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The cytokines HGF and CXCL13 predict the severity
and the mortality in COVID-19 patients
Matthieu Perreau1,11, Madeleine Suffiotti1,11, Pedro Marques-Vidal 2, Aurelie Wiedemann 3,4, Yves Levy 3,4,

Cédric Laouénan5,6, Jade Ghosn7, Craig Fenwick1, Denis Comte1, Thierry Roger 8, Jean Regina 8,

Peter Vollenweider2, Gerard Waeber 2, Mauro Oddo9, Thierry Calandra8 & Giuseppe Pantaleo 1,3,10✉

The objective of the present study was to identify biological signatures of severe coronavirus

disease 2019 (COVID-19) predictive of admission in the intensive care unit (ICU). Over

170 immunological markers were investigated in a ‘discovery’ cohort (n= 98 patients) of the

Lausanne University Hospital (LUH-1). Here we report that 13 out of 49 cytokines

were significantly associated with ICU admission in the three cohorts (P < 0.05 to P < 0.001),

while cellular immunological markers lacked power in discriminating between ICU and non-

ICU patients. The cytokine results were confirmed in two ‘validation’ cohorts, i.e. the French

COVID-19 Study (FCS; n= 62) and a second LUH-2 cohort (n= 47). The combination of

hepatocyte growth factor (HGF) and C-X-C motif chemokine ligand 13 (CXCL13) was the

best predictor of ICU admission (positive and negative predictive values ranging from 81.8%

to 93.1% and 85.2% to 94.4% in the 3 cohorts) and occurrence of death during patient

follow-up (8.8 fold higher likelihood of death when both cytokines were increased). Of note,

HGF is a pleiotropic cytokine with anti-inflammatory properties playing a fundamental role in

lung tissue repair, and CXCL13, a pro-inflammatory chemokine associated with pulmonary

fibrosis and regulating the maturation of B cell response. Up-regulation of HGF reflects the

most powerful counter-regulatory mechanism of the host immune response to antagonize

the pro-inflammatory cytokines including CXCL13 and to prevent lung fibrosis in COVID-19

patients.
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Severe acute respiratory syndrome coronavirus 2 (SARS‐
CoV‐2), the cause of coronavirus disease 19 (COVID-19)
induces a broad range of clinical manifestations including

asymptomatic infection, mild disease, and a life-threatening
severe clinical syndrome characterized by respiratory failure,
shock, and multi-organ dysfunction requiring admission in the
intensive care unit (ICU). The severe COVID-19 is associated
with a mortality of 5–10%1–3.

Several studies have hypothesized that the severity of COVID-
19 results from an excessive inflammatory immune response that
may cause a life-threatening multi-organ systemic clinical
syndrome4–6. Similar to SARS-CoV, the inflammatory innate
response is mainly due to a massive cytokine and chemokine
release syndrome7,8. Patients with COVID-19 have elevated serum
levels of cytokines (interleukin-1 (IL-1), IL-6, IL-2, IL-7, IL-10, IL-
12, and IFN-γ,), chemokines (CCL2, CCL3, CXCL8, CXCL9, and
CXCL10, CXCL11), and growth factors (G-CSF and hepatocyte
growth factor (HGF))9,10. Recently, Marie Del Valle et al. showed
in a retrospective analysis that high serum levels of IL-6, IL-8, and
TNF-α at the time of hospitalization were strong and independent
predictors of patient survival11. Additional studies performed on a
limited number of patients (n= <50), proposed that in addition to
cytokines and chemokines, a neutrophil activation signature,
monocyte chemoattractants, pro-apoptotic factors, and HGF were
associated with severe COVID-1912,13. Based on these studies, it
is likely that the cytokine release syndrome may drive immune
cell infiltration, lung epithelial and endothelial cells apoptosis14,
suboptimal T-cell function15, multi-organ failure, and ultimately
death16.

Lymphocytopenia is also a hallmark of SARS-CoV2 infection
and correlates with disease severity and death17,18. Indeed,
patients with severe COVID-19 harbor a marked decrease in the
absolute cell counts of T cells (both CD4 and CD8), B cells, and
NK cells18. However, a number of studies have shown robust
CD8 and/or CD4 T cell activation and proliferation compared
to healthy controls in the majority of patients studied19–21. Virus-
specific CD4 and CD8 T cell responses were predominantly
directed against the M, Spike, and N proteins21, tended to have a
central memory phenotype (CD27+CD45RO+) and consisted of
both mono and/or polyfunctional CD4 (IFNγ, IL-2, and TNF)
and CD8 (IFN-γ, TNF, CD107a) T cells22. However, there was no
correlation between the function of virus-specific CD4 and CD8
T cells and disease severity22.

Recent studies have indicated that a deficient type I interferon
(both IFN-α and β) response is associated with excessive
inflammation and severe disease and about 10% of patients
with anti-IFN antibodies experience severe disease requiring
hospitalization in ICU23,24.

In the present study, we investigated over 170 immunological
parameters to identify signatures associated with the severity
of COVID-19 at hospital admission. We studied three cohorts,
one ‘discovery’ (LUH-1) and two ‘validation’ cohorts (FCS and
LUH-2) including a total of 207 patients of which 85 were ICU
patients and 122 non-ICU patients. We have identified two
cytokines, i.e., HGF and CXCL13, as the best immunological
signature predicting the severity of COVID-19 requiring ICU
admission.

Results
Patient cohorts. The aim of the present study was to define the
immune-inflammatory profile of SARS-CoV-2 infection and to
determine whether unique immune signatures may help identify
patients with severe COVID-19 requiring ICU admission, refer-
red to as ICU patients, versus those with moderate COVID-19
admitted in the internal medicine ward, referred to as non-ICU

patients. To achieve this objective, 98 adult patients with a PCR-
confirmed SARS-CoV2 infection sequentially admitted to the
Lausanne University Hospital were enrolled in a ‘discovery’
cohort (LUH-1) between 12 March and 4 April. Amongst the 98
patients, 43 were admitted directly to the ICU and 55 to the
internal medicine ward. Blood and serum samples were collected
at the time of admission and ex vivo cellular and serum immune
signatures were determined using mass cytometry and multiplex
beads assay. After the identification of immune signatures dif-
ferentiating ICU from non-ICU patients in the ‘discovery’ cohort,
the unique signatures were confirmed in 62 patients enrolled in
the FCS cohort including 31 ICU and 31 non-ICU patients, and
additional 47 patients in the LUH-2 cohort including 11 ICU and
36 non-ICU patients. The patients of the FCS and LUH-2 vali-
dation cohorts were enrolled between 25 January 2020 and 8
April 2020 and 7 April and 15 October, respectively, and the
immunological profiles were analyzed blindly. Reference values
for the immunological parameters investigated were derived from
the analyses of a separate cohort of 450 healthy donors balanced
for gender and age.

Demographic and clinical data of the patients enrolled in the
‘discovery’ cohort are summarized in Supplementary Table 1.
Admission to the ICU for the LUH-1 followed the recommenda-
tions of the guidelines of the Swiss Federal Office of Public
Health. This may explain the lack of difference for certain
demographic parameters such as age and co-morbidities between
ICU and non-ICU patients.

The most common symptoms included fever, cough, dyspnea,
fatigue, myalgia/arthralgia, nausea/vomiting, and anosmia/dys-
gueusia (Supplementary Table 1). No significant differences in
comorbidities were observed between non-ICU and ICU patients
(P > 0.05). Complications were more frequently observed in ICU
than in non-ICU patients (P < 0.05) including acute respiratory
distress syndrome, community-acquired or hospital-acquired
pneumonia, pulmonary embolism, septic shock, and acute
hepatic injury (Supplementary Table 2).

The oxygen saturation was significantly lower in ICU
patients than in non-ICU patients (95% versus 97%; P < 0.05),
while the FIO2 was significantly higher in ICU than in non-ICU
patients (43% versus 21%; P < 0.05) (Supplementary Table 1).
The total white cell blood count was significantly higher in ICU
than in non-ICU patients (8.3 versus 6.7 × 109/Liter; P < 0.05)
(Supplementary Table 1). Consistent with other studies25,
clinical parameters of inflammation such as C reactive protein
(CRP), pro-calcitonin, and ferritin were markedly elevated
and significantly higher in ICU than in non-ICU patients (P <
0.003) (Supplementary Table 1).

Finally, ICU patients were more frequently treated with
tocilizumab, any antibiotic therapy, inhibitors of the renin–
angiotensin–aldosterone system than non-ICU patients (P <
0.001) (Supplementary Table 3).

Immune profile of circulating cell populations in ICU and
non-ICU patients. To determine the immune profile of ICU and
non-ICU patients we investigated over 170 immunological
parameters. We first assessed the influence of SARS-CoV2
infection on the absolute blood counts of CD4 and CD8 T-, B-,
gamma-delta T-, NK, monocytic, and dendritic cell populations
using a panel of 45 surface markers by mass cytometry (all gating
strategies are available in Supplementary Fig. 1). Blood samples
were collected from the 38 ICU and 53 non-ICU individuals
enrolled in the ‘discovery’ cohort and compared to the reference
normal value of 63 blood samples of healthy donors. ICU and
non-ICU patients showed significant T cell lymphocytopenia
(P < 0.05) (Supplementary Fig. 2). With regard to CD4 T cells, all
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CD4 T cell populations were significantly reduced as compared to
healthy donors (P < 0.05) (Supplementary Fig. 2a). CD8 T cells,
total, naive, and effector memory (EM) cell populations were
significantly reduced as compared to healthy donors (P < 0.05)
while central memory (CM) CD8 T cells were significantly
increased (P < 0.001) and terminally differentiated effector
memory (TDEM) unchanged (Supplementary Fig. 2a). Consistent
with a previous study20, ICU and non-ICU patients had increased
proportion of activated (HLA-DR+CD38+) memory (CD45RA
−CD27−) CD4 and CD8 T cells as compared to healthy donors
(P < 0.001) (Supplementary Fig. 3) while no significant differences
were observed between ICU and non-ICU patients (P > 0.05)
(Supplementary Fig. 3). PD-1 expression increased significantly
only on memory (CD45RA−CD27−) CD4 and CD8 T cells in
non-ICU patients (P < 0.05) (Supplementary Fig. 3).

The absolute total B cell number was not substantially influenced
by SARS-CoV2 infection (P > 0.05) in both ICU and non-ICU
patients. However, significant increases were observed in activated B
cells (CD21lowCD38low) and plasma cells (CD20lowCD38high)
whereas unswitched memory B cells (CD27−IgD+IgM+), IgG2+

switched memory B cells (CD27+IgD−IgM−IgG2+) and transi-
tional B cells (CD38highCD24highIgM+IgD+CD10−) were signifi-
cantly reduced as compared to healthy individuals (P < 0.05)
(Supplementary Fig. 2b).

Finally, both ICU and non-ICU patients showed a significant
reduction in the cell number of gamma-delta T cells, plasmacy-
toid dendritic cells (DC) (pDC), myeloid, conventional, and
inflammatory DC populations as compared to healthy individuals
(P < 0.001) (Supplementary Fig. 2c). Except for gamma-delta
T cells, all subsets of innate immune cell populations were more
profoundly reduced in ICU patients than in non-ICU patients
(P < 0.05 to P < 0.001).

The distribution of different CD4 T cell lineages and the
phosphoprotein signaling profiles were then determined in CD4 T
cell populations of 25 ICU and 50 non-ICU patients enrolled in the
‘discovery’ cohort and compared to blood samples of 146 healthy
subjects using two mass cytometry panels composed of 43 and 37
markers. Cumulative data indicated that COVID-19 significantly
influenced the distribution of blood CD4 T cell lineages. Indeed,
the proportion of T helper type 1 (Th1) (CXCR3+Tbet+), Th17
cells (CCR6+RORγt+) and Tregs (CD25+CD127−FoxP3+) were
significantly increased at the expense of Th2 cells (CCR4+Gata3+)
in both ICU and non-ICU patients as compared to healthy
individuals (P < 0.001) (Fig. 1a). However, no significant differences
were observed between ICU and non-ICU patients (P > 0.05)
(Fig. 1a).

The ex vivo expression levels of phospho-STAT1 (pSTAT1),
pSTAT3, and pSTAT5 were significantly increased in CD4 T cells
in both ICU and non-ICU patients as compared to healthy
individuals (P < 0.001) (Fig. 1b), suggesting a recent exposure to
cytokines or growth factors26. Of note, several phosphorylated
molecules such as pNF-κb, pCREB, pERK1/2, pS6, and p38,
involved distinct signaling pathways, were increased but no
significant difference was observed between ICU and non-ICU
patients (P > 0.05) (Fig. 1b).

Cytokine signatures in ICU versus non-ICU patients. Recent
studies have identified a number of markers potentially predictive
of COVID-19 severity11,12. We determined whether a cytokine
signature could help identifying at the time of hospital admission
patients with severe COVID-19 requiring ICU admission. We,
therefore, assessed the serum levels of a large panel (n= 49) of
mediators including cytokines, soluble cytokine receptors, che-
mokines, and growth factors in blood samples collected at the
time of admission in 43 ICU patients and 55 non-ICU patients

enrolled in the ‘discovery’ cohort (LUH-1). The serum con-
centration of these 49 markers of inflammation were compared to
the levels measured in 450 sera collected from healthy individuals
that were used as normal reference values (Fig. 2 and Supple-
mentary Fig. 4). Serum levels of a large panel of cytokines, che-
mokines, and growth factors were markedly increased in ICU and
non-ICU patients compared to those of healthy individuals (P <
0.05) (Fig. 2). However, serum levels of CCL4, CCL11, nerve
growth factor-β (NGF-β), epidermal growth factor (EGF), fibro-
blast growth factor-2 (FGF-2) and placental growth factor-1
(PlGF-1) were significantly decreased in both ICU and non-ICU
patients compared to healthy individuals (P < 0.05 to P < 0.001)
(Fig. 2). Of note, serum levels of IL-1RA, IL-1β, IL-6, IL-10, IL-15,
CCL2, CCL4, CXCL9, CXCL10, CXCL13, HGF, LIF, and VEGF-
A were significantly increased in ICU versus non-ICU patients (P
< 0.001) (Fig. 2).

To better define the serum factor signatures potentially
differentiating ICU from non-ICU individuals, the levels of the
49 serum factors were compared between groups using
Kruskal–Wallis test corrected for multiple comparisons. For each
candidate marker, the optimal cutpoint to distinguish between
ICU and non-ICU patients was determined using the cutpt
command of Stata, applying the Liu method to maximize the
product of the sensitivity and specificity. Based on the cutpoints,
the candidate markers were dichotomized into lower and higher
or equal to the cutpoint and the area under the receiver-operating
curve (AUC), the sensitivity, specificity, positive and negative
predictive values, and the likelihood ratio (Table 1) were
computed. This analysis identified a panel of 13 serum factors
(IL-10, CCL2, CCL4, CXCL13, IL-1RA, IL-6, IL-15, VEGF-A,
CXCL9, CXCL10, IL-1β, LIF, and HGF) differently distributed
between ICU and non-ICU patients (Supplementary Fig. 5).
Based on these analyses, HGF and CXCL13 showed the best
sensitivity (88.6% for both HGF and CXCL13) and specificity
(81.5% for HGF and 79.6% for CXCL13) to discriminate between
ICU and non-ICU patients (Table 1). More importantly, the
positive predictive values (PPV) were 79.6% for HGF and 78% for
CXCL13 and the negative predictive values (NPV) were 98.9% for
HGF and 89.6% for CXCL13.

We then performed a blinded evaluation of the serum levels
of the 49 cytokines in samples collected from patients enrolled
in two independent ‘validation’ COVID-19 cohorts of the FCS
(n= 62 patients) and of the LUH-2 cohort (n= 47 patients).
The LUH-2 cohort was enrolled based on the same criteria of
the LUH-1 cohort. Demographic and clinical data of the FCS
‘validation’ cohort are summarized in Supplementary Table 4.
Admission to the ICU for the FCS followed the recommenda-
tions of the guidelines of the French Haute Autorité de Santé.
We then applied the cutpoints values for the 13 serum factors
(IL-10, CCL2, CCL4, CXCL13, IL-1RA, IL-6, IL-15, VEGF-A,
CXCL9, LIF, IL-1β, CXCL10, and HGF) defined in the
‘discovery’ cohort. Following unblinding of the FCS, increased
levels of HGF and CXCL13 predicted ICU admission in 27
(87.0%) of 31 patients and non-ICU admission in 29 (93.5%) of
31 patients. Following unblinding of the LUH-2 cohort, ICU
admission was predicted in 34 (94.4%) of 36 patients and
internal medicine ward admission in 10 (90.9%) of 11 patients.
ROC and AUC analyses confirmed the hierarchy amongst
the 13 selected cytokines in discriminating between ICU and
non-ICU patients in the FCS and LUH-2 validation cohorts
(Table 2).

Thus, HGF and CXCL13 were the best predictors of COVID-
19 severity and ICU admission. Interestingly, the combination of
HGF and CXCL13 further improved their discriminative power
for ICU admission in the ‘discovery’ and ‘validation’ cohorts
(Table 3). The performance of the combination of the two
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cytokines in the ‘discovery’ cohort in the France COVID-19 Study
‘validation’ cohort are shown in Table 3.

We next assessed the potential of the 13 serum factors (IL-10,
CCL2, CCL4, CXCL13, IL-1RA, IL-6, IL-15, VEGF-A, CXCL9,
LIF, IL-1β, CXCL10, and HGF) and their relative cutpoint values
to predict 30-day mortality among the COVID-19 patients
enrolled in the combined LUH-1, LUH-2, and FCS cohorts.
Among the initial 207 patients, vital status at 30 days was
available for 197 and 186 had data allowing for survival analysis.
The associations between categories of markers and vital status
were assessed by chi-square; survival analysis was performed via a
multilevel survival model using a Weibull distribution and results
were expressed as multivariable-adjusted hazards ratio (HR) with
a 95% confident interval (CI). Overall, 18 patients died, 17 of
whom had high levels of the combination of HGF and CXCL13
(P= 0.006); survival analysis showed that patients with the
combination of HGF and CXCL13 had a 8.80-fold higher
likelihood of dying (P= 0.054) (Table 4).

Discussion
The hallmark of severe COVID-19 is an acute respiratory distress
syndrome (ARDS) with respiratory failure requiring mechanical
ventilation in 10–24% of hospitalized patients. A large number of
studies have drawn attention to systemic immune activation
involving both the innate and adaptive arms of the host immune
system11,12,20,27,28. The relevance in COVID-19 of the massive
release of a large number of soluble mediators including cyto-
kines, cytokine receptors, growth factors, and chemokines has
been thoroughly discussed in a recent ‘Opinion’ article29. The
article has highlighted that the pathophysiology of the COVID-19
cannot be explained solely on the basis of the increase in a few
inflammatory cytokines such as IL-6 and TNF. Ιt remains unclear
to what extent the increase of circulating mediators drives the
pathogenesis of severe COVID-19.

A large number of studies have been carried out to better
understand the pathophysiology of COVID-19 and identify pre-
dictive markers of disease severity in the early symptomatic phase
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of infection11,12,20,27,28. Consistent with these studies11,12,27,28, we
observed that several cellular markers of activation and differ-
entiation of blood T, B, monocyte, and DC cell populations were
abnormal in SARS-CoV2 infected patients compared to healthy
individuals. However, none of these cellular markers can dis-
criminate between severe and moderate COVID-19. Of note, we
have also shown in SARS-CoV2 patients an increase of Th1 and
Th1/Th17 CD4 T cell lineages and a decrease in Th2 cells sup-
porting the inflammatory profile of the T cell response associated
with COVID-19. Furthermore, the increase in signaling pathways
such as pNF-κb, pCREB, pERK1/2, pS6, and p38 is consistent

with the cytokine-mediated activation of the different pro-
inflammatory CD4 T cell lineages.

Consistent with the previous studies11,12,28, we confirmed the
increase in a large number of soluble mediators in patients with
COVID-19 as compared to the values obtained in samples collected
from healthy individuals. However, the results of the present study
provide a substantial advance in the understanding of the patho-
physiology of COVID-19 and in the identification of predictive
markers of the severity of the SARS-CoV2 infection. Two recent
studies attempted to identify markers of disease severity. In one
study11, only a small number (n= 4) of cytokines were measured
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Fig. 2 Serum cytokine, soluble cytokine receptor, chemokine, and growth factor profiles in non-ICU and ICU COVID-19 patients. a Heat-map
representing the mean serum cytokine levels detected in healthy subjects (N= 450), non-ICU (N= 55) and ICU (N= 43) patients. Blue-to-yellow color code
represents low-to-high average cytokine levels. Cytokine level similarities are represented by a dendrogram constructed by hiearachical clustering. b Levels of
cytokines (IL-1β, IL-6, IL-10, and IL-15), cytokine receptor (IL-1RA), chemokines (CCL2, CCL4, CCL11, CXCL9, CXCL10, and CXCL13) and growth factors (NGF-β,
EGF, HGH, LIF, PIGF-1, and VEGF-A) in healthy subjects (N= 450), non-ICU (N= 55) and ICU (N= 43) patients. Blue plots correspond to healthy subjects
(HS), red plots corresponds to non-ICU patients and green plots correspond to ICU patients. Dotted line represents the upper normal values. Black stars indicate
statistical significance between ICU or non-ICU patients and healthy subjects. Statistical significance (P values) was obtained using two-sided Kruskal–Wallis
test, using a Bonferroni correction. *P < 0.05; **P < 0.01; ***P < 0.001. Exact P values are available in Source Data file.
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and IL-6, TNF, and IL-8 were identified as markers of severity of
COVID-19 as measured by mortality. The study was conducted in a
large number of patients but was unable to predict the severity of
the disease at the time of hospital admission. In two studies, con-
ducted on a small number (n= 4912 and n= 4013) of patients,

HGF in addition to other markers was proposed to serve as a
marker of severity of COVID-19.

It is important to underscore that in our study the serum
samples were collected at the time of hospital admission in the
‘discovery’ and in the two ‘validation’ cohorts. The timing of

Table 1 Performance (area under the receiver-operating curve (AUC), sensitivity, specificity, positive and negative predictive
values, and likelihood ratio) of each candidate markers dichotomized into lower than, higher, or equal to the cutpoint
distinguishing ICU and non-ICU COVID-19 patients of the discovery cohort.

Marker Cutpoint AUC Sensitivity Specificity Positive
predictive value

Negative
predictive value

Likelihood ratio

HGF 593.1 0.911 (0.854–0.969) 88.6 (75.4–96.2) 81.5 (68.6–90.7) 79.6 (65.7–89.8) 98.9 (98.6–99.2) 4.79 (2.71–8.46)
CXCL13 119.7 0.875 (0.801–0.948) 88.6 (75.4–96.2) 79.6 (66.5–89.4) 78.0 (64.0–88.5) 89.6 (77.3–96.5) 4.35 (2.54–7.45)
CXCL9 19 0.869 (0.801–0.936) 84.1 (69.9–93.4) 74.1 (60.3–85.0) 72.5 (58.3–84.1) 85.1 (71.7–93.8) 3.24 (2.03–5.18)
IL-6 25.6 0.796 (0.708–0.884) 77.3 (62.2–88.5) 79.6 (66.5–89.4) 75.6 (60.5–87.1) 81.1 (68.0–90.6) 3.79 (2.19–6.58)
CCL2 121.3 0.775 (0.676–0.873) 65.9 (50.1–79.5) 85.2 (72.9–93.4) 78.4 (61.8–90.2) 75.4 (62.7–85.5) 4.45 (2.27–8.73)
CXCL10 156 0.743 (0.640–0.846) 68.2 (52.4–81.4) 75.9 (62.4–86.5) 69.8 (53.9–82.8) 74.5 (61.0–85.3) 2.83 (1.69–4.74)
IL-1RA 2741.7 0.734 (0.635–0.833) 79.5 (64.7–90.2) 61.1 (46.9–74.1) 62.5 (48.5–75.1) 78.6 (63.2–89.7) 2.05 (1.42–2.95)
CCL4 40 0.714 (0.611–0.818) 79.5 (64.7–90.2) 59.3 (45.0–72.4) 61.4 (47.6–74.0) 78.0 (62.4–89.4) 1.95 (1.37–2.78)
VEGF-A 677.4 0.702 (0.597–0.807) 61.4 (45.5–75.6) 77.8 (64.4–88.0) 69.2 (52.4–83.0) 71.2 (57.9–82.2) 2.76 (1.59–4.79)
IL-15 16.2 0.689 (0.581–0.796) 65.9 (50.1–79.5) 72.2 (58.4–83.5) 65.9 (50.1–79.5) 72.2 (58.4–83.5) 2.37 (1.47–3.83)
IL-10 3.1 0.687 (0.599–0.775) 50.0 (34.6–65.4) 88.9 (77.4–95.8) 78.6 (59.0–91.7) 68.6 (56.4–79.1) 4.50 (2.00–10.1)
IL-1β 4.325 0.690 (0.582–0.797) 69.8 (53.9–82.8) 70.9 (57.1–82.4) 65.2 (49.8–78.6) 75 (61.1–86.0) 2.4 (1.5–3.8)
LIF 15.23 0.703 (0.597–0.809) 65.1 (49.1–79.0) 72.7 (59.0–83.9) 65.1 (49.1–79.0) 72.7 (59.0–83.9) 2.4 (1.5–3.9)

Table 2 Performance (AUC, sensitivity, specificity, positive and negative predictive values, and likelihood ratio) of each
candidate markers dichotomized into lower than, higher or equal to the cutpoint distinguishing ICU and non-ICU COVID-19
patients in FCS and LUH-2 validation cohorts.

Marker Cutpoint AUC Sensitivity Specificity Positive
predictive value

Negative
predictive value

Likelihood ratio

FCS validation cohort
HGF 593.1 0.976 (0.948–1.000) 87.1 (70.2–96.4) 93.5 (78.6–99.2) 93.1 (77.2–99.2) 87.9 (71.8–96.6) 13.5 (3.5–51.9)
CXCL13 119.7 0.903 (0.832–0.974) 96.8 (83.3–99.9) 58.1 (39.1–75.5) 69.8 (53.9–82.8) 94.7 (74.0–99.9) 2.3 (1.5–3.5)
CXCL9 19.0 0.814 (0.706–0.921) 51.6 (33.1–69.8) 87.1 (70.2–96.4) 80.0 (56.3–94.3) 64.3 (48.0–78.4) 4.0 (1.5–10.6)
IL-6 25.6 0.661 (0.578–0.745) 16.1 (5.5–33.7) 100 (88.8–100) 100 (47.8–100) 54.4 (40.7–67.6) Not computable
CCL2 121.3 0.745 (0.622–0.867) 29.0 (14.2–48.0) 100 (88.8–100) 100 (66.4–100) 58.5 (44.1–71.9) Not computable
CXCL10 156.0 0.782 (0.663–0.901) 25.8 (11.9–44.6) 93.5 (78.6–99.2) 80.0 (44.4–97.5) 55.8 (41.3–69.5) 4.0 (0.9–17.4)
IL-1RA 2741.7 0.803 (0.692–0.915) 35.5 (19.2–54.6) 96.8 (83.3–99.9) 91.7 (61.5–99.8) 60.0 (45.2–73.6) 11.0 (1.5–80.1)
CCL4 40.0 0.714 (0.581–0.846) 100 (88.8–100) 9.7 (2.0–25.8) 52.5 (39.1–65.7) 100 (29.2–100) 1.1 (1.0–1.2)
VEGF-A 677.4 0.856 (0.765–0.947) 83.9 (66.3–94.5) 58.1 (39.1–75.5) 66.7 (49.8–80.9) 78.3 (56.3–92.5) 2.0 (1.3–3.1)
IL-15 16.2 0.766 (0.647–0.885) 38.7 (21.8–57.8) 90.3 (74.2–98.0) 80.0 (51.9–95.7) 59.6 (44.3–73.6) 4.0 (1.3–12.8)
IL-10 3.1 0.594 (0.512–0.676) 22.6 (9.6–41.1) 96.8 (83.3–99.9) 87.5 (47.3–99.7) 55.6 (41.4–69.1) 7.0 (0.9–53.6)
IL-1β 4.325 0.604 (0.473–0.734) 38.7 (21.8–57.8) 77.4 (58.9–90.4) 63.2 (38.4–83.7) 55.8 (39.9–70.9) 1.7 (0.8–3.8)
LIF 15.23 0.652 (0.540–0.765) 16.1 (5.5–33.7) 96.8 (83.3–99.9) 83.3 (35.9–99.6) 53.6 (39.7–67.0) 5.0 (0.6–40.4)
LUH-2 validation cohort
HGF 593.1 0.976 (0.948–1.000) 87.1 (70.2–96.4) 93.5 (78.6–99.2) 93.1 (77.2–99.2) 87.9 (71.8–96.6) 13.5 (3.5–51.9)
CXCL13 119.7 0.903 (0.832–0.974) 96.8 (83.3–99.9) 58.1 (39.1–75.5) 69.8 (53.9–82.8) 94.7 (74.0–99.9) 2.3 (1.5–3.5)
CXCL9 19.0 0.814 (0.706–0.921) 51.6 (33.1–69.8) 87.1 (70.2–96.4) 80.0 (56.3–94.3) 64.3 (48.0–78.4) 4.0 (1.5–10.6)
IL-6 25.6 0.661 (0.578–0.745) 16.1 (5.5–33.7) 100 (88.8–100) 100 (47.8–100) 54.4 (40.7–67.6) Not computable
CCL2 121.3 0.745 (0.622–0.867) 29.0 (14.2–48.0) 100 (88.8–100) 100 (66.4–100) 58.5 (44.1–71.9) Not computable
CXCL10 156.0 0.782 (0.663–0.901) 25.8 (11.9–44.6) 93.5 (78.6–99.2) 80.0 (44.4–97.5) 55.8 (41.3–69.5) 4.0 (0.9–17.4)
IL-1RA 2741.7 0.803 (0.692–0.915) 35.5 (19.2–54.6) 96.8 (83.3–99.9) 91.7 (61.5–99.8) 60.0 (45.2–73.6) 11.0 (1.5–80.1)
CCL4 40.0 0.714 (0.581–0.846) 100 (88.8–100) 9.7 (2.0–25.8) 52.5 (39.1–65.7) 100 (29.2–100) 1.1 (1.0–1.2)
VEGF-A 677.4 0.856 (0.765–0.947) 83.9 (66.3–94.5) 58.1 (39.1–75.5) 66.7 (49.8–80.9) 78.3 (56.3–92.5) 2.0 (1.3–3.1)
IL-15 16.2 0.766 (0.647–0.885) 38.7 (21.8–57.8) 90.3 (74.2–98.0) 80.0 (51.9–95.7) 59.6 (44.3–73.6) 4.0 (1.3–12.8)
IL-10 3.1 0.594 (0.512–0.676) 22.6 (9.6–41.1) 96.8 (83.3–99.9) 87.5 (47.3–99.7) 55.6 (41.4–69.1) 7.0 (0.9–53.6)
IL-1β 4.325 0.604 (0.473–0.734) 38.7 (21.8–57.8) 77.4 (58.9–90.4) 63.2 (38.4–83.7) 55.8 (39.9–70.9) 1.7 (0.8–3.8)
LIF 15.23 0.652 (0.540–0.765) 16.1 (5.5–33.7) 96.8 (83.3–99.9) 83.3 (35.9–99.6) 53.6 (39.7–67.0) 5.0 (0.6–40.4)

Table 3 Performance (sensitivity, specificity, positive and negative predictive values, and the likelihood ratio) of the combination
of HGF and CXCL13 to further improve the discrimination between ICU and non-ICU COVID-19 patients.

Cohort N Sensitivity Specificity Positive predictive value Negative predictive value Likelihood ratio

LUH-1 98 79.1 (64.0–90.0) 94.5 (84.9–98.9) 91.9 (78.1–98.3) 85.2 (73.8–93.0) 14.5 (4.8–44.0)
LUH-2 47 81.8 (48.2–97.7) 94.4 (81.3–99.3) 81.8 (48.2–97.7) 94.4 (81.3–99.3) 14.7 (3.7–58.3)
FCS 62 87.1 (70.2–96.4) 93.5 (78.6–99.2) 93.1 (77.2–99.2) 87.9 (71.8–96.6) 13.5 (3.5–51.9)
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sampling is critical because serum cytokine levels can change
substantially as the infection progresses. We have shown that,
among the 49 soluble mediators measured, two cytokines, HGF
and CXCL13, are the best predictors of the need for ICU hos-
pitalization for COVID-19 patients.

HGF is a pleiotropic cytokine produced by mesenchymal cells
and macrophages. It is required for normal embryogenesis and
development30,31 of several organs including the lung32. In adults,
HGF is produced following injury of the lung tissue and promotes
tissue repair33–36. HGF promotes lung tissue repair through the
inhibition of apoptosis of lung epithelial and endothelial cells, and
by counteracting a number of pro-apoptotic and pulmonary
fibrosis factors such as TGF-β, IL-1β, IL-8, TNF-α, the basic
fibroblastic factor, the insulin-like growth factor, and the platelet-
derived growth factor37–46. It has been proposed that the anti-
apoptotic activity of HGF is due in particular to the activation of
three signaling pathways, i.e., ERK/MAPK, PI3K/Akt, and
STAT347–49.

HGF may play also a central role in the regulation of inflam-
mation. A number of pro-inflammatory cytokines such as IFN-γ,
IL-1α/β, and TNF-α induce HGF expression as well as activated
T cells50,51 while glucocorticoids and TGF-β inhibit HGF
production52. HGF may induce monocyte-macrophage activation53,
B cell homing54, and modulation of DC functions55. HGF exerts
predominantly an anti-inflammatory role through the decrease
production of IL-6 and increase production of IL-1056,57, by pre-
venting the differentiation of inflammatory T cell lineages through
the suppression of DC-mediated IL-12p70 production57,58, and by
favoring Tregs maturation57,59. Finally, HGF produced by follicular
DC is a positive regulator of growth and survival of B cells and
plasma cells51,60.

CXCL13 plays a central physiological role in the organization
of secondary lymphoid tissue structure of primary and secondary
follicles and thus of B cell maturation61. CXCL13 is a pro-
inflammatory cytokine involved in several pathological condi-
tions and the finding of increased levels in tissue and/or in serum
corresponds to varying degrees of inflammation. CXCL13 serum
levels have been found increased in several uncontrolled infec-
tious disease such as in viremic HIV infection, in a variety of
autoimmune diseases, and in both hematological and solid
tumors (reviewed in ref. 61). Interestingly, increased serum levels
and tissue expression of CXCL13 have been initially found to be

associated with idiopathic pulmonary fibrosis62,63 and recently in
several interstitial lung diseases including idiopathic interstitial
pneumonia and interstitial pneumonia with autoimmune
features64. The increased levels of CXCL13 are associated with
severe prognosis and increased mortality in all the interstitial lung
diseases. Furthermore, the CXCL13/CXCR5 axis (CXCL13 being
the ligand of CXCR5) uses some of the signaling pathways such as
ERK/MAPK and PI3/AKT (reviewed in ref. 61).

Based on the biology of HGF, our observation of increased
serum levels early in symptomatic infection and its association
with ICU hospitalization is likely an indicator of an ongoing
severe respiratory syndrome associated with interstitial pneu-
monia. Upregulation of HGF is the host’s physiological counter-
regulatory immune response to reduce inflammation, to limit
lung tissue injury and to promote tissue repair. Consistent with
this view, over 90% of non-ICU patients with a moderate
respiratory syndrome had low levels of HGF. Of note, HGF may
exert its anti-inflammatory property through IL-10. Interestingly,
IL-10 was one of the thirteen cytokines found to discriminate
ICU from non-ICU patients.

Interestingly, HGF has also been shown to be significantly
increased in patients with severe influenza A (H1N1) virus
infection65 and in patients with inflammatory lung diseases
(interstitial pneumonitis or bacterial pneumonia)66. Levels of
HGF remained elevated over time and were more elevated
in non-survivors as compared to survivors of acute lung
injuries66,67. These studies highlighted the potential benefit of
using HGF levels as a prognosis marker of inflammatory pul-
monary diseases66,67.

With regard to CXCL13, the early increase in the symptomatic
severe COVID-19 may also reflect the potent host immune
response to promote maturation of B cell and antibody response
in order to achieve rapid control of the virus replication and virus
clearance. However, the persistence of elevated levels of CXCL13
in the lung tissue and serum may be detrimental and responsible
for fueling the inflammation and promoting lung fibrosis.

Of note, we have demonstrated that the combined use of HGF
and CXCL13 provides a powerful immune signature dis-
criminating between ICU and non-ICU patients at hospital
admission with positive and negative predictive values ranging
from 81.8 to 93.1% and 85.2 to 94.4% in the 3 cohorts, and
predicting the occurrence of death during patient follow-up.

Table 4 Performance of each candidate markers dichotomized into lower than or higher than the cutpoint or of the combination
of HGF and CXCL13 to predict death during the follow-up of COVID-19 patients enrolled in LUH-1, LUH-2 and the FCS cohorts.

Marker Low High p-value‡ Hazard ratio* p-value||

HGF 5 (4.6) 13 (14.9) 0.012 1.53 (0.29–8.18) 0.621
CXCL13 2 (2.4) 16 (14.0) 0.005 4.94 (0.85–28.6) 0.075
CXCL9 5 (4.6) 13 (14.6) 0.016 1.02 (0.32–3.26) 0.980
IL-6 10 (7.1) 8 (14.3) 0.114 1.33 (0.45–3.87) 0.606
CCL2 12 (8.1) 6 (12.5) 0.352 0.66 (0.21–2.03) 0.463
CXCL10 9 (6.7) 9 (14.5) 0.076 3.73 (1.14–12.2) 0.029
IL-1RA 8 (6.3) 10 (14.3) 0.063 2.39 (0.73–7.82) 0.151
CCL4 2 (4.6) 16 (10.5) 0.230 2.57 (0.48–13.7) 0.269
VEGF-A 8 (8.0) 10 (10.3) 0.574 1.23 (0.40–3.74) 0.721
IL-15 11 (8.7) 7 (9.9) 0.792 0.85 (0.28–2.58) 0.780
IL-10 13 (8.5) 5 (11.4) 0.561 0.81 (0.26–2.50) 0.712
IL-1β 12 (10.1) 6 (7.7) 0.569 0.45 (0.15–1.36) 0.158
LIF 12 (8.1) 6 (12.2) 0.384 0.74 (0.24–2.26) 0.597
Combination of HGF and CXCL13
HGF/CXCL13 1 (1.5) 17 (13.3) 0.006 8.80 (0.96–80.3) 0.054

The first two columns indicate the percentage of subjects within a given category (low or high levels) who died during follow-up, all cohorts together.
*Adjusted for age (continuous), ICU stay (yes/no) and cohort (Lausanne 1/Lausanne 2/Paris), ‡analysis by chi-square; ‖, analysis by a multilevel survival model using a Weibull distribution, where
patients were nested within each cohort.
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Therefore, the combined assessment of the two cytokines is a
valuable tool in the clinical management of patients with acute
SARS-CoV-2 infection.

In conclusion, the present study provides insights in the early
pathophysiological events associated with severe COVID-19 and
identified HGF and CXCL13 as critical pathogenic biomarkers of
disease severity and best predictors of ICU admission and death.

Methods
Study group, ethics statement. Eighty-eight ICU and one hundred twenty-five
non-ICU hospitalized PCR-confirmed SARS-CoV2 infected individuals were
enrolled in the present study. No statistical method was used to predetermine
sample size. The sample size was estimated based on a previously published
study27. The present study was approved by the ethical commission (CER-VD) and
all subjects provided a written informed consent. As inclusion criteria, only patients
with a positive SARS-CoV2 PCR were enrolled. Admission to ICU or to internal
medicine ward (non-ICU) were the following: individuals with severe COVID-19
with acute respiratory failure requiring mechanical ventilation and/or cardio-
circulatory insufficiency requiring the administration of vasoactive agents were
admitted to ICU. Individuals with severe COVID-19 with acute respiratory failure
requiring supplemental oxygen and did not have criteria for ICU admission were
admitted to the internal medicine ward (non-ICU) required.

As exclusion criteria, pregnant women were not enrolled. Serum and blood
samples were also collected from 450 healthy individuals during the pre-pandemic
period. The exclusion criteria were sign of acute or chronic viral hepatitis (HAV,
HBV, HCV, and HEV), prior diagnosis of autoimmune disease (e.g., rheumatoid
arthritis, psoriasis, SLE), prior diagnosis of primary or secondary
immunodeficiency (e.g., HIV infection), and current or past (last 4 weeks) use of
medications that are known to modify the immune response.

Assessment of serum immune signatures. Serum concentration of cytokines and
soluble cytokine receptors i.e. IL-1α, IL-1RA, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-
9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-18, IL-21, IL -22, IL-23, IL-27, IL-31,
IFN-α, IFN-γ and TNF, chemokines, i.e., CCL2, CCL3, CCL4, CCL5, CCL11,
CXCL1, CXCL8, CXCL9, CXCL10, CXCL12, CXCL13 and TNF-β and growth
factors, i.e., NGF-β, BDNF, EGF, FGF-2, HGF, LIF, PDGF-BB, PlGF-1, SCF,
VEGF-A, VEGF-D, BAFF, GM-CSF and G-CSF were determined by multiplex
bead assay as previously described68. The upper normal values for each marker
were defined based on the results obtained in the 450 sera collected from healthy
individuals (mean+ 2 standard deviations).

Immune profiling of circulating cell populations by mass cytometry. Blood
samples (200 µl) were first incubated (30 min; RT) with metal-conjugated anti-
bodies directed against CD3, CD7, CD45, CCR7, CXCR3, CXCR5, and γδ TCR (c.f.
antibodies section; Panel 1; Supplementary Data 1). Cells were then fixed (5 min;
RT) with PBS 2.4% PFA and lysed (15 min, RT) using Bulklysis solution (Cytog-
nos) and washed (PBS, 0.5% BSA, Sodium azide 0.02%). Cells were then incubated
(30 min; RT) with the remaining metal-conjugated monoclonal antibodies (c.f.
antibodies section). Cells were then washed (PBS, 0.5% BSA, Sodium azide 0.02%)
and fixed (5 min; RT) with PBS 2.4% PFA. Cells were stained (1 h; RT) with DNA
intercalator (1 μM Cell-ID Intercalator, Fluidigm/DVS Science) in PBS, 0.5% BSA,
sodium azide 0.02%, 0.3% saponin, 1.6% PFA. The absolute counts of blood cell
populations of ICU and non-ICU individuals were compared to blood samples
collected from healthy individuals (c.f. Study group section).

Evaluation of CD4 T cell lineage distribution by mass cytometry. Blood
samples (100 µl) were first incubated (30 min; RT) with metal-conjugated anti-
bodies directed against CD8, CD4, CCR4, CD127, CCR6, CXCR3, CCR9, CCR7,
CXCR5, CCR5 and CD45 (c.f. antibodies section; Supplementary material). Cells
were then fixed (5 min; RT) with PBS 2% PFA and lysed (15 min, RT) using
Bulklysis solution (Cytognos) and washed (PBS, 0.5% BSA, 0.02% Sodium azide).
Cells were then incubated (30 min; RT) with the metal-conjugated monoclonal
antibodies directed against CD3, CD44, CD25, CCR6, CXCR5, CD38, TIGIT, 2B4,
PD1, CD27, CD69, CD45RO, CD127, CD16, CD31, CD95, CD57, NKG2D,
CD45RA, HLA-DR, PD-L1, CD151, CD40L, ICOS, LAG3, OX40 (c.f. antibodies
section; Panel 2; Supplementary Table 5 and Supplementary Data 1). Cells were
then washed (PBS, 0.5% BSA, 0.02% Sodium azide) and fixed (5 min; RT) with PBS
2.4% PFA. Cells were then permeabilized (30 min; 4 °C) (Foxp3 Fixation/Per-
meabilization Kit; eBioscience) then washed and stained (30 min; 4 °C) with the
metal-conjugated monoclonal antibodies directed against Tbet, Ki67, Bcl2, Rorγt,
Gata3, FoxP3 (c.f. antibodies section; Panel 2; Supplementary Table 5 and Sup-
plementary Data 1). Cells were then washed (PBS, 0.5% BSA, 0.3% saponin, 0.02%
Sodium azide). Cells were stained (1 h; RT) with DNA intercalator (1 μM Cell-ID
Intercalator, Fluidigm/DVS Science) in PBS, 0.5% BSA, 0.02% Sodium azide, 0.3%
saponin, 1.6% PFA. The distribution of CD4 T cell lineages evaluated in ICU and
non-ICU individuals were compared to values obtained from healthy individuals
(c.f. Study group section).

Assessment of the CD4 T cell phospho-protein signaling profile by mass
cytometry. Blood samples (200 µl) were barcoded using a strategy based on mass-
tag (105 Pd, 104 Pd, 106 Pd, 108 Pd, and 110 Pd) palladium (Trace Sciences;
400 nM; 30 min; RT) and isotope-labeled (89Y, 111 Cd, 114 Cd, 116 Cd, 141Pr and
198Pt) anti-CD45 MAbs (HI30; 30 min; RT). Briefly, cells were stained with spe-
cific anti-CD45 MAbs and palladium mass-tag compound, then fixed (5 min; RT)
with PBS 2.4% PFA and lysed (15 min, RT) using Bulklysis solution (Cytognos)
and washed (PBS, 0.5% BSA, 0.02% Sodium azide). Cells were then pooled and
incubated (30 min; RT) with the metal-conjugated monoclonal antibodies directed
against CD3, CD45, CD8, CD4, CD19, CD1c, CD69, CD31, CD86, CD7, CD39,
CD56, CD123, CD21, CD27, CD14, CD11c, CD62L, CD161, CD20, CD38,
CD45RA, CD15, CD141, HLA-DR, CD57 and CD16 (c.f. antibodies section; Panel
3; Supplementary Table 5 and Supplementary Data 1). Cells were then washed
(PBS, 0.5% BSA, 0.02% Sodium azide) and fixed (5 min; RT) with PBS 2.4% PFA.
Cells were then permeabilized (30 min; 4 °C) (Foxp3 Fixation/Permeabilization Kit;
eBioscience) then washed and stained (30 min; 4 °C) with the metal-conjugated
monoclonal antibodies directed against pSTAT1, pSTAT3, pSTAT5, p38, pMAP-
KAPK2, pNFkb, Ki67, pERK1/2, pS6, pCREB, (c.f. antibodies section; Panel 3;
Supplementary Table 5 and Supplementary Data 1). Cells were then washed (PBS,
0.5% BSA, 0.3% saponin, 0.02% Sodium azide). Cells were stained (1 h; RT) with
DNA intercalator (1 μM Cell-ID Intercalator, Fluidigm/DVS Science) in PBS, 0.5%
BSA, sodium azide 0.02%, 0.3% saponin, 1.6% PFA. Labeled samples were acquired
on a Helios instrument using a flow rate of 0.030 ml/min. Data were analyzed using
FlowJo software (v10.2). At least 500,000 events were acquired for each sample. The
CD4 T cell phospho-protein signaling profiles evaluated in ICU and non-ICU
individuals were compared to values obtained from healthy individuals (c.f. Study
group section).

Statistical analyses. Statistical analyses were conducted using R version (v.3.6.3)
(The R Foundation for Statistical Computing) and Stata version 16.1 (Stata Corp,
College Station, TX, USA). Inter-group clinical data comparisons were performed
using chi-square or Fisher’s exact test for categorical variables and Kruskal-Wallis
test for continuous variables. Descriptive values were presented as violin plots for
continuous variables. Serum marker levels and mass cytometry cell population
values were log10 transformed for statistical analysis. Statistical significance
(P values) was obtained using Kruskal–Wallis test. Bonferroni’s correction was
applied for multiple comparisons (exact P values are available in Source Data file).
Serum markers whose p-value was below the threshold were then considered as
candidates for diagnosis of severe (ICU) cases. For each candidate marker, the
optimal cutpoint to distinguish between ICU and non-ICU patients was computed
using the cutpt command of Stata and default settings (i.e., maximization of the
sensitivity × specificity product). Based on the results, the candidate markers were
dichotomized into lower than and higher or equal to the cutpoint, and the area
under the receiver-operating curve (AUC), the sensitivity, specificity, positive and
negative predictive values and the positive likelihood ratio were computed using
the roccomp and the diagt commands of Stata. The two markers displaying the best
AUCs were then combined into a binary variable (both values high and other) and
considered for the classification of the patients. The clinical relevance of the two
markers was checked by multivariable analysis using stepwise forward logistic
regression using a p-value for entry= 0.05 and a p-value for removal= 0.10. Of the
initial 207 patients, 197 had vital data at follow-up and 186 had data allowing for
survival analysis. Bivariate analysis of the associations between categories of
markers and vital status (death/alive) were assessed using chi-square. Survival
analysis was conducted using Cox proportional hazards regression, unadjusted or
adjusted for age. A second survival analysis was conducted using a multilevel
survival model using a Weibull distribution, where patients were nested within
each cohort, and adjusting for age (continuous) and ICU stay (yes/no). For the
survival analysis, results were expressed as multivariable-adjusted hazards ratio
(HR) and 95% CI.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The FCS raw data are protected and are not available due to data privacy laws. However,
raw data for all Figures, Tables, and Supplementary Figures and Tables are provided with
this paper in Source Data file. Source data are provided with this paper.
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