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ABSTRACT

Single-cell studies have delineated cellular diversity
and uncovered increasing numbers of previously un-
characterized cell types in complex tissues. Thus,
synthesizing growing knowledge of cellular char-
acteristics is critical for dissecting cellular hetero-
geneity, developmental processes and tumorigene-
sis at single-cell resolution. Here, we present Cell
Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy), a
comprehensive and curated repository of cell types
and associated cell markers encompassing a wide
range of species, tissues and conditions. Combined
with literature curation and data integration, the cur-
rent version of Cell Taxonomy establishes a well-
structured taxonomy for 3,143 cell types and houses
a comprehensive collection of 26,613 associated cell
markers in 257 conditions and 387 tissues across
34 species. Based on 4,299 publications and single-
cell transcriptomic profiles of ∼3.5 million cells, Cell
Taxonomy features multifaceted characterization for
cell types and cell markers, involving quality assess-
ment of cell markers and cell clusters, cross-species
comparison, cell composition of tissues and cellu-
lar similarity based on markers. Taken together, Cell
Taxonomy represents a fundamentally useful refer-
ence to systematically and accurately characterize
cell types and thus lays an important foundation for
deeply understanding and exploring cellular biology
in diverse species.

INTRODUCTION

Single-cell sequencing technologies have emerged as a pow-
erful approach to delineate cellular composition diversity
(1), trace cell lineages (2), characterize tumor microenviron-
ment (3) and elucidate complex mechanisms of organ de-
velopment and diseases at single-cell scale (4). Particularly,
single-cell multi-omics studies have uncovered a large vari-
ety of previously uncharacterized cell populations, thereby
providing unprecedented opportunities to capture a whole
picture of cellular composition diversity (5–7). Therefore,
synthesizing our growing knowledge of cellular characteris-
tics by accounting for diverse species, tissues and biological
conditions is critical for revealing cellular heterogeneity, de-
velopmental processes and tumorigenesis at single-cell res-
olution.

In the past several years, valuable efforts have been made
to establish databases for cell types and/or cell markers (8–
14). Among them, representative databases are Cell Ontol-
ogy (8), CellFinder (14), CellMarker (9), SHOGoiN (10)
and PanglaoDB (11). Specifically, Cell Ontology, a widely
used ontology for the representation of cell types, provides
hierarchical relationships for approximately 2,600 cell types
(8). CellFinder characterizes 3,394 mammalian cell types
and contains ∼200 microarray and bulk RNA-seq pro-
files (14). Considering that one cell type may have multiple
cell markers, CellMarker constructs a curated compendium
of 15,778 cell markers for 1,702 cell types in human and
11,388 cell makers for 1,421 cell types in mouse (9). Sim-
ilarly, SHOGoiN integrates diverse human cell informa-
tion including 23,000 entries of 355 cell types and 5,630
cell markers along with 7,161 single-cell RNA-sequencing
(scRNA-seq) profiles (10). In addition, PanglaoDB collects
178 cell types and 4,681 markers as well as scRNA-seq
data for human and mouse (11). However, these existing
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databases, albeit widely used, have several limitations. First,
most of cell types in Cell Ontology are not associated with
available cell markers, whereas CellMarker, SHOGoiN and
PanglaoDB contain limited cell types. Second, Cell Ontol-
ogy, CellFinder and CellMarker do not provide single-cell
transcriptome evaluation for cell markers. Third, existing
databases cover limited species and none of them enable
comparison of cell types across species. Last but not least,
multiple evidence-based assessment for cell markers and cell
clusters is not adequate in these databases, thus presenting
substantial challenges in cell type delineation.

To address these issues, here we present Cell Taxon-
omy (https://ngdc.cncb.ac.cn/celltaxonomy), a comprehen-
sive and curated repository of cell types and cell markers
covering a wide range of species, tissues and conditions.
Based on 4,299 literature as well as integration from rele-
vant resources, Cell Taxonomy houses a comprehensive col-
lection of 3,143 cell types and 26,613 associated cell markers
in 257 conditions and 387 tissues across 34 species. Addi-
tionally, it incorporates single-cell RNA-seq profiles com-
prising approximately 3.5 million cells to enable single-cell
validation for cell markers. Furthermore, Cell Taxonomy
performs cross-species comparison of cell types and cell
markers based on orthologous information. Importantly, to
help users to select robust cell markers, Cell Taxonomy pro-
vides quality evaluations based on multiple evidence of ex-
pression enrichment, supported literature and conservation
across species. And extensive assessments of cell clusters in
scRNA-seq studies are provided to facilitate users to choose
high-quality expression profiles for cell annotation. More-
over, cell composition of tissues, cellular similarity based on
markers and cell surface marker information are character-
ized in Cell Taxonomy. And a set of easy-to-use tools is de-
ployed to predict cell types by user-provided gene list and
to compare cell markers between cell types.

MATERIALS AND METHODS

Data collection and curation

A comprehensive collection of cell types, cell mark-
ers, tissues and conditions were manually curated from
1,555 single-cell relevant publications by Cell Taxon-
omy curation team as well as integrated from multi-
ple resources including Cell Ontology (8), CellMarker
(9), SHOGoiN (10), PanglaoDB (11), CellMatch (12),
scTyper.db (13), Human Cell Landscape (HCL) (15),
OnClass (16), Human Cell Atlas (17), tinyatlas (https:
//github.com/hbc/tinyatlas) and Invitrogen Immune Cell
Guide (https://www.thermofisher.com/hk/en/home/global/
forms/download-immune-cell-guide.html). The cell types
labeled as ‘obsolete’ in Cell Ontology were deprecated.
Specifically, full texts of these publications were manu-
ally surveyed to extract essential information of cell types,
species, tissues, conditions, cellular annotation, cell mark-
ers and cellular hierarchical relationships based on con-
trolled vocabularies (https://ngdc.cncb.ac.cn/celltaxonomy/
help#curation model). Since most single-cell studies named
cell types without controlled vocabularies, all cell types
collected in Cell Taxonomy were manually curated based
on standardized terms and assigned with a unique iden-
tifier prefixed with CT. To remove the redundant en-

tries, cell markers from the same species, tissues, cell
types, conditions and publications were merged. Cell sur-
face markers in human were collected and filtered from
the Human Protein Atlas (https://v13.proteinatlas.org/
humanproteome/secretome) by selecting genes that code
for membrane proteins or membrane and secreted proteins
with supported evidence at protein or transcript level. Gene
entities were standardized using unique identifiers from En-
trez as well as Ensembl (18), UniPort (19) and Pfam (20).
The descriptive terms for tissues and diseases were adopted
from Uber-anatomy ontology (UBERON) (21) and Disease
Ontology (DO) (22), and cellular images were downloaded
from Cell Image Library (23).

scRNA-seq data collection and analysis

To explore expression profiles for cell types and cell mark-
ers, a total of 146 scRNA-seq studies for human and
mouse were integrated from Human Cell Atlas (17,24–
27), CellBlast (28), GEO (29), Mouse Cell Atlas (30),
Tabula Muris (31), PanglaoDB (11) and Single Cell
Portal (https://singlecell.broadinstitute.org/single cell). The
single-cell samples were selected by the following two cri-
teria: (i) available annotation of cell types and (ii) the
number of cell types ≥ 2. These studies comprised li-
braries of 10X Chromium (32), SMART-seq2 (33), Drop-
seq (34), Microwell-seq (30) and Seq-Well (35). Cells were
labeled based on cell types classified in the original publica-
tions, and the cell types, tissues and conditions in single-
cell studies were manually annotated with standardized
names in Cell Taxonomy. To visualize high-dimensional ex-
pression profiles, t-distributed stochastic neighbor embed-
ding (t-SNE) and uniform manifold approximation and
projection (UMAP) were implemented by RunTSNE and
RunUMAP in R Seurat v4.0 package (parameters’ setting:
-n.components = 2 or 3, -seed.use = 100, and perplex-
ity = 30) (36–39).

Quality evaluation of cell markers

Multiple metrics for evaluating cell markers were cal-
culated, including expression enrichment (fold-change
[FDR < 0.05], highly expressed ratio, cell specificity score),
supported-publication count and conservation score. Dif-
ferential pattern of cell markers between one cell type
and others was calculated by FindMarkers in Seurat v4.0
(log2FC > 0.25, FDR < 0.05) (36). Highly expressed ratio
was the number of samples in which genes are more highly
expressed in specific cell type compared to other cell types
(log2FC > 0.25, FDR < 0.05) divided by the number of to-
tal samples for this cell type and gene. In addition, Jensen-
Shannon (JS) divergence score, ranging from 0 to 1, was
calculated to quantify the cell type specificity of cell mark-
ers (40,41). The number of supported publications for cell
markers in various species and tissues was counted, and the
Fisher’s exact test was performed to examine whether cell
markers are specifically associated with one certain cell type
by publication count. In addition, conservation score was
the number of orthologous genes that were also reported as
cell markers for this cell type in other species.
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Assessment of cell clusters in scRNA-seq studies

To measure the accuracy or goodness of cell clusters, five
indexes were calculated including cell number, silhouette
coefficient (42), ROGUE purity score (43), average silhou-
ette coefficient and average ROGUE of all cell clusters. Sil-
houette coefficient ranges from -1 to 1, indicating the dif-
ference between intra-cluster distance and inter-cluster dis-
tance, where 1 means clusters are well apart from each other,
0 means clusters are indifferent, and -1 means clusters are
defined in the wrong way (42). ROGUE purity score ranges
from 0 to 1 and a greater value indicates a cell cluster with
higher purity (43). All statistical analyses were performed
by R 4.0.3.

Similarity analysis of cell types based on cell markers

The similarity between two cell types was measured accord-
ing to their cell markers, which can be estimated as

Similarity score = Ci ∩Cj

Ci ∪Cj
,where Ci ∩ C j is the intersec-

tion of cell markers between cell type i and cell type j and
Ci ∪ C j is the union of cell markers of the two cell types.
The similarity score ranges from 0 to 1, where 1 indicates
that the two cell types have the completely same cell mark-
ers and 0 means the two cell types share no common cell
marker.

Cell marker orthology and cross-species comparison

Considering that some cell types may lack reported cell
markers in certain species, orthologous genes of cell
markers in other species may provide potential clues.
We downloaded and extracted the orthologous relation-
ships from NCBI HomoloGene (https://ftp.ncbi.nih.gov/
pub/HomoloGene). The orthologous information for cell
markers in multiple species is presented in the browse page
of cell markers as well as individual cell marker page. To
compare the same cell type among different species, we
identified orthologous genes that were also reported as cell
markers for the same cell type. The cell-type similarity
across species was evaluated by the number of orthologous
cell markers divided by the union of cell markers in the two
species.

Database implementation

Cell Taxonomy was built by SpringBoot (https://spring.
io/projects/spring-boot) and Mybatis (https://mybatis.org/
mybatis-3) as backend web framework and MySQL (https:
//www.mysql.com) as database engine. Web interfaces were
developed by HTML (HyperText Markup Language),
CSS (Cascading Style Sheets), Thymeleaf (https://www.
thymeleaf.org) and AJAX (Asynchronous JavaScript and
XML). Bootstrap (https://getbootstrap.com) was adopted
as a frontend framework, offering consistent templates,
components and interfaces for facilitating the devel-
opment of web pages. Also, data visualization was
rendered by HighCharts (https://www.highcharts.com.cn),
ECharts (http://echarts.apache.org), Plotly.js (https://plotly.
com/javascript) and DataTables (https://datatables.net).

DATABASE CONTENTS AND FEATURES

Cell Taxonomy provides a comprehensive and curated
repository for cell types and associated cell markers in com-
bination with multifaceted cellular characterization (Fig-
ure 1). A standardized taxonomy is constructed for 3,143
cell types by literature curation and comprehensive integra-
tion, and 26,613 cell markers are collected based on 4,299
publications, covering 257 conditions and 387 tissues across
34 species. In addition, single-cell transcriptomic profiles
of ∼3.5 million cells from 146 scRNA-seq studies are in-
corporated to help users explore expression profiles of cell
types and cell markers. Importantly, Cell Taxonomy pro-
vides multi-evidence assessment of cell markers and cell
clusters, facilitating users to select high-quality cell mark-
ers and expression profiles for cell types under investigation.
Also, extensive cellular characterization is provided, includ-
ing cross-species comparison of cell types and cell markers,
cell composition of tissues and cellular similarity based on
cell markers. Moreover, two interactive tools are developed
to enable users to predict cell types given a user-defined gene
list and compare cell markers of different cell types.

A standardized taxonomy for cell types

To structurally describe diverse cell types, Cell Taxonomy
constructs a standardized taxonomy for cell types based
on manual curation and comprehensive integration (see de-
tails in Materials and Methods). Thus, each cell type in
Cell Taxonomy is assigned with a unique taxonomy ID
and associated with an abundance of relevant informa-
tion based on a curation model (https://ngdc.cncb.ac.cn/
celltaxonomy/help#curation model/). As a result, the cur-
rent version of Cell Taxonomy presents a comprehensive
and well-structured taxonomy for 3,143 cell types, and
82.8% (2,601) are annotated with available cell markers, giv-
ing rise to a total of 226,222 entries collected from 4,299
publications. We find that stem cells, cancer stem cells and
endothelial cells top the ranking of publication-supported
cell types; stem cells are associated with 642 cell markers in
68 tissues and 48 conditions (Figure 2A). Importantly, 438
cell types previously uncharacterized in other databases are
curated from 1,555 publications with available cell markers.
And 397 cell types currently undescribed in Cell Ontology
are incorporated into an expanded cell topology tree with
standardized Cell Taxonomy IDs and descriptive terms, ex-
panding the compendium of Cell Ontology by 15.3%. Col-
lectively, a standardized taxonomy for curated cell types
is of fundamental significance for characterizing cell types
and disentangling cellular heterogeneity.

A comprehensive compendium of cell markers

To date, Cell Taxonomy houses 26,613 available cell mark-
ers for 2,601 cell types in 34 species supported by 4,299 pub-
lications. Cell surface markers are commonly used in pre-
classifying certain cell types via fluorescence-activated cell
sorting (FACS) and clinical use in drug discovery for extra-
cellular accessibility for pharmacological intervention (44).
Among 15,316 human cell markers in Cell Taxonomy, 3,489
genes are predicted to be cell surface markers for 758 cell
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Figure 1. Schematic overview of the contents and functionalities in Cell Taxonomy. Data are organized and browsed in terms of cell types, cell markers,
tissues, species, conditions, studies and publications. Multifaceted cellular characterization is provided including literature supported evidence, cell marker
enrichment, cross-species comparison, cell cluster evaluation and cellular characterization. Two analysis tools are deployed online for comparing and
predicting cell types.

types, which code for membrane-bound protein products,
and 93.8% (3,271) are supported by evidence at protein level
and 88.0% (3,071) are annotated with well-characterized
antibodies (45) (Figure 2B). In addition, 1,899 human cell
markers are targeted by approved drugs listed in DrugBank
(46), which are mostly inhibitor targets (876) and antagonist
targets (288) (Figure 2B). Specifically, 633 human cell sur-

face markers are approved drug targets mostly by inhibitor
and antagonist (Supplementary Figure S1A). Moreover, ac-
cording to cross-species comparison of cell markers, 2,397
human cell markers are conserved across various species in
937 cell types (Figure 2B). For example, PECAM1 is the
classic cell marker for human endothelial cells, and consis-
tently, Pecam1, its ortholog in mouse, is also extensively re-
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Figure 2. Statistics of Cell Taxonomy and assessment of cell markers and cell clusters. (A) Top 10 publication-supported cell types as well as their statistics
in terms of cell markers, tissues, conditions and publications. (B) Characterization of cell markers in aspect of cell surface markers, approved drug targets
and conservation across species. (C) Top 10 publication-supported cell markers of endothelial cells in human and mouse. Statistical significance levels
by p-values are calculated by the Fisher’s exact test with FDR correction (BH) and coded by: *** for < 0.001, ** for [0.001, 0.01) and * for [0.01, 0.05)
(https://ngdc.cncb.ac.cn/celltaxonomy/celltype/CT:00000153#cell marker/). (D) Highly expressed ratio of PECAM1 in human cell types (https://ngdc.cncb.
ac.cn/celltaxonomy/celltype/CT:00000153#cell marker expression enrichment/). (E) The distribution of expression fold-change of PECAM1 in various
human cell types across samples. (F) Cell specificity score of PECAM1 in various human cell types across samples. (G) Quality evaluation of cell clusters
for endothelial cells based on silhouette coefficient, ROGUE purity score and their averaged estimates as well as cell number. (H) t-SNE graph of cell types
in SRS4405221 (https://ngdc.cncb.ac.cn/celltaxonomy/study/31270459#dimensional reduction/).
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ported as cell marker for mouse endothelial cells (Figure
2B and Supplementary Figure S1B–E). As a result, there
are 203 human cell surface markers that are targeted by ap-
proved drugs and conserved across various species (Figure
2B).

Extensive assessment of cell markers

High-quality cell markers are essential for cell type iden-
tification. To help users select high-quality cell markers,
Cell Taxonomy provides quality assessment metrics based
on multiple evidences from supported literature, expression
enrichment and cross-species conservation. Based on the
above metrics, thus, high-confidence cell markers can be
prioritized and obtained. Taking human endothelial cells
as an example, among 1,492 cell markers reported by 280
publications and databases, PECAM1 is prioritized as high-
confidence cell marker (Supplementary Figure S1F). In spe-
cific, PECAM1 is extensively reported as cell marker for
human endothelial cells in Cell Taxonomy, which is sup-
ported by 109 publications and specifically associated with
endothelial cells relative to other cell types as shown in the
panel of ‘Cell marker’ (FDR = 2.1e-75, Figure 2C). More-
over, based on the comparison across species, the ortholo-
gous genes of PECAM1 in Mus musculus, Rattus norvegicus
and Gallus gallus are also reported as cell markers for en-
dothelial cells (Supplementary Figure S1E). Additionally,
Cell Taxonomy also evaluates the enrichment pattern of
cell markers in 146 scRNA-seq studies containing ∼3.5 mil-
lion single cells in the panel of ‘Cell marker expression en-
richment’. For example, among single-cell samples for en-
dothelial cells, PECAM1 is more highly expressed in en-
dothelial cells compared to other cell types (log2FC > 0.25,
FDR < 0.05) in 77% of these samples (highly expressed ra-
tio at 0.77, Figure 2D), along with high median value of
log2FC at 2.0 (Figure 2E) and cell specificity score at 0.34
(Figure 2F). Moreover, Cell Taxonomy enables users to in-
vestigate cell marker enrichment pattern in specific scRNA-
seq study (Supplementary Figure S2A–C). Together, Cell
Taxonomy serves as a useful reference to ease users to
choose high-quality cell markers for cell types and deter-
mine highly relevant cell types for specific genes.

Evaluation of cell clusters based on scRNA-seq profiles

Cell type annotation highly depends on reference expres-
sion profiles for accurate assignment of cell types (47).
Therefore, based on scRNA-seq profiles of ∼3.5 million
cells from 679 samples in 146 studies, Cell Taxonomy of-
fers the quality evaluation of cell clusters to ease users to
select high-quality expression profiles for cell type assign-
ment. To measure the goodness of cell clusters, five indexes
are provided, including silhouette coefficient, ROGUE pu-
rity score, their averaged estimates over all cell clusters, as
well as cell number (Supplementary Figure S3A). For exam-
ple, among scRNA-seq samples for mouse endothelial cells,
there are three samples (SRS4405221, SRS3059953 and
SRS3059999; by setting the filters of cell number, ROGUE,
its averaged estimate at top 25% and silhouette coefficient,
its averaged estimate at top 50%) that have expression pro-
files of higher quality for endothelial cells (Figure 2G). As

for SRS4405221, the endothelial cell clusters are of high
silhouette coefficient at 0.91 and ROGUE purity score at
0.84 (Figure 2G). It means that endothelial cells are consid-
erably apart from other cell clusters and relatively of high
purity, which is also consistent well with the t-SNE graph
in the panel of ‘Dimensional reduction’ in the scRNA-seq
study page (Figure 2H). In addition, the overall quality of
cell clusters in SRS4405221 is relatively high with average
silhouette coefficient at 0.86 and average ROGUE value at
0.84. Therefore, these results indicate that this sample is
a potential high-quality expression profile for endothelial
cells. Similar pattern is observed for another two samples
of SRS3059953 and SRS3059999. Collectively, Cell Taxon-
omy performs extensive assessment of cell clusters in large-
scale scRNA-seq studies and bears wide utility for selecting
high-quality expression profiles for cell type annotation.

Cellular composition of tissues and similarity analysis

To systematically explore cell heterogeneity across tissues,
Cell Taxonomy infers the cell composition in various tis-
sues based on representative large-scale scRNA-seq stud-
ies in the panel of ‘cellular composition of tissues’. For ex-
ample, endothelial cells are widely distributed in 13 human
tissues in Tabula sapiens and 10 mouse tissues in Tabula
Muris, while type II pneumocytes are specifically abundant
in lung in both Tabula sapiens and Tabula Muris (Supple-
mentary Figure S3B–E). Additionally, Cell Taxonomy is ca-
pable to estimate the cellular similarity based on cell mark-
ers, which can be used to characterize cell types and reveal
potential cellular functions. In human liver, for instance,
central memory CD4+ T cells are very similar with central
memory CD8+ T cells in terms of their marker component
(similarity score = 0.90) as shown in the ‘cellular similarity
based on cell marker’ panel (Supplementary Figure S3F).
Moreover, for the same cell type, Cell Taxonomy provides
the similarity comparison among different species in light
of orthologous cell markers, as demonstrated in the panel of
‘cellular comparison across species’ (Supplementary Figure
S3G).

Content organization and access

Cell Taxonomy organizes and presents all contents (includ-
ing curated information and data) in terms of cell types, cell
markers, species, tissues, conditions, publications and stud-
ies, corresponding to seven different modules, respectively
(Figure 1). The cell type module contains cell marker as-
sessment (publication, expression enrichment, cross-species
conservation and cell surface marker), cell cluster evalua-
tion and cellular characterization (cell composition of tis-
sues and cellular similarity based on markers). The cell
marker module prioritizes highly relevant cell types for spe-
cific genes based on supported publications, expression en-
richment and cross-species conservation. The tissue mod-
ule visualizes all relevant cell types and cell markers sup-
ported by literature. The species and condition modules list
all associated cell types, cell markers, tissues and publica-
tions. The scRNA-seq study module enables users to search
and filter specific scRNA-seq studies that match certain cri-
teria (such as species, cell type and tissue) and interactively
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visualize single-cell expression profiles, facilitating in-depth
exploration of cell marker enrichment and cell cluster dis-
tance. The publication module displays a full list of relevant
publications in association with specific curated cell types
and cell markers. In addition, Cell Taxonomy deploys two
useful tools for comparing cell types based on cell markers
and predicting cell types according to user-provided gene
list, respectively (Figure 1).

DISCUSSION AND FUTURE DEVELOPMENTS

Single-cell multi-omics sequencing technologies have led to
a large number of single-cell studies conducted throughout
the world, yielding an unprecedented compendium of cell
types (48–52). Here, we construct Cell Taxonomy, a com-
prehensive and curated repository that features comprehen-
sive literature curation, single-cell data integration, multi-
faceted cellular characterization, cross-species comparison
and extensive evaluation of cell markers and cell clusters.
Currently, it houses a total of 3,143 cell types organized in a
standardized taxonomy with 26,613 associated cell markers
covering 257 conditions and 387 tissues across 34 species.
Additionally, Cell Taxonomy delivers interactive online ser-
vices to facilitate users to predict cell types based on cus-
tomized gene list and perform cell type comparison. Con-
tinuous efforts for upgrading Cell Taxonomy include: (i)
manual curation of cell types and cell markers from newly
published studies, (ii) integration of newly released datasets
covering more single-cell omics, species, tissues and condi-
tions, (iii) frequent updates of web interfaces to improve
data presentation and visualization, (iv) enhancing external
links to related database resources and (v) adding a sub-
mission functionality to accept user-curated information.
Taken together, Cell Taxonomy provides a thoroughly char-
acterized landscape of cell types and cell markers in diverse
tissues across multiple species and thus bears great potential
to serve as a broadly useful cellular reference for the global
scientific communities.

DATA AVAILABILITY

Cell Taxonomy can be accessed at https://ngdc.cncb.ac.cn/
celltaxonomy.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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