginine 5.3 ± 1.2 4.5 ± 1.4 6.0 ± 1.6
Aspartic acid 8.9 ± 0.8 7.3 ± 2.2 8.0 ± 2.6
Glutamic acid 11.1 ± 1.2 10.9 ± 3.1 11.8 ± 3.7
Glycine 5.0 ± 0.7 4.8 ± 1.7 3.3 ± 1.6
Serine 4.1 ± 0.3 4.3 ± 1.6 3.9 ± 0.2
Proline 5.4 ± 0.5 5.8 ± 1.87 4.6 ± 0.7
Alanine 6.3 ± 0.8 7.1 ± 2.19 5.0 ± 0.7

AMEN ¼ apparent metabolizable energy corrected to zero nitrogen balance; ND ¼ not detected.
1 The presented values are based on the literature listed separately in Supplementary material.
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Finally, different agroindustry wastes are rich in structural fibers
and/or soluble polysaccharides, which may need processing before
they are used as substrates for insects. Feed structure, particle size,
viscosity, dry matter content, etc., also play an important role in
terms of feed distribution and its availability and need further
investigation, while not only feed chemical composition but also its
physical affect insect performance.

3. Larval biomass processing

In addition to the modulation of insect chemical composition by
rearing substrate, there is also a possibility of negatively affecting
larval nutritive value through the selection of inadequate biomass
processing conditions, i.e., slaughter method, drying process, and
storage. The most popular slaughtering methods include heating
(desiccation, blanching), freezing, asphyxiation, and usage of me-
chanical techniques (grinding, high hydrostatic pressures). Among
those listed, the blanching technique seems to be favorable because
of its positive effect on the limitation of lipid oxidation and
reduction ofMaillard reaction occurrence (color stability; inactivate
phenol oxidase) (Larouche et al., 2019). However, the usage of large
quantities of water in field-intensive production, i.e., approximately
300 L per tonne of larvae, makes this technique environmentally
harmful. Surprisingly, slow slaughtering methods such as freezing
63
did not prevent protein and lipid degradation (Caligiani et al., 2019;
Leni et al., 2019). Furthermore, Nyangena et al. (2020) have shown
that various processing techniques, i.e., toasting, boiling, solar, and
oven drying, can affect the chemical composition of insects. It
should be highlighted that most authors observe an adverse effect
of CP dilution during the boiling water process (Egan et al., 2014;
Manditsera et al., 2019). It is well known that temperature can
disrupt the quality of protein and further its availability (Ib�a~nez
et al., 2020). Thus, subsequent performance results of farm ani-
mals fed insect-based diets can be negatively affected by a reduc-
tion in the digestibility coefficients of crude protein and amino acid
availability. The protein dispersibility index (PDI) of H. illucens
larvae meals varied significantly and was characterized in the range
from approximately 19% to 60% (Table 2). Low PDI values indicate
the occurrence of the Maillard reaction and binding of lysine to
carbohydrates, which makes indigestible complexes. Additionally,
temperature treatment may result in the oxidation, aggregation,
and formation of Schiff bases (Bax et al., 2012). This result is in line
with Huang et al. (2019), where conventionally dried (60 �C in a
drying oven to constant weight) H. illucens larvae were character-
ized by a better digestible indispensable amino acid score and di-
gestibility than the microwave (500 W for 15 min) method, which
may polymerize the protein and impede its digestion. It was
confirmed for T. molitor and A. domesticus that oven drying (150 �C



Table 2
Comparison of the protein dispersibility index (PDI) values of the selected feed materials.

Item Process Parameters PDI, % Reference

Feed material
Whole soybeans e e 88.6 Bruce et al. (2006)
Soybeans Roasted 143 �C 18.6
Raw maize-based food e e 69.3 Lasekan et al. (1996)
Maize-based food Extrusion 100 �C 46.6
Maize-based food Extrusion 120 �C 29.6
Maize-based food Extrusion 135 �C 18.9
Animal byproducts Raw e 7.87 to 8.28 P�erez-Calvo et al. (2010)
Animal byproducts Rendered 141.8 �C, 23.8 min; 2.3 bars 11.02 to 15.42
Hermetia illucens larvae defatted meal Drying 100 �C, 24 h 22.60 Authors data (unpublished)
H. illucens larvae full-fat meal Drying 100 �C, 24 h 19.38
H. illucens Drying 70 �C, 48 h 29.05 Ravi et al. (2020)
H. illucens Freezing �80 �C, 24 h freeze-dried 52.86
H. illucens Microwave drying 450 W, 20 min 31.15
H. illucens Scalding Boiling water 5 min; freezing

at �18 �C and freeze-dried
34.35

H. illucens Blanching Steam 5min; freezing at�18 �C and
freeze-dried

33.70

H. illucens Microwave drying 900 W at 120 �C, 5 bars pressure
5 min; frozen �18 �C and freeze-
dried

42.45

H. illucens Fat extraction n-hexane 29.09 Ravi et al. (2019)
H. illucens Fat extraction 2-methyloxolane 31.55

Average PDI value of soybean by origin
Argentina 10.3 to 23.9 Ib�a~nez et al. (2020)
Brasil 8.9 to 17.6
USA 8.8 to 45.7
India 9.6 to 33.6

1 bar ¼ 100 kPa.
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for 30 min and 200 �C for 10 min) and autoclaving significantly
decreased in vitro CP disappearance during enzymatic hydrolysis
(Poelaert et al., 2016). Finally, the storage of insect-derived products
can also negatively affect their nutritive value. Independent of the
packages, i.e., made of plastic, polyethylene, or polypropylene, the
ambient or refrigerated storage temperature conditions signifi-
cantly reduced house cricket meal mono- and polyunsaturated
fatty acids in the period from 45 to 90 d (Kamau et al., 2017).

The diverse microbiota of the insects' gastrointestinal tract (GIT)
(Daniele et al., 2022; Zhineng et al., 2021) may play an important
role in the contamination of the final products. Because insects are
processed with the gastrointestinal tract, evisceration is not
possible. Therefore, all of the abovementioned technological issues
should also relate to microbiological safety and quality. In conclu-
sion, the development of optimal processing techniques is the key
to ensuring that the nutritional value of feed materials made from
insects is not destroyed; moreover, a balance between microbio-
logical safety and biological value of the nutrients is important. It is
therefore advisable to continue work on identifying effective
methods of slaughter, drying, and storage.
4. Insects in petfood

The possible implementation of insect-derived products, mainly
protein meals, in companion animals' nutrition allows to expand
the branch of hypoallergenic diets (B€ohm et al., 2017, 2018). The
constantly increased availability of invertebrate biomass on the
market has resulted in an enlarged number of commercial foods. It
should be highlighted that the ancestors of domestic dogs and cats
ingest invertebrates as a part of their natural diets (Behrendorff
et al., 2016; Tiralla et al., 2021; Woolley et al., 2020). Thus, the
implementation of “novel” insect ingredients is in fact back to na-
ture. Moreover, in the case of the petfood industry where “fresh
meat” application is becoming more important, the question of
whether insect biomass should be implemented as a direct
64
replacement of vertebrate meat and its byproducts arises. In this
case, drying and/or fat separation is avoided; however, appropriate
devitalization of the larvae and further product stability are still
important considerations.
4.1. Insect meals in petfood

The usage of various species, mainly T. molitor, as well as
H. illucens larvae as the main source of protein in the diets of pets
has not only a nutritional effect but also a beneficial environmental
impact. It should be emphasized that the production of commercial
pet food generates up to 30% of the environmental impact
(including the use of land, water, fossil fuel, phosphate, and bio-
cides) from animal production and emits 64 million tonnes of CO2-
equivalent methane and N2O (Okin, 2017). This is caused by the
significant amounts of pets kept in households, i.e., 703.3 million
globally (Hughes and Macdonald, 2013). Additionally, the global
warming potential (GWP) of insects, particularly T. molitor and
H. illucens, is smaller, from four to twenty-eight times, than chicken,
pork, and beef protein production (Beynen, 2020). Thus, the CO2
equivalent per kg of product is stated at the level of 12 to 13 GWP/
kg protein for insects, contrary to 50 or 335 GWP/kg of protein for
chickens or beef production, respectively. Consequently, the pro-
vision of insect biomass into pet foods positively affects not only the
diversification of hypoallergenic products but also stays in linewith
the idea of HORIZON2020, including the European Green Deal
(ec.europa.eu). In addition to the abovementioned information, the
most important from a practical point of view seems to be the
palatability of insect biomass. Kiero�nczyk et al. (2018b) showed
that insects may be used in dog diets as an additional attractant;
however, differences between sexes were observed. Accordingly,
females preferred more Shelfordella lateralis, while males favored
T. molitor larvae. Based on Beynen (2020), the distinction between
dogs and cats is also noted. H. illucens larvae meal was more suit-
able for dogs when the cats preferred the T. molitor larvae product.



B. Kiero�nczyk, M. Rawski, Z. Mikołajczak et al. Animal Nutrition 11 (2022) 60e79
Nonetheless, in the case of cat acceptance, H. illucensmeal was also
tolerated by most animal use in the Paßlack and Zentek (2018)
study. Importantly, the high inclusion level of G. sigillatus meal,
i.e., up to 24% (Kilburn et al., 2020), as well as 20% of H. illucens
larvae meal (Freel et al., 2021) did not trigger feed intake in dogs.
Additionally, the total replacement of chicken fat used as an energy
source in beagle dog diets by H. illucens larvae fat (5% inclusion) did
not influence palatability.

The in vitro DM digestibility measurements indicate no obsta-
cles to the use of H. illucens, M. domestica, and T. molitor larvae
meals in dog nutrition, which are characterized by 81.4%, 88.6%, and
92.3%, respectively (Bosch et al., 2016). Furthermore, the essential
amino acid availability was above 91%. The results of in vivo studies
confirmed the possibility of insect meal usage in pet nutrition.
Lisenko et al. (2018) suggested the possibility of Nauphoeta cinerea,
Gromphadorhina portentosa, and Zophobas morio larvae meal usage
in beagle diets up to 15% without a negative effect on nutrient di-
gestibility, fecal metabolites, or the excreta microbiota. Further-
more, Russo et al. (2019) concluded that DM digestibility was
higher in the H. illucensmeal diet than in the control feed with deer
byproducts used as a main source of protein. Additionally, Freel
et al. (2021) indicated that the administration of up to 20%
H. illucens meal, as well as the partial (50%) or total replacement of
chicken fat byH. illucens larvae fat in the Beagle dog diet, resulted in
no adverse effect on nutrient and energy availability.

4.2. Insect functional properties in petfood

However, in the available literature, there are scarce data in
terms of experimentation carried out on dogs or cats to evaluate the
potential effect of insect-based diets on pet organisms. The appli-
cation of maggots at the level of 5% also did not influence dog
growth, feed intake, blood hematology, biochemistry, or immune
traits or reduce oxidative stress (Hong et al., 2020). Interestingly,
the addition of a relatively small amount of H. illucens larvae meals,
i.e., 1% or 2%, linearly improved the apparent total tract digestibility
of DM (72% vs. 75%) and CP (73% vs 78.5%) and had a favorable
impact on immune (tumor necrosis factor-a [TNF-a]) and anti-
oxidative status (glutathione peroxidase) (Lei et al., 2019). Sur-
prisingly, after 24% Gryllodes siggilatus was added to the beagle
dogs' diets, the alpha and beta microbial diversity was not affected,
while only a few genera/families, i.e., Catenibacterium, Lachno-
spiraceae, Faecalitalea, Bacteroides, Faecalibacterium, and Lachno-
spiracaeae, were influenced; however, their abundance comprised
less or near 1% of the total microbial community (Jarett et al., 2019).
However, G. siggilatusmeals at each inclusion level, i.e., 8%, 16%, and
24%, negatively affected the nutrient digestibility of crude protein,
ether extract, and gross energy and increased the daily fecal output
(Kilburn et al., 2020). This could be a result of low acidic chitinase
gene expression in dogs and a consequence of decreased chitin
digestibility, which is the lowest in comparison to mouse, chicken,
pig, and bovine, even if the insect products are well tolerated
(intake) by the animal (Tabata et al., 2018). However, some doubts
still occur in the scope of disease transmission or heavy metal
accumulation (Ibitoye et al., 2019). Due to the limitations of avail-
able studies, there is a need to significantly expand knowledge in
terms of various insect species or chitin incorporation into pet diets
and evaluation of their effects on the nutrient digestibility co-
efficients (in vivo), physiological and immunological response, and
the GIT microecosystem, particularly during long-term studies.

Currently, the pet food market frequently offers diets based on
the insect as a sole protein source. This process excludes the most
allergenic products from the dogs' food, such as soy or chicken
meat. There are limited data about the hypoallergenic properties of
insects in terms of their inclusion in companion animal diets.
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According to Lee et al. (2021), the defatted T. molitor meal-based
diet offered to dogs for 12 weeks has the potential to diminish
cutaneous lesions and skin barrier dysfunction. Furthermore, a
positive effect on the improvement of lesion scores and coat quality
in atopic dermatitis dogs was observed after 2 weeks of insect-
based diet administration (B€ohm et al., 2018). However, it should
be emphasized that each protein above 20 kDamay cause an allergy
(Lee et al., 2021). Furthermore, the history of food allergy shows
that protein availability is a significant factor in its occurrence, i.e.,
the geographical access to specific ingredients and frequency of
protein ingested (Pr�elaud, 1999). Thus, there is still a possibility of
invertebrate-origin allergies appearing in the future. Nevertheless,
there is a priority to improve our knowledge about the effect of
tropomyosin, arginine kinase, and other allergens present in insect
biomass on companion animal health.

Eventually, dog owners have a positive attitude in terms of the
future usage of insect products as an alternative to meat in dog
food, particularly due to the benefits of reducing environmental
pressure, and additionally claim that invertebrate biomass is nu-
trition's sufficient substitute or replacement for current products
(Ibitoye et al., 2019).

5. Insects in poultry nutrition

5.1. Insect meals as a functional feed additive for poultry

According to the abovementioned challenges in terms of insect
biomass production limitations, the current application of insect
meals should be considered a potential functional feed additive
according to their health-promoting properties (Gasco et al., 2018).
It is well documented that chitin, as well as antimicrobial peptides
(AMPs), occurring in invertebrates can positively affect the growth
performance, GIT microbiota, and immune response of birds (Gasco
et al., 2020; J�ozefiak and Engberg, 2017). It is indicated that feeding
broiler chickens with meals as a source of chitin resulted in a
decrease in the intestinal population of bacteria such as Escherichia
coli and Salmonella; in contrast, the effect has not been confirmed in
birds fed purified chitin. Insects have also been investigated as
promising sources of antimicrobial peptides. According to the
Antimicrobial Database (aps.unmc.edu), to date, 326 AMPs have
been identified from insects. Research performed in vitro investi-
gating the antimicrobial activities of fractioned extracts and AMPs
purified from insects identified 16 peptides in samples of H. illucens
and 16 in T. molitor (Tables 3 and 4). The inhibition activities of
peptides extracted from H. illucens have been proven against gram-
negative bacteria, E. coli, E. coli serotype O157:H7, Salmonella pul-
lorum, S. typhimurium, S. enteritidis, Enterobacter aerogenes, and
Pseudomonas aeruginosa; gram-positive bacteria, Staphylococcus
aureus, methicillin-resistant S. aureus (MRSA), S. epidermidis,
Streptococcus suis, Listeria ivanovii, Bacillus subtilis, and Micrococcus
luteus; and fungi, Rhizoctonia solani, Sclerotinia sclerotiorum, and
Candida albicans (Table 3). To investigate the pharmacological ac-
tivities of novel antibacterial peptides extracted from T. molitor
against gram-positive bacteria, such as B. subtilis, S. aureus,
S. epidermidis, S. pyrogen, M. luteus, and Corynebacterium diphther-
iae, as well as gram-negative bacteria, such as E. coli, Shigella flex-
neri, P. aeruginosa, and Proteus vulgaris, and yeasts, such as
S. cerevisiae and C. albicans. Research performed in vivo indicated
the beneficial effects of synthetic AMP-A3 and AMP-P5 on the
growth parameters of broiler chickens (Choi et al., 2013a, 2013b;
Wang et al., 2016). Moreover, the addition of synthetic cecropins to
broiler diets decreased pathogenic bacteria and enhanced intestinal
villus height in the duodenum (Wen and He, 2012). Therefore, it is
suggested that cecropin can be a possible alternative to some an-
tibiotics used in poultry production.

http://aps.unmc.edu


Table 3
Antimicrobial peptides (AMPs) from Hermetia illucens inhibited microorganisms.

AMP name Source/samples Amino acid sequence Techniques Inhibited microorganisms M AMP gene expression Ref.

Cecropin-like
peptide 1
(CLP1)

Hemolymph of immunized
H. illucens larvae
S. aureus (KCCM 40881, KCCM
12256)

MNFTKLFVVFA
VVLVAFAGQSEAGWRK
RVFKPVEKFGQRVRDAGVQ
GIAIAQQGANVLATARGGPPQQG

Fast protein liquid chromatography
(FLPC), high-performance liquid
chromatography (HPLC), matrix-
assisted laser desorption/ionization-
time-of-flight (MALDI-TOF) mass
spectrometry (MS), RTePCR

Escherichia coli KCCM 11234 0 to 1.03 mmol/L AMP gene expression
was increased in the
muscle and trachea.

Sultana et
al. (2021),
Park and
Yoe (2017a)

Enterobacter aerogens KCCM 12177 1 to 2.07 mmol/L
Pseudomonas aeruginosa KCCM 11328 1 to 2.07 mmol/L
MRSA KCCM 40881 N
Staphylococcus aureus KCCM 12256 N
S. epidermidis N

Cecropin-like
peptide 2
(CLP2)

Hemolymph of immunized
H. illucens larvae

MNFAKLFVVFAIVLVAFSGQ
SEAGWWKRVFKPVEKLGQR
VRDAGIQGLEIAQQGANVLATA
RGGPPQQG

FLPC, HPLC, MALDI-TOF, MS, RTePCR E. coli e e Park and
Yoe (2017a)MRSA

Cecropin-like
peptide 3
(CLP3)

MNFTKLFVVFAVVLIAFSGQSEA
GWWKRVFKPVERLGQRVRDAG
IQGLEIAQQGANVLATVRGGPPQQG

Enterobacter aerogenes
P. aeruginosa

CecropinZ1 Crushed H. illucens larvae
immunized with
S. aureus and E. coli

GWLKKIGKMKFILGTTLAIVIAIFGQC
QAATWSYNPNGGATVTWTANVAATAR

3D structures of the AMP genes; protein
expression, antimicrobial activity assay

E. coli 1 o 30 mg/mL e Elhag et
al. (2017)S. aureus 5 g/mL

Rhizoctonia solani 9 g/mL
Sclerotinia sclerotiorum

Cecropin 1
(Hicec1)

Hemolymph of H. illucens
larvae immunized
Lactobacillus species

Full sequence not presented in references Antimicrobial activities; analysis of
AMPs transcripts

S. aureus KCCM 40881, E. coli KCCM
11234, Salmonella pullorum KVCC-
BA0702509,
Salmonella typhimurium KCCM 40406,
Salmonella enteritidis KCCM 12021

R ge 100 to 200 mg/
1 mL for all
a lyzed
m roorganism

e Lee et
al. (2020)

Defensin-like
peptid 1
(DLP1)

Hemolymph of immunized
H. illucens larvae

MRSVLVLGLIVAAFAVYTSAQP
YQLQYEEDGLDQAVELPIEEEQ
LPSQVVEQHYRAKRATCDLLSPF
KVGHAACALHCIALGRRGGWCD
GRAVCNCR

HPLC, concentration assessment kit
BCA (Pierce)

e e e Xia et al.
(2021)

Defensin-like
peptid 2
(DLP2)

Hemolymph of immunized
H. illucens larvae with MRSA
(ATCC43300)

MRSILVLGLIVAAFAVYTSAQPYQLQYE
EDGPGYALELPSEEEGLPSQVVEQHYRAKRA
TCDLLSPFKVGHAACALHCIAMGRRGGWCD
GRAVCNCRR

HPLC, antimicrobial ability S. aureus ATCC25923 0 mmol/L e Xia et al.
(2021)
Li et al.
(2017)

S. aureus ATCC43300 0 mmol/L
S. aureus ATCC6538
S. aureus CICC546 0 mmol/L
Streptococcus suis CVCC606 0 mmol/L
Listeria ivanovii ATCC19119 0 mmol/L
E. coli CVCC1515 > .97 mmol/L
E. coli CICC21530 serotype O157:H7
Salmonella typhimurium ATCC14028
S. enteritidis CMCC50336

Defensin-like
peptid 3
(DLP3)

Hemolymph of immunized
H. illucens larvae

MRSILVLGLIVAVFGVYTSAQPYQLQYEED
GPEYALVLPIEEEELPSQVVEQHYRAKRATCD
LLSPFGVGHAACAVHCIAMGRR
GGWCDDRAVCNCRR

FLPC, HPLC, MALDI-TOF, MS, RTePCR E. coli,
MRSA

e e Li et al.
(2017)
Xia et al.
(2021)
Park and
Yoe (2017b)

Defensin-like
peptid 4
(DLP4)

Hemolymph of H. illucens
larvae immunized with
S. aureus KCCM 40881, and
MRSA ATCC43300

MVHCQPFQLETEGDQQLEPVVAEVDD
VVDLVAIPEHT
REKRATCDLLSPFKVGH
AACAAHCIARGKRGGWCDKRAVCNCRK

FLPC, HPLC, MALDI-TOF, MS, RTePCR MRSA clinical isolated, multidrug
resistant

0 to 1.17 mmol/L DLP4 gene expression
increased in fat body,
muscle, and trachea

Xia et al.
(2021)
Li et al.
(2017)
Park et al.
(2014)

S. aureus KCCM 408810 0 to 1.17 mmol/L
S. aureus KCCM 12256 1 to 2.34 mmol/L
Bacillus subtilis KCCM 11316 0 to 0.04 mmol/L
Staphylococcus epidermidis KCCM
35494

0 to 1.17 mmol/L

not observed antimicrobial activity
against Gram-negative bacteria E. coli
KCCM 11234, Enterobacter aerogenes
KCCM 12177, P. aeruginosa KCCM
11328

e

S. aureus KCCM 40881 e
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Defensin 1
(hidef1)

Hemolymph of H. illucens
larvae immunized
Lactobacillus species

Sequence available in Antimicrobial
Peptides Database (AP03308):
ATCDLLSAT
KVKSTACAAH
CLLKGHKGGYCNSKLVCVCR

Antimicrobial activities, analysis of
AMPs transcription

Range 100 to 200 mg/
100 mL for all
analyzed
microorganism

Lee et al.
(2020)

E. coli KCCM 11234
Salmonella pullorum KVCC-BA0702509
S. typhimurium KCCM 40406
S. enteritidis KCCM 12021

H. illucens
attacin
(HI-attacin)

Immunized H. illucens larvae
with E. coli; fat body, muscle,
fore-gut, mid-gut, hind-gut,
Malpighian tubule, and
trachea samples

MASKFLGNPNHNIGGGVFAA
GNTRSNTPSLGAFGTLNLKDHSL
GVSHTITPGVSDTFSQNARLNIL
KTPDHRVDANVFNSHTRLNNGF
AFDKRGGSLDYTHRAGHGLSLGA
SHIPKFGTTAELTGKANLWRSPSG
LSTFDLTGSASRTFGGPMAGRNNF
GAGLGFSHRF

e E. coli KCCM 11234 e HI-attacin transcripts
levels a 27.5-fold
increased in the fat
body, a 4-fold
increase in fore-gut, a
10.2-fold increase in
muscle, and a 3.7-fold
increase
in the trachea
comparing to control

Shin and
Park (2019)S. aureus KCCM 40881

MRSA

Sarcotoxin
1, 2a, 2b,
and 3

Crushed H. illucens larvae
immunized with S. aureus, and
E. coli

Sarcotoxin 1: GWLKRKIGMKFIL
GTTLAIVVAIFGQCQAATWSYNPN
GGATVTWTANVAATAR Sarcotoxin
2a: GWLKRKIGKKFILGTTLAIVVA
IFGQCQAATWSYNPNGGATVTWTA
NVAATAR Sarcotoxin 2b: GWLKR
KIGKKFILGTTLAIAVAIFGQCQAAT
WSYNPNGGATVTWTANVAATAR
Sarcotoxin 3: GWLKRKIGMMMK
NSNFNSTEEREAAKKNYKRKYVP
WFSGANVAATAR

Analysis of gene and 3D structures S. aureus, and E. coli;
Four isoforms were detected for
sarcotoxin: sarcotoxin 1, sarcotoxin
(2a), sarcotoxin (2b), and sarcotoxin 3

e e Elhag et
al. (2017)

StomoxynZH1 Crushed H. illucens larvae
immunized with S. aureus, and
E. coli

RGFRKHFNNLPICVEGLAGD
IGSILLGVG

3D structures of the AMP genes; protein
expression, antimicrobial activity assay

E. coli 15 to 30 mg/mL e Sultana et
al. (2021)
Elhag et
al. (2017)
Huang et
al. (2020)

S. aureus 27 to 54 mg/mL
Rhizoctonia solani >98 mg/mL
Sclerotinia sclerotiorum

Fractioned
extract of
H. illucens
larvae

Lyophilized H. illucens larvae
immunized with S. aureus

e The water-soluble extract was applied
to Sep-Pak C18, elution with 80%
acetonitrile (ACN)

MRSA 25 mg/mL e Park et al.
(2014)Candida albicans

Kocuria rhizophila
Micrococcus luteus
E. aerogenes
B. subtilis 12.5 mg/mL
E. coli
P. aeruginosa
S. epidermidis 50 mg/mL

AMP ¼ antimicrobial peptide; MIC ¼ minimal inhibitory concentration; MRSA ¼ methicillin-resistant Staphylococcus aureus.
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Table 4
Antimicrobial peptides (AMPs) from Tenebrio molitor inhibited microorganisms.

AMP name Source/samples Amino acid sequence Techniques Inhibited microorganisms MIC AMP gene expression Ref.

Tenecin 1
(homolog
of sapecin)

Hemolymph immunized larvae
of T. molitor with E. coli ATCC
K12, S. aureus ATCC RN4220;
hemolymph of immunized
larvae
T. molitor with b-1,3-glucan

Sequence available in Antimicrobial
Peptides Database (AP00354): VTCDILS
VEAKGVKLNDAACAAHCLFRGRSGGYCN
GKRVCVCRSGGYCNGKRVCVCR

Reversed-phase (C18) open column
chromatography, reversed-phase high-
performance liquid chromatography
(HPLC), tenecin-1 gene expression
analysis

Bacillus subtilis ATCC 1768 2.0 e Moon et al.
(1994)
Keshavarz
et al. (2019)
Roh et al.
(2009)

B. subtilis ATCC 6633 1.0
S. pyrogen 77A
S. aureus SG 501 0.8
M. luteus ATCC 1024 5.0
S. aureus ATCC 6538 3.7
S. pyrogen 308A 1.6
S. epidermidis ATCC 12228 8.0
Micrococcus luteus ATCC 9341
Corynebacterium diphtheriae ATCC 8024
C. diphtheriae ATCC 8032 6.0
E. coli ATCC 2592 >30
Shigella flexneri ATCC 203
P. aeruginosa ATCC 9027
Proteus vulgaris OX-19 ATCC 6380

Tenecin 2
(coleoptericin
and diptericin-
like peptide)

Hemolymph
Of immunized larvae of
T. molitor with b-1,3-glucan

Full sequence not presented in references Reversed-phase (C18) open column
chromatography, HPLC, qRTePCR and
bactericidal activity analysis

Antimicrobial activities against E. coli
and Saccharomyces cerevisiae

e e Roh et al.
(2009)
Keshavarz
et al. (2019)

Tenecin 3 Immunized larvae of T. molitor
with E. coli ATCC K12, S. aureus
ATCC RN4220; construction of
plasmids for producing MBP-
tenecin 3 fusion proteins

GenBank: (AAA97579.1): DHHDGHLGGHQT
GHQGGQQGGHLGGQQGGHLGGHQGGQPGG
HLGGHQGGIGGTGGQQHGQHGPGTGAGHQG
GYKTHGH

Reversed-phase (C18) open column
chromatography, HPLC; qRTePCR;
expression of MBP-tenecin 3 fusion
protein in E. coli; purification of MBP
fusion proteins; index of cell growth of
various fungi with treatment of MBP-
tenecin 3

Antifungal activity C. albicans KCFC1940
did not inhibit the growth of Aspergillus
nidulans FGSC4, S. cerevisiae DBY747,
E. coli, and S. aureus

e Abundant transcription of
tenecin-3 RNA in larvae and
adults, but little in pupae;
present constitutive
expression in the
hemolymph.

Jung et al.
(1995)
Lee et al.
(1996)
Keshavarz
et al. (2019)
Lee et al.
(1995)

Tenecin 4 Injection of polymeric
diaminopimelic acid (DAP)-type
peptidoglycan (PG); immunized
larvae of T. molitor with
E. coli ATCC K12, S. aureus ATCC
RN4220

GenBank (BAL04117.1): MLKAVQFALSCTILS
SAAPTASSETKWDIE DPGKLKIQHS GTIFNNG
GHKLDGEAYGSKSLVDRRDPAVFGGKLDYNHN
SGSSLSVSAQHKEHRGTRVGVEGKYNLYRNGP
FHADVSGKYDRTYGGASSNPSFSTHLTGTVDF

The antibacterial activities of AMPswith
radial diffusion assays; analysis of
tenecin-4 gene expression (qRTePCR)

E. coli ATCC K12 0.5 Observed changes of AMP
gene expression.

Chae et al.
(2012)
Keshavarz
et al. (2019)

S. aureus Cowan 1 5.0
No bactericidal activity against
B. subtilis ATCC 6633, and C. albicans
TIMM 1768

e

Attacin 1a Immunized larvae of T. molitor
with E. coli ATCC K12, S. aureus
ATCC RN4220/eggs, young and
late larvae, prepupae, pupae,
and adults; the whole larvae,
hemocytes, gut, Malpighian
tubules, and fat body

GenBank (AXG21618.1): MQKQLIVSILAFA
SLAFATADNKIPPPKPEDGQRETKWKVEDPG
IINLQHREKLYESGPHRFDATAAYKKNFVDKM
DPARTIARVDYKYLPGDTSLGVQAENIQRFGT
VLSAEATRNLYKDRKSSLDVGVNYGQTFSPFV
RSEPFFGGFVRGRF

Analysis of AMP gene expression (qRT
ePCR), and antimicrobial activity

E. coli ATCC K12,
S. aureus ATCC RN4220,
C. albicans ATCC

e AMP gene expression
observed in young larvae in
fat body, hemocytes, and
gut.

Keshavarz
et al. (2019)

Attacin 1b GenBank: AXG21619.1: MNMQTVYIIALCC
LASALARPGNTKPEDQSQTKWGVRDGVLNVE
HHGNLYKNDNHRFDGTASVTKNFVDNKDPLL
VGGRVDYKHLPSNSAIGLGAVNAGQFGTKVDLEA
SRTLFKDRFSQFDAGVSYGQRFGGPFGNSEPVFGGFIRGRF

e

Attacin 2 GenBank: AXG21617.1: MFKLIVLALVGLAAVSAYEVV
QDDQGQEFFLVPLHRQRRQTSVDISKSNPGVRATVSH
QGTIFNNGDHRLDGGAFASKQFRPSGPATVGGKLG
YSHVPSGSGLNVGAQRTQRFGTDVSATGNANLWRRG
NARLDAVGQYNRHFGGVGGTGRPNYYGGLQFSHRF

e

Coleoptericins 1 Immunized larvae of T. molitor
with E. coli ATCC K12, S. aureus
ATCC RN4220/the fat body,
hemocytes, gut, and Malpighian
tubule

Full sequences not presented in references Analysis of coleoptericins gene
expression (qRTePCR), and
antimicrobial

E. coli ATCC K12,
S. aureus ATCC RN4220;
observed no effect on C. albicans AUMC
13529

e AMP gene expression
observed in gut, and
Malpighian tubules.

Keshavarz
et al. (2019)

Coleoptericins 2 e AMP gene expression
observed in hemocytes, and
gut; not observed in fat
body of young larvae.

Keshavarz
et al. (2019)
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According to Benzertiha et al. (2020a), even a relatively small
amount of T. molitor and Z. morio full-fat meals (2 or 3 kg per tonne
of diet) supplemented on top can significantly improve the growth
performance results, including body weight gain (BWG) and feed
intake (FI), without a negative effect on the feed conversion ratio
(FCR). This finding is in line with Islam et al. (2016), who reported
improvement in BWG after 0.4% T. molitor or Z. morio addition to the
broiler diet. Furthermore, 1% T. molitor full-fat meal supplementa-
tion positively affected the growth performance results (Ballitoc
and Sun, 2013). No detrimental effect of relatively small amounts
of insect inclusion on the apparent nutrient digestibility co-
efficients and pancreatic enzyme activities was noticed (Benzertiha
et al., 2019a). The observed positive production effects are con-
nected to beneficial microbial shifts, particularly in the ceca, where
Z. morio meal (0.2% supplementation) enhanced the abundance of
Actinobacteria, including the Bifidobacteriaceae family, and Lacto-
bacillus agilis number, while T. molitormeal increased the Clostridia
class level, especially Ruminococcaceae (J�ozefiak et al., 2020).
Moreover, the inhibition activity against the Bacteroides-Prevotella
cluster and Clostridium perfringens at this segment was noticed
mainly after T. molitor (0.3%) and Z. morio (0.2%) addition. Bird GIT
microbiota modulation, i.e., an increase in the number of butyrate-
producing bacteria in the crop and Lactobacillus spp./Eubacterium
rectale clusters in the ileum, was observed even when 0.05% S.
lateralis was implemented (J�ozefiak et al., 2018). Moreover, due to
Table 5
Effect of various invertebrate fats used as an energy source carrier on the selected poult

Fat source Species Replaced oil Inclusion level R

Hermetia illucens Broiler chickens Soybean oil 50%; 100% Th
H. illucens Broiler chickens Soybean oil 50%; 100% N
H. illucens Broiler chickens Soybean oil 25%; 50%; 75%; 100% Th

B
H. illucens Broiler chickens Soybean oil 50%; 100% P

ef
an

H. illucens Broiler chickens Soybean oil 50%; 100% R
sa
o
sa

H. illucens Broiler chickens Soybean oil 50%; 100% Th
sa

H. illucens Broiler chickens Soybean oil 50%; 100% Th
fr
im

H. illucens Broiler chickens Corn oil, coconut oil 100% D
to
li
m
m

H. illucens Turkeys Soybean oil 50%; 100% Th
tr
fa
in
je
lo
p

H. illucens Laying hens Soybean oil 100% N
w

Tenebrio molitor Broiler chickens Palm oil, poultry fat 100% Th
tr
Im
m

T. molitor Broiler chickens Soybean oil 100% Th
2
p
b

Zophobas morio Z.
o
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the wide spectrum of potential bird responses, i.e., in terms of
productivity, and GIT microbiota modulations after insect biomass
implementation in poultry diets, further investigation should be
stressed on the administration of a relatively small amount of these
products. In particular, Benzertiha et al. (2020b) suggested a posi-
tive effect on the decrease in the bursa of Fabricius relative weight,
as well as immunoglobulin M concentration. Furthermore, the
application of 0.3% H. illucens full-fat meals in young turkey diets
resulted in more efficient anti-inflammatory, immune stimulatory,
and antioxidant impacts than commonly used monensin
(Kozłowski et al., 2021).

5.2. Insect fat as an energy source for poultry

Most of the research on the application of the insect in animal
nutrition focuses on protein usage; however, fat is also an impor-
tant nutrient present in insect biomass, sometimes in ranges
comparable to CP (Benzertiha et al., 2020b). Moreover, fat derived
from insects can fully replace environmentally unfriendly and
commonly used feed materials such as palm or soybean oils used in
poultry nutrition (Table 5). It should be emphasized that the
quantity of crude fat as the second main nutrient in the inverte-
brate body varies from 1.3% (as is) for Carebara sp. to 61.1% (in DM)
for termites (Bessa et al., 2020; Bukkens, 1997) and is highly
dependent on the rearing substrate (Kiero�nczyk et al., 2020). To
ry species organism response.

esult Reference

e fatty acid profile was adversely affected. Schiavone et al. (2016)
o detrimental effects. Schiavone et al. (2018)
e positive impact on FCR in the first 2 weeks of age.

eneficial reduction of jejunum and ileum weight.
Kiero�nczyk et al. (2020)

artial replacement induced elongation of the villi. The
fect on lipase activity limitation. Acetate was reduced
d butyrate enhanced in both H. illucens fat inclusions.

B. Kim et al. (2020a)

eduction of the gizzard relative mass. Increasing of
turated, monounsaturated fatty acids, and limitation
f polyunsaturated fatty acids, and the unsaturated and
turated fatty acids ratio.

B. Kim et al. (2020b)

e fatty acid profile was negatively enriched in
turated fatty acids.

Cullere et al. (2019)

e negative microbiota shift in the birds' crop resulted
om deficient releasing of lauric acid; the beneficial
pact on the hindgut microecosystem.

Kiero�nczyk et al. (2021)

ecreasing of feed conversion ratio (1 to 30 d) contrary
corn oil. Limitation of cholesterol and high-density

poproteins (HDL) in the serum. Increasing the breast
eat yellowness and enrich the abdominal fat in
edium-chain fatty acid.

Y.B. Kim et al. (2020)

e limitation of trypsin activity, and immune status
ait concentrations (interleukin-6, tumor necrosis
ctor-a); the reduction of the crop digesta pH, and
hibition of Enterobacteriaceae populations in the
junal content. Increase of total cholesterol, HDL and
w-density lipoproteins (LDL) concentration in the
lasma.

Sypniewski et al. (2020)

o effect on the growth and laying performance, egg
eight, and quality.

Heuel et al. (2021)

e positive impact on the limitation of fat,
iglycerides, and total cholesterol in the liver.
provement of fatty acid profile in the liver and breast
eat.

Benzertiha et al. (2019b)

e growth performance parameters improvement till
1 d of age and digestibility through the entire rearing
eriod or exhibit a similar effect to soybean oil. The
eneficial effect on the meat quality was noticed.

Kiero�nczyk et al. (2018a)

morio fat generally performed comparably to soybean
il.
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date, only three insect species have been considered an alternative
energy source in poultry diets, i.e., T. molitor, Z. morio, and
H. illucens. Nevertheless, significantly more insects, particularly
Hymenoptera, Coleoptera, Lepidoptera, Homoptera, Hemiptera,
and Orthoptera orders, are evaluated in human nutrition as an
energy source (Ramos-Elorduy, 2008).

In general, no detrimental effect of the partial or total inclusion
of insect fat on the growth performance and productivity param-
eters was observed. These results suggest that the metabolizable
energy values of insect fat for broilers (Kiero�nczyk et al., 2018a),
laying hens (Heuel et al., 2021), and turkeys (Sypniewski et al.,
2020) are comparable to soybean oil. Nevertheless, the most
important challenge in the case of insect fat provision to poultry
diets seems to be the fatty acids profile of the final products, i.e.,
breast and leg meat, which are highly dependent on the quality of
the feed material. Thus, there is a need to improve not only the
quantity of the dietary fat of insect biomass through the diet
composition and technique of extraction but also its quality,
particularly in terms of economically justified species such as
H. illucens. In the available literature, the authors mainly focus on
the lauric acid (C12:0) concentration to enhance the functional
properties of the H. illucens larvae fat (Borrelli et al., 2021; Dabbou
et al., 2020; Sypniewski et al., 2020). However, the results of these
studies indicate a need to improve the fatty acid composition of the
H. illucens larvae fat by increasing the n-3 level and the poly-
unsaturated fatty acids (PUFAs) concentration which may result in
enhanced broiler meat quality preferred by the consumer. To date,
the most suitable and beneficial product from the final product's
quality point of view is T. molitor larvae fat inclusion in broiler diets.
Mealworm fat improves the fatty acids profile by lowering the level
of saturated fatty acids (SFAs) and increasing unsaturated fatty
acids (UFAs) in comparison to soybean oil. Furthermore, the meat
from broilers fed T. molitor fat characterizes atherogenic and
thrombogenic indexes similar to soybean oil (Kiero�nczyk et al.,
2018a).

Eventually, in addition to the growth performance results and
the possibility of applying insect fat in poultry nutrition, the con-
sumer palatability of the final products should be evaluated as a
crucial factor determining the economic success of this sustainable
and novel feed material. To date, only a few scientific reports have
been published; however, none of those have emphasized the
adverse effect on consumer preferences. Additionally, it should be
highlighted that there is a shortage of data about the poultry
product preference test. Broiler chickens' meat sensory traits were
not affected by even the total replacement of soybean oil by
H. illucens larvae fat (Cullere et al., 2019). Additionally, partial (50%)
or total inclusion of T. molitor, as well as H. illucens as an energy
source in rabbit diets, exhibit similar consumer acceptance in terms
of meat palatability as in the control group (soybean oil) (Gasco
et al., 2019). No changes in overall food liking or experience of
selected bakery products, which include up to 50% butter derived
fromH. illucens larvae fat, were noted (Delicato et al., 2020). Thus, it
could be concluded that there is no risk of insect fat administration
as an energy source in poultry diets from bird production, as well as
the consumer point of view; however, a continuation of UFA
enrichment evaluation is needed to improve the quality of the final
product.

5.3. Functional properties of insect fat in poultry nutrition

Furthermore, the intestinal microbiota composition is not
adversely affected by insect fat inclusion, particularly in terms of
H. illucens larvae fat, which is characterized by the highest medium-
chain fatty acid (MCFA) content with the dominant lauric acid
(C12:0) concentration, in contrast to other invertebrate species.
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Lauric acid exhibits significant inhibitory activity against gram-
positive and gram-negative bacteria, including bird or poultry
product pathobiota such as Pasteurella multocida, Yersinia enter-
ocolitica, and Listeria monocytogenes (Dabbou et al., 2020).
Furthermore, the results of Zeitz et al. (2015) underline the positive
effect of lauric acid against Enterobacteriaceae, Campylobacter
jejuni, and E. coli. Finally, lauric acid, characterized by strong
inhibitory activity in the case of C. perfringens (Timbermont et al.,
2010), which is an etiologic factor of necrotic enteritis, causes 6
billion USD costs in poultry flocks worldwide (profit lost per bird is
estimated at US$ 0.062) (Wade and Keyburn, 2015). Thus, there are
premises to define H. illucens larvae fat as a functional feed mate-
rial. The antiviral and antiparasitic modes of action were also
observed. Nevertheless, a negative microbiota population shift in
the bird crop was noted, which is explained as insufficient lauric
acid release at this segment (Kiero�nczyk et al., 2021).

6. Insects in swine nutrition

Although boar (Sus scrofa) in wild conditions mainly ingest
plant-origin material, invertebrates, particularly the wide spectrum
of insect species in various stages of development, are constantly
present in their diets. The most frequently consumed insects are in
the following orders: Anoplura, Coleoptera, Diptera, Hymenoptera,
Lepidoptera, Orthoptera, and Trichoptera (Herrero et al., 2006).
They play the main role as compensation for protein deficiencies
when the source of this nutrient is scarce (Schley and Roper, 2003).
Additionally, insects, as a rich source of iron (Fe), may be an
important basis of this microelement supplementation in wild
piglet diets. Furthermore, Tabata et al. (2018) showed that pigs are
well adopted to take material rich in chitin via the high activity of
acidic chitinase (Chia mRNA) gene expression. Kawasaki et al.
(2021) noticed that even 14-day-old piglets can synthesize chitin-
degradable enzymes, and acidic mammalian chitinase gene
expression rises in the whole stomach weight parallel to the ani-
mal's age. Thus, it is not surprising that in the available literature,
the usage of insect-derived feed materials is efficiently imple-
mented at each pig rearing phase, i.e., nursing (Driemeyer, 2016),
weaning piglets (Spranghers et al., 2018), growing (Chia et al.,
2019), and finishing pigs (Yu et al., 2019a). In general, no detri-
mental effects in terms of growth performance results were noticed
during H. illucens larvae meal or dietary fat, as well as T. molitor
larvae meal, as the most commonly used protein and energy source
in swine nutrition, i.e., fishmeal, soybean meal, corn and soybean
oils (Ao and Kim, 2019; Biasato et al., 2019; Heugten et al., 2019; Ko
et al., 2020; Meyer et al., 2020).

6.1. Insect meals in pig nutrition

It should be emphasized that in the experimental conditions,
the insects' meals were administered up to 18.5% or 19.06% (Chia
et al., 2019; Håkenåsen et al., 2020), while usually up to 10% in-
clusion is used (Biasato et al., 2019; Dankwa et al., 2000; Meyer
et al., 2020). Due to the high nutritive value variability between
insects, the obtained results between authors differ; however, some
improvement effects on the BWG, FI, and FCR were observed (Jin
et al., 2016; Yu et al., 2019a, 2020a). This result is in agreement
with the linear increase in DM and CP digestibility coefficients, as
well as N retention in weanling piglets fed 1%, 2%, or 4% T. molitor
larvae meal (Jin et al., 2016). It should be highlighted that the
digestible lysine in the H. illucens larvae meals (full-fat and defat-
ted) is comparable to soybean meal, blood meal, and fishmeal
(Crosbie et al., 2020). Some differences between full-fat and
defatted meals in the scope of standardized ileal digestibility of
arginine, valine, alanine, and proline were noticed, while N
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retention, as well as N digestibility, was not affected. Furthermore,
no influence in terms of fecal DM or the fecal score was observed in
weaned piglets fed diets containing up to 19.06% H. illucens meal
(Håkenåsen et al., 2020). Similarly, Yu et al. (2020a) did not show
any changes in the diarrhea rate (from 4% to 7%) when full-fat
H. illucens larvae meal was administered up to 4%. Even live
H. illucens larvae administration did not affect the DMof piglet feces
(Ipema et al., 2021). Additionally, no enhanced fecal gas emissions,
i.e., ammonia, hydrogen sulfide, and total mercaptans, were noticed
after H. illucens incorporation into weaned pig diets (Ao et al.,
2020). It needs to be highlighted that H. illucens meal seems to be
more suitable for piglets (25 kg), as well as growing pigs (60 kg),
than Spirulina platensis meal in terms of N digestibility. Conse-
quently, H. illucens meal can be considered more environmentally
friendly than algae in the scope of N excretion limitations
(Neumann et al., 2018). Jin et al. (2016) confirmed the linear
improvement of digestibility of DM, CP, and the tendency in terms
of crude ash during T. molitor larvae addition (1.5%, 3%, 4.5%, 6%) to
weaning piglet diets. Simultaneously, nitrogen excretion was line-
arly reduced, while the control group (soybean meal) was charac-
terized by the highest nitrogen footprint. Contrary to the
abovementioned results, Yu et al. (2020a) showed that the 1%, 2%,
and 4% inclusion of full-fatH. illucensmeal negatively affects CP and
crude fat digestibility in a dose-dependentmanner. Additionally, Ao
and Kim (2019) observed decreased digestibility coefficients of DM
and nitrogen in weaning pigs fed Ptectious tenebrifer; however, the
adverse effect was noted only during 50% replacement of fish meal.
Similar to the results of Ao et al. (2020), only partial replacement of
fishmeal was negatively affected by T. molitor larvae meal. Despite
the above, the results of Altmann et al. (2019) suggest that the in-
clusion of H. illucens larvae meal improved the quality of pork meat
by increasing PUFAs and reducing SFAs and monounsaturated fatty
acids (MUFAs), and the overall odor and juiciness were improved.
Simultaneously, no adverse effect on carcass yield was found.
Additionally, Chia et al. (2021) highlighted that the usage of
H. illucens meal as a total substituent of fishmeal significantly
improved fasted and carcass weight, as well as increased fat con-
tent in loin muscle. Moreover, finishing pig tissues (heart, kidney,
liver, lungs, loin muscle, and spleen) are characterized by increased
macroelement concentrations, i.e., K and P, as well as microele-
ments, i.e., Fe or Zn. Yu et al. (2019a) suggests that the inclusion of
4% or 8% H. illucens meal to finishing pig diets resulted in increased
loin eye area, marbling scores, and inosine monophosphate con-
centration, while 4% addition increased intramuscular fat content
in the longissimus dorsi muscle.

Even if it is only possible to add insect biomass to swine nutri-
tion in relatively small amounts (up to 3%) under practical condi-
tions, some advantages can be observed. It should be highlighted
that the results of Choi et al. (2019) demonstrated that the 1%, 2%,
and 3% inclusion of H. illucens meal used as a replacement of soy-
bean meal in pigs' diets may constitute similar economic efficiency
(feed cost per kilogram weight gain) and simultaneously improve
the average daily gain and DM digestibility. Chia et al. (2019) sup-
ported the abovementioned statement, where even higher inclu-
sion, i.e., from 9% to 18.5% did not negatively affect the profit
indexes. It is crucial from a practical point of view, where the price
of insect meals cannot compete with the commonly used feed
materials. However, the unification of prices allows emphasizing
the additional properties of insect products in terms of, e.g., the
possibility of significantly reducing global warming potential and
land use through the implementation of waste-fed larvae in pig
diets (van Zanten et al., 2018).
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6.2. Functional properties of insects in pig nutrition

Further benefits related to invertebrate usage in swine diets
have a positive impact on the immune response. Yu et al. (2020a)
showed that the 2% inclusion of H. illucens full-fat meals by 28 d
of the trial decreased proinflammatory (interferon-g, IFN-g) and
enhanced the concentration of anti-inflammatory (interleukin-10,
IL-10) factors in weanling piglets. This is in agreement with the
results of Yu et al. (2020b), who found downregulated mRNA
expression of TNF-a and upregulated IL-10 (2% H. illucens addition
by 28 d), as well as Yu et al. (2019b), where supplementation of 4%
H. illucens larvae meal (48-d trial) reduced toll-like receptor 4 (TLR-
4) and IFN-g gene expression and enhanced IL-10. Furthermore, the
addition of 4% H. illucens to the finishing pig diets resulted in the
upregulation of intestinal barrier genes, i.e., mucin-1, ZO-1, and
occludin (Yu et al., 2019b). Nonetheless, Choi et al. (2020) and Ao
et al. (2020) did not observe any immune response of weaning
piglets (TNF-a, interleukin-1b [IL-1b], IL-6, immunoglobulin G
[IgG]) during H. illucensmeal administration up to 3% by 14 d of the
trial or IgG and lymphocyte concentrations after 1% or 2% T. molitor
application during 35-d experiment. This is supported by Ko et al.
(2020), who did not notice any changes (during the 28-d test) in
terms of IL-1b, TNF-a, or IL-6 concentrations after partial or total
replacement of fishmeal by T. molitor larvae meal (phase 1: up to
5%; phase 2: up to 3%) in weanling pig diets. Moreover, it is well
known that the immunological response relates to GIT microbiota
homeostasis, and frequently, the GIT is defined as the largest “im-
mune organ” in the animal body. Thus, it is no surprise that the
administration of H. illucens larvae meal (5% by 61 d of the exper-
iment) as a product rich in chitin, lauric acid, and AMPs to swine
enhanced beta diversity in the ceca (Biasato et al., 2020). Further-
more, the proliferation of microbial populations engaged in poly-
saccharide fermentation, as well as short-chain fatty acids and
consequently supporting epithelial cell metabolism production, i.e.,
Blautia, Coprococcus, Eubacterium, Prevotella, Roseburia, and Rumi-
nococcaceae, was enhanced in weaning piglets (Biasato et al.,
2020). Additionally, after H. illucens larvae meal inclusion,
increased neutral mucin production was found in the small intes-
tine to prevent intestinal pathobiota access to the epithelium. This
is supported by Yu et al. (2019b), who reported a positive increase
in butyrate-producing bacteria in the colon, as well as the limita-
tion of pathogenic colon bacteria occurrence, i.e., Streptococcus.
Moreover, the main effect of H. illucens inclusion on the weanling
piglet GIT microbiota was observed in the colon, while the ileal
microecosystem was particularly changed in terms of enhanced
Lactobacillus and Bifidobacterium populations. In contrast to the
colon, Firmicutes, Ruminococcus, Clostridium cluster IV, and Pre-
votella were significantly increased (Yu et al., 2020b). It should be
highlighted that the studies conducted on the dietary supplemen-
tation of AMPs have indicated that synthetic analogs of hybrid
cecropin-magainin (90 mg/kg AMP-A3 and 40 to 60 mg/kg AMP-
P5) have a positive effect on the growth performance, fecal
microbiota, and intestinal morphology of weanling piglets during
28-d long experiments (Yoon et al., 2012, 2013, 2014). Furthermore,
the results of Crosbie et al. (2021) clearly showed that the substi-
tution of animal origin protein up to 50% by full-fatH. illucens larvae
meal (throughout the 42-d trial) can be as efficient as the addition
of antibiotic growth promotor, i.e., 220 mg of aureomycin per kg of
complete feed, in the scope of growth performance results, im-
mune response, and gut health in nursery pigs. Moreover, a study
performed in vivo indicated that an AMP complex provided as a
mixture of lactoferrin, cecropin, defensin and plectasin (2 g, and
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3 g/kg feed for a 32-d period) improved growth performance,
reduced diarrhea and increased the survival rate of weaned pigs
(Xiong et al., 2014). That the compounds containing insect AMP
complexes have an advantage over individual peptide and small
molecule antibiotics has also been proven in research performed
in vitro (Chernysh et al., 2015). The application of insect meal
providing a variety of different biologically active components to
animal feed may give rise to new possibilities in animal production.

In conclusion, due to the positive effect of the inclusion of
various invertebrates in pig diets at all stages of the rearing process
on growth performance, final product quality, GIT health, and im-
mune response, without economic losses, there is a premise to
implement these environmentally friendly products in practical
swine nutrition.

7. Insects in aquaculture

Aquaculture is one of the fastest-growing branches of animal
products intended for food market purposes. According to WHO
and FAO predictions and scientific literature, fish meat will play a
crucial role in meeting the growing needs for livestock protein
(FAO, 2020; FAO/WHO, 2018; Vianna et al., 2020). However, con-
sumers' criticism of aquaculture production concerns feed com-
ponents, and most of them are not environmentally sustainable.
Currently, the dominant protein and fat sources in fish feed are fish
meals and oils, soybean meals and oils, and protein isolates. In the
case of fishmeal and fish oil, the main disadvantage is the overf-
ishing of seas and oceans. Up to 30% of the caught fish are used for
animal feed production, while 90% of this value could be used for
human consumption (Olsen and Hasan, 2012). Additionally, this
situation leads to competition between the foodmarket and animal
production, and the erosion of natural sources of fish also affects
rapidly increasing fish meal prices. While discussing plant sources
of protein and fats in fish nutrition, mainly various soybean de-
rivatives, their impact on biodiversity loss, tropical forest destruc-
tion, and large-scale pesticide use should be emphasized. In
addition, progressively, many customers seem to be opposite to the
usage of genetically modified products such as soybean meal
(Costa-Pierce, 2010).

In the case of aquaculture production, the main interests in
Europe are focused on salmonid fish. According to the Publications
Office of the European Union report (EUMOFA, 2020), the 2 leading
species produced in the EU are Atlantic salmon (Salmo salar) and
rainbow trout (Oncorhynchus mykiss), whose total EU farmed pro-
duction value is almost 40%. Due to the developing problem of
using fishmeal as the main protein source in salmonid feed, sci-
entific teams are looking for alternatives. Some of them are focused
mainly on plant-derived compounds and proteins and their impact
on the growth performance, feed utilization, and physiological
response of fish (Bruce et al., 2017; Clarkson et al., 2017; Greiling
et al., 2018). However, the substitution of fishmeal by plant in-
gredients in salmonid diets can lead to a reduction in feed utiliza-
tion, which results in poor growth performance (Wacyk et al.,
2012). Moreover, the effect of soybean addition to feeding on the
occurrence of distal enteritis and deterioration of reproductive
parameters has already been reported (Lazzarotto et al., 2015).

7.1. Insect meals in salmonid nutrition

Carnivorous fish salmonids already count insects as a part of
their diets in the natural environment (Henry et al., 2015).
Depending on the salmonid species, fishmeal substitution can
reach different levels, with or without various effects on growth
performance and feed utilization (Table 6). According to Belghit
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et al. (2019), even 100% replacement of fishmeal with partially
defatted H. illucens meal is possible without any adverse effect on
growth performance or feed utilization of Atlantic salmon. The
partially defatted meal did not cause any adverse effects on most
physiological parameters related to the functioning of the GIT, such
as apparent digestibility coefficients (ADCs) of nutrients, digestive
enzyme activity, or total bile acid levels. Divergent results were
reported by Weththasinghe et al. (2021), where the 25% substitu-
tion of fishmeal with H. illucens meal resulted in a lower final body
weight (FBW), specific growth rate (SGR), protein efficiency ratio
(PER), and higher FCR. It is important to emphasize that this
experiment was conducted using full-fat meals. While the ADC of
CP was not affected by insect inclusion in salmon diets, decreases in
crude fat and tyrosine digestibility were observed in the 12.5% and
25% substitution groups. A decrease in the lipid efficiency ratio
(LER) was observed in all groups fed insect meals. Experiments
conducted on rainbow trout presented different possible substi-
tution levels in the case of growth performance and feed utilization.
Some of the literature pointed to no adverse effect on those pa-
rameters in substitution fishmeal level by H. illucens up to 30%
(J�ozefiak et al., 2019; Terova et al., 2019), while others reported
several negative effects on digestibility of nutrients and feed utili-
zation (Melench�on et al., 2021; Renna et al., 2017; Stadtlander et al.,
2017); however, the growth performance was still not disturbed.
This effect is observed further with the usage of different insect
species (J�ozefiak et al., 2019; Melench�on et al., 2021) but also in
experiments conducted on sea trout (Salmo trutta m. trutta) fed
diets containing full-fat and hydrolyzed full-fat meals obtained
from Tenebrionidae family insects (Hoffmann et al., 2020;
Mikołajczak et al., 2020). In most of the scientific literature, any
disturbance in the digestibility of nutrients that occurs in fish fed
insect meals is explained by the presence of chitin in the exoskel-
eton of insects. Even in the healthy GIT characterized by good ho-
meostasis and chitinase activity, chitin digestibility will not be
effective (Renna et al., 2017), and the presence of chitin can be
correlated with lower protein digestion (Marono et al., 2015).
Furthermore, it can be considered a low-energy filler (Karlsen et al.,
2017), and both of these observations can be crucial limiting factors
due to the ultimate effect on poor growth performance.

7.2. Insect fat in salmonid nutrition

From the production point of view and the interests of future
customers, the effect of insect inclusion in salmonid diets on fillet
chemical composition and quality is crucial, especially since fish are
considered healthy meat due to their valuable fatty acids compo-
sition that prevents coronary heart diseases. In the current litera-
ture, this impact has been investigated. Renna et al. (2017) reported
that the effect of the addition of H. illucens in rainbow trout diets on
the composition of fish meat is indeed present; however, this
impact is still within the normal ranges and does not cause any
deviations that could be potentially harmful to humans. However,
Melench�on et al. (2021) proved that the inclusion of T. molitor in
rainbow trout diets can affect meat quality due to an increase in
MUFAs and n-6 fatty acids, together with a decrease in n-3. The
possibility of negative effects of insect usage in livestock nutrition
on meat quality leads to new scientific area exploration e to
examine the effect of different diets on insects' fatty acids
composition. Ewald et al. (2020) reported that modification of the
fatty acid composition of H. illucens through its diet is possible;
however, it seems to have some limitations, especially in SFA and
MUFA contents. Notwithstanding, Oonincx et al. (2020) proved that
the substitution of flaxseed oil in edible insect diets can improve
their nutritional quality, especially in n-3 content.



Table 6
Effect of various invertebrate meals used as an alternative to commonly used feed materials in salmonid nutrition on their productivity and physiological traits.

Insect species Replaced compounds Processing form Species Substitution level Main results Reference

Hermetia illucens Fishmeal Partially defatted Atlantic salmon
(Salmo salar)

33%; 66%; 100% The effect on whole fish fatty
acids composition. Increase in
glucose concentration in blood
plasma in the group with 66% of
substitution.

Belghit et al. (2019)

H. illucens Protein compounds:
Fishmeal, soy protein
concentrate, corn gluten,
faba bean

Full-fat meal Atlantic salmon
(S. salar)

6.25%; 12.5%; 25% The decrease in final body
weight and specific growth
rate, while an increase in FCR in
the 25% replacement group. A
decrease in 12.5 and 25% groups
in the case of crude fat and
tyrosine apparent digestibility
coefficient (ADC) was observed.
An increase in starch
digestibility in the 25% group.
The lower protein efficiency
ratio, apparent lipid, and energy
retention in the 25% group. The
decrease in lipid efficiency ratio
in all groups fed with insects.

Weththasinghe et al.
(2021)

Full-fat paste 3.7%; 6.7% No detrimental effects.
H. illucens Fishmeal Defatted Rainbow trout

(Oncorhynchus
mykiss)

46% A decrease in protein efficiency
ratio (PER) and protein
productive value.

Stadtlander et al. (2017)

H. illucens Fishmeal Partially defatted Rainbow trout
(O. mykiss)

10%; 20%; 30% Modulation of gastrointestinal
tract microbiota.

Terova et al. (2019)

H. illucens Fishmeal Partially defatted Rainbow trout
(O. mykiss)

25%; 50% The decrease in ADC of dry
matter and crude protein in the
50% group. Strong impact on
fatty acids composition of fish
fillets.

Renna et al. (2017)

H. illucens Fishmeal Full-fat Rainbow trout
(O. mykiss)

15%; 30% The decrease in FCR values in
both substitution groups. The
modulation of digestive
enzymes and hepatic enzymes
activity. The effect on immune
parameters in plasma. The
impact on fatty acids
composition of fish fillets.

Melench�on et al. (2021)

Tenebrio molitor Lower ADC of protein in 30%
substitution group. Higher
value of viscerosomatic index
(VSI) in 30% substitution group.
The modulation of digestive
enzymes and hepatic enzymes
activity. The effect on immune
parameters in plasma. The
impact on fatty acids
composition of fish fillets.

H. illucens Fishmeal Full-fat meal Rainbow trout
(O. mykiss)

30% Impact on intestinal
microbiotadlower
concentration of Clostridium
coccoides, and Lactobacillus/
Enterococcus sp.

J�ozefiak et al. (2019)

T. molitor 41% The decrease in villus height.
Impact on intestinal
microbiotadincrease in
concentration in all analyzed
bacteria.

Gryllodes sigillatus 48% A decrease in SGR and an
increase in FCR. The decrease in
villus height and mucosa
thickness. Impact on intestinal
microbiotadincrease in
concentration in most analyzed
bacteria populations.

Blatta lateralis 42% Higher results of body weight
gain. The increase in villus
height and mucosa thickness.
Impact on intestinal
microbiotadincrease in
concentration in most analyzed
bacteria.

B. Kiero�nczyk, M. Rawski, Z. Mikołajczak et al. Animal Nutrition 11 (2022) 60e79

74



Table 6 (continued )

Insect species Replaced compounds Processing form Species Substitution level Main results Reference

T. molitor Fishmeal Full-fat meal Sea trout (Salmo
trutta m. trutta)

10% No detrimental effects. Hoffmann et al. (2020)
Hydrolyzed full-fat
meal at 0.5%
endopeptidase

No detrimental effects.

Hydrolyzed full-fat
meal at 1.0%
endopeptidase

No detrimental effects.

T. molitor Fishmeal Hydrolyzed full-fat
meal

Sea trout (S. trutta
m. trutta)

42% A decrease in PER and effect on
serum biochemistry
composition. The impact on the
microbiota of digestadlower
concentration of
Carnobacterium spp. and
Lactobacillus group.

Mikołajczak et al.
(2020)

Zophobas morio 44% A decrease in PER. The increase
in hepatosomatic index (HSI),
viscerosomatic index (VSI), and
liver lipid. The influence on
serum biochemistry
composition. The effect on the
git microbiota by reducing
pathogenic bacteriadlower
concentration of Aeromonas
spp., Carnobacterium spp. and
Enterococcus spp.
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7.3. Functional properties of insects in fish nutrition

Considering insects as a component in salmonid feeds, the effect
on the microbiota of the GIT should be discussed. Several studies
proved the positive effect of insect meal inclusion in salmonid fish
diets due to the reduced concentration of pathogenic bacteria and
an increasing number of health-promoting bacterial species
(J�ozefiak et al., 2019; Mikołajczak et al., 2020; Terova et al., 2019).
This impact should be explained by three main insect features, i.e.,
C12:0 antimicrobial properties (mentioned above), the presence of
chitin, and AMPs. Despite the probable negative effect of chitin on
nutrient digestion, chitin can be further considered a factor
modulating the microbiome of the GIT. According to Askarian et al.
(2012), chitin inclusion in the Atlantic salmon diet at the level of 5%
led to decreases in the concentrations of Bacillus spp., Lactobacillus
spp., Pseudomonas spp., and Staphylococcus spp. Therefore, chitin
and its derivatives have potential as prebiotics and immunosti-
mulants, and as their source, insect meals can also provide this
effect. Second, AMPs additionally stimulate these effects. It is well
documented that AMPs present in insects are characterized by
activity against a wide spectrum of pathogenic bacteria, such as
S. aureus, L. monocytogenes, and S. typhimurium (Yi et al., 2014).

8. Conclusion

In the available literature, invertebrate-derived products are
presented as a natural and sustainable source of protein and energy
for various animal species. The latest data confirm the possibility of
their implementation in animal diets with mostly positive effects
on growth performance and organism response. However, due to
the low uniformity of insect products globally, i.e., 1) the usage of
various technologies, which induces a need for different feeding
system applications; 2) the usage of food waste in invertebrate
production, which differs in the case of nutritive value; 3) the lack
of nutrient requirement recommendations for commonly reared
larval species; 4) and, last but not least, the divergent processing
techniques of larvae, play a crucial role in terms of the quality of the
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final feed material and consequently cause different productivity
and health effects in insect-fed animals. Consequently, to increase
the efficiency of the insect larvae, as well as further livestock,
aquaculture production, and pet conditions, the detailed nutrient
requirements and biomass process technique parameters for
economically justified species should be evaluated in the future.
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