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Stratification of athletes’ gut microbiota: the multifaceted hubs associated with 
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ABSTRACT
Gut microbial communities of athletes differ from that of sedentary persons in both diversity and the 
presence of certain taxa. However, it is unclear to what degree elite athletes and non-elite athletes 
harbor different gut microbial community patterns and if we can effectively monitor the potential of 
athletes based on microbiota. A team of professional female rowing athletes in China was recruited 
and 306 fecal samples were collected from 19 individuals, which were separated into three cohorts: 
adult elite athlete’s (AE), youth elite athlete’s (YE), and youth non-elite athlete’s (YN). The differences in 
gut microbiome among different cohorts were compared, and their associations with dietary factors, 
physical characteristics, and athletic performance were investigated. The microbial diversities of elite 
athletes were higher than those of youth non-elite athletes. The taxonomical, functional, and 
phenotypic compositions of AE, YE and YN were significantly different. Additionally, three enterotypes 
with clear separation were identified in athlete’s fecal samples, with majority of elite athletes stratified 
into enterotype 3. And this enterotype-dependent gut microbiome is strongly associated with athlete 
performances. These differences in athlete gut microbiota lead to establishment of a random forest 
classifier based on taxonomical and functional biomarkers, capable of differentiating elite athletes and 
non-elite athletes with high accuracy. Finally, these versatilities of athlete microbial communities of 
athletes were found to be associated with dietary factors and physical characteristics, which can in 
concert explain 41% of the variability in gut microbiome.
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Introduction

The symbiotic human microbiota consist of over 100 
trillion microbial cells, colonizing primarily the 
gut,1–3 that has become an inalienable part of the 
host. In recent decades, the potential role of the gut 
microbiome has become the focus of human health 
research,4 primarily in terms of its contribution to 
host physiology, metabolism, nutrition, and immune 
system development.5,6 The composition of the 
human gut microbial community is highly asso-
ciated with environmental and stochastic factors, 
such as age, diet, antibiotic treatment,7 and 
exercise.8 Previous studies have reported that age- 
related changes could affect the human gut microbial 
ecosystem and alter the microbiota composition at 

the different stages of life, which demonstrated that 
the human gut microbial composition is strongly 
associated with the age of host.9–11 A growing num-
ber of studies highlight that the composition of 
human gut microbiota and enterotypes could be 
influenced by changes in diet12,13 and antibiotic 
treatments,14 yet only a few studies have illustrated 
the relationship between the gut microbiota and 
exercise,15,16 particularly for professional athletes.8 

Nevertheless, these studies have suggested that exer-
cise may influence the composition of the gut micro-
bial community.15

During training or competition, athletes tolerate 
numerous hours of physical and emotional stress, 
which induces a biological and psychological 
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response that ultimately activates the sympathetic- 
adrenomedullary system and hypothalamus- 
pituitary-adrenal axes, resulting in release of stress 
and catabolic hormones, inflammatory cytokines, 
and microbial molecules, and changing the physio-
logical homeostasis of athletes.17–19 Recent evi-
dence shows that athletes, particularly elite 
athletes, are more tolerant to various kinds of 
stresses20,21 and that the gut microbiota can mod-
ulate excitatory and inhibitory neurotransmitters 
and neurotransmitters-like substances, especially 
in response to physical and emotional stress.22,23 

Specifically, a close correlation has been character-
ized between physical and emotional stress during 
exercise and changes in gut microbial 
composition.22,23 Moreover, the gastrointestinal 
tract responds to stress by releasing hormones, 
such as neuropeptide Y and dopamine.24 Given 
the diverse roles of gut microbiota in gastrointest-
inal function, enteric immunity,25 endocrinology26 

and regulating oxidative stress,27 it is not surprising 
that efforts to explore the functions of gut micro-
biota in athletes, particularly elite athletes, are 
increasing. In recent studies, the microbial commu-
nities of a cohort of professional male athletes of 
international-level rugby players have been 
assessed against healthy controls at the taxonomical 
and functional structure levels,8,16 which demon-
strated that the gut microbiota of athletes was sig-
nificantly more diverse than that of healthy 
controls, while several gut microbiota taxa were 
identified as significantly different. Specifically, 22 
distinct phyla were positively associated with pro-
tein consumption and creatine kinase. Further, cer-
tain pathways and fecal metabolites, including 
amino acid and carbohydrate metabolism, as well 
as microbial-produced short-chain fatty acids acet-
ate and butyrate, were reported to exhibit signifi-
cant differences. Similarly, comparison of the gut 
microbiota of healthy controls and the top Polish 
endurance athletes revealed that excessive training 
correlates with differences in gut microbial compo-
sition and increased the bacterial diversity.28 

However, these previous studies focused primarily 
on the composition and richness of gut microbiota 
with the primary goal of differentiating microor-
ganisms between athletes and sedentary controls. 
It, therefore, remains elusive if elite athletes and 
non-elite athletes, adult athletes and youth athletes, 

even within the same sport, harbor different gut 
microbiome patterns in regard to both taxonomical 
and functional compositions. This information 
could prove highly significant for monitoring the 
potential of elite athletic candidates, while also 
informing the development of novel microbiome 
approaches for the regulation of the gut microbiota 
of athletes. Furthermore, the direct associations 
between athletes’ gut microbiome and their envir-
onmental factors, including dietary factors, physi-
cal characteristics, and sport-related features, 
remain to be characterized.

Hence, in this study, a team of 19 professional 
female rowing athletes in China, including elite and 
non-elite athletes, was recruited. A total of 306 fecal 
samples (on average 16 samples per person) were 
collected and analyzed via 16S rRNA gene sequen-
cing. The dietary factors, physical characteristics, 
and sport-related features of these 19 athletes were 
measured and recorded. The elite and non-elite 
athletes were included to determine variations in 
taxonomical and functional compositions corre-
sponding to these factors and to identify the enter-
otypes specific to different classes of athletes. 
Moreover, the factors responsible for shaping the 
microbial community of athletes were also 
explored. Importantly, the results of this study 
have facilitated the construction of a random forest 
classifier capable of monitoring the potential of elite 
athletes with high accuracy. Our work has the 
potential to impact multiple facets of sports science, 
including the monitoring of athletic candidates via 
microbiome-assisted approaches, as well as preci-
sion dietary preparation for athletes.

Results and discussions

Microbial diversity of gut microbiota in elite and 
youth non-elite athletes

A total of 45,997,508 high-quality sequencing reads 
were obtained by sequencing the V3–V4 region of 
the 16S rRNA gene of bacteria and archaea from 
306 fecal samples collected from 19 Chinese female 
rowing athletes (ranging from 54,667 to 308,119 
sequences, mean = 150,318 sequences and med-
ian = 146,111 sequences, Table S1). We identified 
11,533 operational taxonomic units (OTUs) for 
these fecal samples, ranging from 343 to 2,894 

e1842991-2 M. HAN ET AL.



OTUs (median = 1,086 OTUs, Table S1) using the 
‘pick_closed_reference_otus.py’ command in 
QIIME platform.

Previous studies have reported a higher microbial 
richness and diversity in athletes compared to healthy 
controls8,16,28 and found that exercise could increase 
the microbial diversity for gut microbial communities 
of both mice and humans.8,29 In the present study, the 
Shannon and Simpson indices were stable, suggesting 
that most of the microbiota had been detected. 
Furthermore, the Shannon and Simpson indices of 
adult elite athlete (AE) and youth elite athlete (YE) 
cohorts were significantly higher than the youth non- 
elite athlete (YN) cohort (Figure 1a,b, Kruskal–Wallis 
test, p < .01), suggesting that the microbial diversity of 

elite athletes was rich compared to the youth non-elite 
athletes.

The microbial composition of AE, YE and YN 
cohorts was distinctly separated based on weighted 
and unweighted UniFrac distance metrics and the 
Abund-Jaccard distance metric (Supplementary 
Figure S1). We then applied linear discriminant 
analysis (LDA) to differentiate AE, YE and YN 
cohorts based on taxonomical and functional com-
positions, respectively. Differences in microbial 
composition among AE, YE and YN cohorts were 
observed (Figures 1c,d and S2), revealing that the 
AE and YE cohorts harbor distinct gut microbial 
compositions compared to the YN cohort in regard 
to both taxonomical composition (Permutational 

Figure 1. Microbial diversity of gut microbiota in professional Chinese female rowing athletes reveals that significant differences exist 
in elite and youth non-elite athletes. Comparison of (a) Shannon index and (b) Simpson index of microbial communities among AE, YE 
and YN cohorts. Linear discriminant analysis was performed to maximize the separation of AE, YE and YN cohorts based on (c) 
taxonomical composition and d: functional composition collapsed to the level three of the KEGG hierarchy.
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multivariate analysis of variance (PERMANOVA), 
Bray–Curtis dissimilarity index, Bonferroni–cor-
rected p < .01, Figure 1c) and functional composi-
tion (PERMANOVA, Bray–Curtis dissimilarity 
index, Bonferroni–corrected p < .01, Figure 1d, 
ANOSIM, Bray–Curtis dissimilarity, p = .001, 
Figure S2a).

Gut microbes that differentiate elite and youth 
non-elite athletes

We observed that Firmicutes, Bacteroidetes, 
Proteobacteria and Actinobacteria constituted the 

four most enriched bacterial phyla in AE, YE and 
YN cohorts. Importantly, these were also the four 
most abundant phyla identified within the Chinese 
population.30,31 Herein, we investigated the relative 
abundances of these phyla in rowing athletes against 
other sports. Specifically, the average relative abun-
dances of Firmicutes and Proteobacteria of AE 
(76.27% and 8.73%) and YE (64.7% and 10.69%) 
were higher than those of YN (58.12% and 8.01%, 
Figures 2a and S3a); whereas the average relative 
abundance of Bacteroidetes in YN (26.19%) was sig-
nificantly higher than that of AE (11.41%) and YE 
(16.63%, Figures 2a and S3a). These results for 

Figure 2. Differentially abundant taxonomical, phenotypic and functional compositions in gut microbiomes for elite and youth non- 
elite athletes. (a) Ternary plot showing the distribution of samples from AE, YE and YN cohorts based on the relative abundance of 
three dominant phyla. (b) Radar charts showing the taxonomical composition for AE, YE and YN cohorts at the genus level. The genera 
with mean relative abundances greater than 1.5% of the total abundance in these three cohorts are included. Thus, only the 14 most 
abundant genera in each group are shown for clarity. (c) Phenotypic composition for AE, YE and YN cohorts. Discrete phenotype 
relative abundances were compared using pairwise Mann–Whitney–Wilcoxon tests with false discovery rate correction. (d) Functional 
composition for AE, YE and YN cohorts. The KOs with mean relative abundances greater than 0.2% of the total abundance in these 
three cohorts are included. Ultimately, only the 13 most abundant KOs in each group are shown for clarity.
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female Chinese rowers correspond to those reported 
for male rugby players, for which the relative abun-
dance of Bacteroidetes phylum was also decreased.8 

Recently, the Firmicutes:Bacteroidetes (F/B) ratio was 
reported to be positively correlated with fecal total 
short-chain fatty acids (SCFAs),32,33 most noticeably 
for fecal butyrate,34,35 and higher maximal oxygen 
uptake (VO2 max/kg, a key characteristic of elite 
athletes) was also reported.36 Therefore, the F/B 
values were calculated in the present study, and the 
F/B values of AE (average F/B: 94.71) and YE (aver-
age F/B: 52.21) were found to be significantly higher 
than that of the YN cohort (average F/B: 12.51, 
Kruskal–Wallis test, all p < .01), indicating a decrease 
in F/B in the YN cohort. Hence, we speculated an 
increase in SCFAs production in AE and YE cohorts 
compared to the YN cohort. In addition, 
Euryarcharota, which was the only detected phylum 
in the archaea domain, was predominant in the YE 
cohort. At the genus level, we found that 
Riminococcaceae_unclassified, 
Clostridiales_unclassified, Faecalibacterium and 
Lachnospiraceae_unclassified were enriched in the 
AE cohort, while Bacteroides and Prevotella were 
dominant in the YE cohort and YN cohort, respec-
tively (Figures 2b and S3b). The differences in tax-
onomical composition of AE, YE and YN cohorts 
were the driving forces for the differences in the 
microbial community structures.

Based on the taxonomical composition, we 
investigated the phenotypic compositions among 
the three cohorts of athletes using Bugbase.37 The 
results showed that the proportion of aerobic 
microbiota in the YN cohort (mean: 1.54%) was 
significantly higher than that of the AE (mean: 
0.32%) and YE cohorts (mean: 0.24%, pairwise 
Mann–Whitney–Wilcoxon tests, pairwise 
p values < .01, Kruskal–Wallis test, group 
p value < .01, Figure 2c); meanwhile, the relative 
abundance of anaerobic microbiota in the YN 
cohort (mean: 88.54%) was significantly higher 
than in the AE cohort (mean: 84.38%, pairwise 
Mann–Whitney–Wilcoxon tests, p < .01, Figure 
2c), and the proportion of facultative anaerobic 
microbiota in the AE (mean: 11.02%) and YE 
cohorts (mean: 9.97%) were significantly higher 
than in the YN cohort (mean: 6.49%, pairwise 
Mann–Whitney–Wilcoxon tests, pairwise 
p values < .05, Kruskal–Wallis test, group 

p value < .01, Figure 2c). Interestingly, we found 
that the relative abundances of oxidative stress tol-
erant microbiota in AE (mean: 9.82%) and YE 
cohorts (mean: 8.35%) were significantly higher 
than those in the YN cohort (mean: 5.3%, pairwise 
Mann–Whitney–Wilcoxon tests, pairwise 
p values < .01, Kruskal–Wallis test, group 
p value < .005, Figure 2c). Oxidative stress, which 
is defined as an imbalance between the production 
of oxygen-free radicals (reactive oxygen species) 
and their elimination by protective mechanisms,38 

is a critical mediator of low-grade inflammation in 
various diseases.39,40 Furthermore, previous studies 
have reported that different strains of intestinal 
microbiota exhibit different tolerance to oxidative 
stress,38 suggesting that gut microbiota might play 
a key role in controlling oxidative stress, inflamma-
tory responses and improving metabolism and 
energy expenditure.41 Hence, we speculated that 
a higher proportion of oxidative stress tolerant 
microbiota may serve to improve performance in 
competitive sports, such as rowing. Additionally, 
we observed significant differences in the propor-
tion of gram-positive (Kruskal–Wallis test, group 
p value < .01, Figure S4a) and gram-negative bac-
teria (Kruskal–Wallis test, group p value < .01, 
Figure S4b) between the AE, YE and YN cohorts.

Increasing evidence shows that the functional 
composition of the gut microbial community of 
professional athletes differs from that of healthy 
controls. Specifically, the relative increases have 
been reported in amino acid and antibiotic bio-
synthesis, and carbohydrate metabolism, in profes-
sional international rugby union players compared 
to healthy controls.8,16 Here, we also sought to 
identify differences in functional pathways among 
the AE, YE and YN cohorts in this study. The 
results showed significant differences in the func-
tional composition between the three cohorts 
(Adonis PERMANOVA, Bray–Curtis dissimilarity 
index, p < .01, Figure S5). Of the top 13 KEGG 
Orthologs (KOs) determined to be enriched in the 
three cohorts (Table S2), 11 were associated with 
energy metabolisms and found to differ signifi-
cantly between the cohorts (Figure 2d). 
Specifically, K06147, K09687, K01990 and K02006 
are involved in ATP metabolisms and K00266 is 
involved in NADPH/NADH metabolisms, while 
K02025, K02026, K02027 are involved in multiple 
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the sugar transport system (Table S2). 
Furthermore, K02529, K01834 and K00615 contri-
bute to carbohydrate metabolisms (Table S2), 
which is critical for athletes.28,42 Overall, our results 
reveal an increase in the proportion of functional 
pathways involved in ATP metabolisms, multiple 
sugar transport systems and carbohydrate metabo-
lisms in the microbial communities of elite athletes 
compared to youth non-elite athletes.

Enterotype analysis in elite and youth non-elite 
athletes

To gain insights into the differences in microbial 
communities among AE, YE and YN cohorts, we 
stratified the 306 gut microbial community samples. 
Based on the microbial composition at the genus 
level, we used partitioning around medoids (PAM) 
method and stratified these samples into three enter-
otypes. We found that Prevotella, Bacteroides and 
Ruminococcaceae_unclassified were predominant 
in enterotype 1, enterotype 2 and enterotype 3 
(Figure 3a), respectively. We then applied principal 
coordinates analysis (PCoA) of Jensen–Shannon dis-
tance at the genus level to visualize the three enter-
otypes, which showed that their microbial 
composition was distinctly different with each 
other (Adonis PERMANOVA, Bray–Curtis dissim-
ilarity index, p < .01, Figure 3b). A higher proportion 
of the AE and YE cohorts were distributed in enter-
otype 3 (72.3% for AE and 61.9% for YE), while 
50.51% YN samples were found in enterotype 1 
(Figure 3c). Interestingly, the members of 
Ruminococcaceae, the predominant genus in enter-
otype 3, belong to the order Clostridiales, which are 
likely to produce SCFAs,43 can improve insulin 
sensitivity,44 and interact with specific G-protein 
coupled receptors on the intestinal L-cells.45 These 
findings suggest that enterotype 3 may represent 
a gut microbiota associated with elite athletes. 
Additionally, considering the enrichment of elite 
athletes in enterotype 3, we chose the dominant 
genera (average relative abundance > 0.01%) and 
performed co-occurrence analysis via Spearman’s 
correlation and found that 20 genera were not posi-
tively correlated with Ruminococcaceae_unclassified 
(Spearman’s correlation < 0.4), the enriched genus in 
enterotype 3 (Figure 3d), suggesting that 
Ruminococcaceae_unclassified might play a key 

role in enterotype 3, and associates with elite 
athletes.

Correlation between enriched gut microbiota and 
dominant functional composition

To gain insights into the interactions from an eco-
logical perspective among the members of the 
microbial community, we next investigated the 
interactions between dominant microbiota based 
on the SparCC algorithm. In the genus-genus co- 
occurrence network, we observed 50 differently 
abundant microbiota in the AE, YE and YN 
cohorts. Moreover, the number of differently abun-
dant microbiota was higher in the YE cohort (25) 
compared to the AE (10) and YN cohorts (15, 
Figure 4a). A large proportion of the observed 
correlations between the enriched microbiota 
among AE, YE and YN cohorts were negative, 
while many of the correlations between enriched 
microbiota were positive within each cohort 
(Figure 4a). For example, we observed that 
Klebsiella, Erwinia, Trabulsiella, Serratia and 
Citrobacter exhibited strong positive correlations 
in the AE cohort, while WAL_1855D, 
Prophyromonas, Peptoniphilus, and Anaerococcus 
were strongly and positively correlated in the YE 
cohort; and Paraprevotella, Eubacterium, 
Paraprevotellaceae Prevotella, Prevotellaceae 
Prevotella and Lactobacillus have strong positive 
correlations in the YN cohort (Figure 4a).

To explore the relationship between dominant 
microbiota and abundant functional composi-
tion, we calculated the Spearman rank correla-
tion between them. We found that the enriched 
microbiota in the YE cohort, such as 
Ruminococcus and Blautia, were strongly posi-
tively correlated with enriched KOs (Figure 4b), 
such as K00974, K07258, K04069, K07718 and 
K05349, which contribute to carbon fixation 
(reductive pentose phosphate cycle), methane 
metabolism, central carbohydrate metabolism, 
branched-chain amino acid metabolism, as well 
as phosphate and amino acid transport systems. 
The enriched microbiota in the YN cohort, 
including Prevotella, Megamonas, Dialister and 
Eubacterium, were negatively correlated with 
the functional composition that was positively 
correlated with the enriched microbiota of the 
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YE cohort, however, were positively correlated 
with KOs, such as K03169, K13789, K00602, 

K01491, K11757, K06180, and K03657, which 
contribute to carbon fixation (reductive acetyl- 

Figure 3. Gut enterotypes in elite and youth non-elite athletes. A total of 306 samples are stratified into three enterotypes. The major 
contributor in the three enterotypes is Prevotella, Bacteroides and Ruminococcaceae_unclassified, respectively. (a) Relative abundances 
of the top genera (Prevotella, Bacteroides and Ruminococcaceae_unclassified) in each enterotype. (b) Three enterotypes were visualized 
by PCoA of Jensen-Shannon distance at the genus level. (c) The proportion of AE, YE and YN samples distributed in three enterotypes. 
72.3% AE, 61.9% YE and 27.27% YN samples are found in enterotype 3. (d) Co-occurrence patterns among the dominant genera 
(average relative abundance > 0.01%) across the samples from enterotype 3, as determined by the Spearman correlation analysis.
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CoA pathway), terpenoid backbone biosynthesis, 
purine metabolism, as well as cofactor and 

vitamin biosynthesis (Figure 4b). Alternatively, 
the enriched microbes of AE, including 

Figure 4. Correlations between enriched microbiota and dominant functional traits. (a) Correlation among the 50 differentially 
abundant microbiota in professional Chinese female rowing athletes. Nodes with correlations between circles are labeled with faint 
red (positive correlation) and green (negative correlation). The area of each circle is divided into three parts labeled with faint red 
(enriched in AE cohort), green (enriched in YE cohort) and pale blue (enriched in YN cohort). The colors of the boundary of circles 
represent different phylum. (b) Correlations between abundant microbiota and abundant functional composition, as determined by 
the Spearman’s rank correlations analysis.
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Klebsiella, Erwinia and Citrobacter, were nega-
tively correlated with the KOs that were posi-
tively correlated in the YE and YN cohorts, 
while the remainder of the enriched microbiota, 
such as Clostridiaceae_unclassified and 
Peptostreptococcaceae_unclassified were posi-
tively correlated with carbon fixation (reductive 
pentose phosphate cycle), methane metabolism, 
central carbohydrate metabolism, branched- 
chain amino acid metabolism, as well as phos-
phate and amino acid transport systems 
(Figure 4b).

These findings demonstrate that diverse 
microbes dominated in different cohorts, which 
causes the diverse functional modules enriched in 
the different cohorts. Furthermore, we found that 
the taxonomical composition of the microbial com-
munity of elite athletes is positively correlated with 
carbon fixation (reductive pentose phosphate 
cycle), methane metabolism, central carbohydrate 
metabolism, branched-chain amino acid metabo-
lism, as well as phosphate and amino acid transport 
systems. Due to the fact that the human gut micro-
bial composition is strongly associated with the age 
of host,9,10,46 we speculated that the difference of 
human gut microbial composition, including taxo-
nomical and functional compositions, was corre-
lated with age and other environmental factors.

Classification assessment for monitoring the 
potential of athletes

To further explore the taxonomical and functional 
signatures of elite athletes, we used LEfSe to iden-
tify biomarkers for each cohort based on the tax-
onomical and functional compositions. We 
obtained 21 taxa with lda score > 3.5 (Figure 5a) 
and 20 KOs with lda score > 2.0 (Figure 5b). 
Prevotella and Bacteroides were selected as biomar-
kers for YN and YE cohorts, respectively, while 
Ruminococcaceae and Ruminococcus were selected 
as biomarkers for the AE cohort (Figure 5a). The 
results were consistent with the dominant genera in 
each enterotype. Additionally, Faecalibacterium, 
which has been reported as SCFA-producing taxa, 
and is positively associated with exercise-induced 
butyrate concentrations,47 was also observed as 
a biomarker for the AE cohort. Moreover, previous 
studies have reported that Faecalibacterium spp. 

also induces a local and systemic anti- 
inflammatory response.48,49 We speculate that exer-
cise leads the observed differences in the microbial 
composition of athletes, and the high proportion of 
Faecalibacterium (Figure 2b) can induce the pro-
duction of more SCFAs to improve the sport per-
formance for the AE cohort. This has been 
confirmed by mapping the functional biomarkers 
to the KEGG pathway, which demonstrated that 
these functional biomarkers mainly contribute to 
glycan biosynthesis and metabolism, as well as car-
bohydrate metabolism.

To exploit the potential of taxonomical biomarkers 
and functional biomarkers for monitoring the poten-
tial of athletes, we constructed random forest classi-
fiers using the identified biomarkers. A random forest 
model using tenfold cross-validation and 50 time 
repeats was generated. Average accuracy was calcu-
lated and the receiver operating characteristic (ROC) 
curves for classifying AE and YE samples from YN 
samples was visualized (Figure 5c,e). Our results show 
that, based on the taxonomical biomarkers, the aver-
age accuracy for discriminating AE and YE samples 
from YN samples was 92.93% (82.22–100%), and 
90.7% (75.76–100%, Figure 5c), respectively. 
Similarly, based on the functional biomarkers, the 
average accuracy for identifying AE and YE samples 
from YN samples was 89.18% (80–100%) and 79.63% 
(65.71–97.06%, Figure 5d), respectively. We also 
investigated the utility of the classifier based on com-
bination of taxonomical biomarkers and functional 
biomarkers and found that the average accuracy for 
detecting AE samples (94.52%, ranging from 86.96% 
to 100%) from YN samples was higher than the 
accuracy using taxonomical biomarkers or functional 
biomarkers individually (Figure 5e). The average 
accuracy for identifying YE samples from YN samples 
based on the combination of taxonomical biomarkers 
and functional biomarkers was similar to the accuracy 
based on taxonomical biomarkers (Figure 5e). We 
then evaluated the feature importance for the random 
forest model and found that the most discriminatory 
taxonomical biomarkers were Megamonas, 
Ruminococcus, Prevotella, Prevotellaceae and 
Ruminococcaceae. Among these, a previous study 
reported that the members of Ruminococcus, such as 
R. lactaris, may improve the ability of glucose toler-
ance for the host.50 We also identified that the most 
discriminatory functional biomarkers were K00602 
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(Phosphoribosylaminoimidazolecarboxamide for-
myltransferase/IMP cyclohydrolase), K07258 
(D-alanyl-D-alanine carboxypeptidase), K03561 (bio-
polymer transport protein ExbB), K02004 (putative 
ABC transport system permease protein) and K03406 
(methyl-accepting chemotaxis protein, Figure S6).

Taken together, the taxonomical and functional 
signature analyses revealed significant differences 
in the microbial community of elite and youth non- 
elite athletes. Our results have great potential to 
provide guidance for monitoring the potential of 
elite athletes from a group of athletes. Of course, 
our results only provide the information from the 
microbiota perspective alone; hence, further valida-
tion is required as the gut microbiota composition 
of athletes is affected by a myriad of factors, includ-
ing exercise training schedule, and dietary habits. 

Once the dietary habits, or the intensity of exercise 
training changes, the gut microbiota composition 
of athletes responds in kind and becomes 
altered,41,51 which provides a unique opportunity 
to manipulate and remodel the gut microbiota via 
microbiome approaches. In summary, our results 
can be used as a supplement in monitoring the 
potential of the elite athletes.

Factors influencing the structure of gut microbiota 
for elite and youth non-elite athletes

Out of these 19 athletes, we chose the taxonomical 
composition of six individuals (4 YE and 2 YN, 120 
fecal samples) and 47 factors (Table S3), which 
were divided into dietary factors, physical charac-
teristics, and sport-related features, to explore the 

Figure 5. Biomarker analysis and a classification assessment for the monitoring of potential of athletes. (a) Taxonomical biomarkers for 
identification of AE, YE and YN cohorts. (b) Functional biomarkers for identification of AE, YE and YN cohorts. Random forest models are 
constructed using the (c) taxonomical biomarkers, (d) functional biomarkers, and (e) the combination of taxonomical biomarkers and 
functional biomarkers for differentiating the AE cohort (faint red) and YE cohort (green) from YN cohort.
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correlations among microbial community, dietary 
factors, physical characteristics and sport-related 
features. We set the threshold of average relative 
abundance of genus as 0.05% and selected 78 dif-
ferentially abundant microbiota. The Spearman 
correlation coefficients were calculated between 78 
differentially abundant microbiota and 47 factors. 
Based on the p value (p < .05) and Spearman corre-
lation coefficients (cutoff > 0.6), we obtained 22 
differentially abundant microbiota with strong 
positive or negative correlations with 37 different 
factors (Table S4), including physical characteris-
tics (15), dietary factors (12) and sport-related fea-
tures (10, Figure 6a). Moreover, we found that 
diverse factors have various correlations with the 
dominant microbiota (Figure 6b). Furthermore, 
due to the collinear nature of these 37 factors, we 
used the interactive forward selection function of 
Canoco software (version: 5.0) to eliminate colli-
nearity and to select factors depending on their 
contribution, p value and adjusted p value of each 
feature.52 Ultimately, five factors were selected 
(referred to the section of Materials and 
Methods), namely, intermediate cell, erythrocyte, 
staple food, vegetables, and the time of closing 
one’s eyes while standing on left foot, to estimate 
the effects on the microbial community. The 

variation partitioning analysis specifies that 41% 
of the inter-person microbiome variability is asso-
ciated with the concert effects of factors related to 
physical characteristics (intermediate cell and ery-
throcyte), dietary factors (staple food and vegeta-
bles) and sport-related features (the time of closing 
one’s eyes while standing on left foot). Inter-person 
microbiome variability is mainly affected by dietary 
factors (29%) and physical characteristics (21%). 
The remaining inter-person microbiome variability 
may be associated with host genetics and other 
factors, such as female hormone concentration. 
For instance, previous studies have reported that 
female hormones fluctuate throughout the men-
strual cycle,53 and their concentration varies with 
age.54 Considering that the current study was lim-
ited to only fecal sample collection, detailed infor-
mation regarding hormones was not obtained, 
while complete understanding regarding the rela-
tionship between athletic and physical activity and 
female hormone concentrations would be critical in 
future investigations. Nevertheless, our results 
highlight that the versatility of the microbial com-
munities in athletes is associated with dietary fac-
tors and their physical characteristics. Namely, 
dietary habits and the athlete’s physical character-
istics have profound impacts on shaping the gut 

Figure 6. Correlations between environmental factors and dominant microbiota. (a) Correlation between the 22 differentially 
abundant microbiota (genus level) and environmental factors. (b) Correlations between one microbiota and multiple factors or 
between multiple microbiota with one factor. Among the 78 differentially abundant microbiota (0.05%), 22 differentially dominant 
microbiota were selected based on the p value (p < .05) and Spearman correlation coefficients (cutoff > 0.6). Genera are grouped at 
the phylum level. The 37 factors were divided into three groups, including physical features (15), dietary features (12) and sport- 
related features (10). Lines and ribbons were colored according to the Spearman correlation coefficients. Red links represent positive 
correlation while green links represent negative correlation.
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microbiota of athletes, and obvious differences 
could be observed for the resulting enterotypes for 
elite and youth non-elite athletes. Hence, we spec-
ulate that while dietary factors and physical char-
acteristics strongly affect the performance of 
rowers, the gut microbiome plays a mediating role 
in this process.

Conclusion

Our work has focused on the complex associations 
among athlete performance, gut microbiota, dietary 
factors, physical characteristics and sport-related 
features, for elite and youth non-elite athletes in 
the professional Chinese female rowing teams. 
Firstly, stratification of athlete gut microbiota 
revealed that the gut microbiota of elite athletes 
and youth non-elite athletes has different gut 
microbial community patterns (enterotypes), in 
regard to both taxonomical structure and func-
tional composition, with the majority of elite ath-
letes assigned to enterotype 3. We also found that 
the SCFA-producing bacteria, such as Clostridiales, 
Ruminococcaceae and Faecalibacterium, are domi-
nant in the microbial community of elite athletes. 
Secondly, in-depth functional profiling revealed 
that ATP metabolisms, multiple sugar transport 
systems and carbohydrate metabolisms are 
enriched in the microbial community of elite ath-
letes. Thirdly, an accurate classifier was constructed 
based on the combination of taxonomical and func-
tional biomarkers, which highlighted great poten-
tial for monitoring candidate elite athletes from 
a group of athletes. Finally, we demonstrated that 
the gut microbiota is strongly associated with phy-
sical characteristics, dietary factors and sport- 
related features, which can in concert explain 41% 
of the variability in gut microbiome. Importantly, 
the versatility of the microbial community of ath-
letes, which might affect the performance of ath-
letes by altering the gut microbiome, is associated 
with dietary factors (29%) and physical character-
istics (21%). These findings have highlighted the 
complex interplay of gut microbiota, dietary fac-
tors, physical characteristics and performance of 
athletes, with gut microbiota serving as a key player 
among them. Several limitations associated with 
our study should also be noted, especially concern-
ing the use of only female athletes, lack of fecal 

metabolomics data and direct functional data, as 
well as the lack of long-term follow-up analysis, to 
confirm our results. Despite these limitations, we 
believe that the patterns and associations discov-
ered in this study are general enough in sports 
science, for guiding the monitoring of candidate 
athletes, as well as for precision dietary preparation 
for athletes.

Materials and methods

Study design and sample collection

Professional female rowing athletes (n = 19), aged 
12–26 (median age 19), with no medical issues and 
no antibiotic treatment within the previous 4 
months, were selected for fecal sample collection. 
According to the 19 athletes’ performance, grade in 
athletic competition and information regarding 
technical level obtained from General 
Administration of Sport of China (https://ydydj. 
univsport.com/index.php), we found that 12 ath-
letes won individual or team championships in the 
province-level, national-level and international- 
level champion competition. These 12 individuals 
were thus categorized as elite athletes (champion) 
while the remaining seven were divided into non- 
elite athletes (non-champion, Table S3). An adult is 
defined as 19 y old or above55 and an athlete’s age 
greatly influences the body characteristics, such as 
hormones and growth.56 The age of non-elite ath-
letes (YN, n = 6) ranged from 12 to 16 y in this 
present study, and we selected the median age (19) 
as the threshold to divide elite athletes into an adult 
(age: 19–26, AE, n = 7) and youth cohort (age: 
12–17, YE, n = 6) to better compare the differences 
in microbial communities between elite and non- 
elite athletes, youth elite and youth non-elite ath-
letes, as well as youth elite athletes and adult elite 
athletes. We recruited these 19 athletes and col-
lected their fecal samples from April to May 2017. 
Due to varying times of competitions for the indi-
vidual athletes participating in the study, inconsis-
tencies arose in the amount of time spent at the 
Wuhan training base, resulting in variations in the 
collection of fecal samples. In the present study, we 
attempted to recruit more athletes and collect more 
fecal samples from these athletes on the time series. 
As a result, there are differences in the number of 
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fecal samples for each athlete. A total of 123 and 84 
fecal samples were collected from the AE and YE 
cohorts, respectively, as well as 99 samples from the 
YN cohort. In total, 306 fecal samples with an 
average of 16 samples per person were collected 
(Table S1). Except the athletes designated as ST01, 
the number of fecal samples was greater than nine 
(Table S1) and the fecal samples constituted long-
itudinal samples. Fecal samples were collected and 
stored in a 50 mL sterilized tube, immediately 
placed on frozen freezer packs and transformed to 
the laboratory to store at −80°C. To explore the 
major drivers of gut microbial composition, we 
recorded dietary factors by using a questionnaire31 

and measured physical characteristics and sport- 
related indices for each athlete (Table S3). The diet-
ary factors presented in Table S3 are comprised of 
drinking, staple food, vegetables, meat poultry, sea-
food, bean, grease, salt, raw garlic, etc., and the 
number of each feature of dietary factors in Table 
S3 represents the relative amount consumed for 
each type of diet. Physical characteristics refer to 
the result of a complex combination of various 
factors, such as age, height, weight, body composi-
tion, and several indicators of the physiological and 
biochemical system. We obtained the values of 
physical characteristics for athletes via different 
strategies. The age of athletes was obtained using 
a questionnaire. The height and weight of athletes 
were measured using an electronic height tester. 
The body composition of athletes (Table S3), 
including protein mass, body fat content, fat per-
centage, etc., were measured with the professional 
body composition analyzer (X-SCAN PLUS II, 
Jawon Medical Co., Ltd, South Korea).57 The indi-
cators of the physiological and biochemical system 
(Table S3), such as intermediate cell and hemoglo-
bin, were measured via routine blood tests at the 
school hospital of Wuhan Sports University.58 The 
sport-related features (Table S3) were mainly mea-
sured with MetaLyzer II (Cortex, Leipzig, 
Germany)59 and Technogym multipower system 
D4773L (TECHNOGYM, Italy).60 To investigate 
the difference of characteristic differences among 
YN, YE and AE groups, we compared the features 
of dietary factors, physical characteristics, and 
sport-related features, which showed that these fea-
tures, including age, intermediate cell, erythrocyte, 
snacks, maximal anaerobic power, the maximum 

oxygen uptake determination by power bicycle, 
etc., were significantly different between different 
groups (Table S3).

DNA extraction and 16S rRNA gene sequencing

DNA was extracted from fecal samples using the 
PowerSoil DNA Isolation Kit (MoBio, USA) fol-
lowing manufacturer’s instructions. All extracted 
DNA was dissolved in TE buffer and stored at 
−20°C. DNA concentration was quantified using 
a Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, 
CA) and DNA quality was assessed on 0.8% agarose 
gels. To determine the taxonomical composition of 
the gut microbial community, we sequenced the V3 
−V4 hypervariable region of the 16S rRNA gene of 
microbes for each sample. Specifically, we used 
5–50 ng of DNA as a template for amplifying the 
V3−V4 amplicon using the forward primer (5ʹ- 
CCTACGGRRBGCASCAGKVRVGAAT-3ʹ) and 
reverse primer (5ʹ- 
GGACTACNVGGGTWTCTAATCC-3ʹ). Indexed 
adapters were added to the ends of 16S rDNA 
amplicons via limited cycle PCR and the sequen-
cing library was constructed using a MetaVxTM 

Library Preparation kit (GENEWIZ, Inc., South 
Plainfield, and NJ, USA). DNA libraries were ver-
ified and quantified by an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Palo Alto, CA, USA) and 
Qubit® 2.0 (Applied Biosystems, Carlsbad, CA, 
USA). All sequencing reactions were performed 
on the Illumina MiSeq platform using a paired- 
end sequencing strategy. All sequencing data for 
306 fecal samples were deposited into NCBI’s 
Sequence Read Archive (SRA) database with the 
Bioproject number PRJNA513393.

Quality control, OTU clustering, and taxonomical 
profiles

All 16S rRNA gene amplicons were processed to 
obtain high-quality sequences. We spliced the 
paired-end reads using the ‘make.contigs’ com-
mand in mothur61 (version 1.25.0) with default 
settings. All spliced reads containing ambiguous 
base calls (N), longer than 550 bp and shorter 
than 220 bp, were removed using the ‘trim.seqs’ 
command in mothur. We identified putative chi-
meras against the SILVA database62 (Release 123) 
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and removed the chimeras using the ‘chimera. 
uchime’ and ‘remove.seqs’ commands in mothur. 
High-quality sequences were analyzed in QIIME 
package (Quantitative Insights Into Microbial 
Ecology, Boulder, CO, USA, v1.9.1)63 for OTU 
classification, tree construction and taxonomic 
assignment. The Greengenes database (version 
13_5)64 was used as the reference database for clas-
sifying OTUs that were clustered at the 97% 
nucleotide identity threshold using the ‘pick_close-
d_reference_otus.py’ command. We removed sin-
gletons from the OTUs table before performing 
subsequent analysis.

Microbial diversity assessment

Using QIIME, we calculated the alpha diversity and 
beta diversity values. Shannon and Simpson indices 
were chosen for assessing the alpha diversity of 
microbial communities among the YN, AE and 
YE cohorts. For beta diversity, the final OTU table 
was rarefied to 54,661 reads per sample. Abund- 
Jaccard, weighted and unweighted UniFrac dis-
tance metrics65 were used to measure the similarity 
of community structure between samples. 
Microbial communities clustering was arrayed by 
principle coordinate analysis (PCoA) and visua-
lized using R (version: 3.4.3) with ‘rgl’ package 
(version: 0.99.16).

Prediction of functional and phenotypic 
compositions

We applied Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved 
States (PICRUSt, version: 1.0.0-dev)66 to profile 
the functional composition of microbial commu-
nities based on the high-quality of 16S rRNA gene 
according to the manual of PICRUSt. The func-
tional trait abundances were determined using the 
KEGG database (version 66.1, May 1, 2013).67 The 
predicted functional content was collapsed to level 
three of the KEGG hierarchy and the KOs were 
mapped to the KEGG modules. BugBase,37 an algo-
rithm that can predict biologically interpretable 
phenotypes at the organism-level, was used to pre-
dict the phenotypic composition, including oxygen 
tolerance, Gram staining, and pathogenic potential, 
using high-quality 16S rRNA gene.

Enterotype analysis

In this work, the R package ‘BiotypeR’ (version: 
0.1.3) was used to investigate whether the 306 sam-
ples were stratified into enterotypes. The Jensen– 
Shannon (JS) distance among samples was calculated 
based on the genus level composition of the 306 fecal 
samples. The enterotype of each fecal sample was 
analyzed by the PAM method using the relative 
abundance of genera in each community.68 

Silhouette index, as previously described, was 
applied to select the optimal number of clusters.69,70

Biomarker analysis

Linear discriminate analysis (LDA) effect size 
(LEfSe)71 was used to identify differentially abundant 
features, and to evaluate the statistical significance of 
biomarkers, among the YN, AE and YE cohorts. 
Specifically, the p value for the factorial Kruskal 
−Wallis test72 among groups was set at 0.05. The 
threshold for the logarithmic LDA score for discri-
minative features was set at 3.5.

Correlation and network analyses among 
significant dominant genera

Firstly, the genera with a significant difference 
between the YN and AE groups, between the YN 
and YE groups, or between the AE and YE groups, 
were identified. Secondly, dominant genera with at 
least 2-fold change between the AE and YN groups, 
or between the YE and YN cohorts, were identified 
from the significantly different genera. Thirdly, corre-
lations between significant dominant genera were cal-
culated with the SparCC algorithm.73 The cutoff for 
the absolute correlation was set at 0.3 and only sig-
nificant correlations with p values < .05 were included 
in downstream analysis. The genus-genus co- 
occurrence network was visualized with Cytoscape 
(version: 3.6.1).

Statistical analysis

Statistical analysis was conducted mainly using the 
R platform (http://www.r-project.org/). Based on the 
Shannon and Simpson indices, the alpha diversity was 
compared among groups by the Kruskal−Wallis test. 
PERMANOVA74 was performed on the Bray−Curtis 
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distance matrix to evaluate whether the gut microbiota 
structure was significantly different across the groups. 
LDA, a supervised learning approach that utilizes 
a linear combination of features, such as taxon and 
functions, was applied to maximize the separation of 
groups. Random forest model using tenfold cross- 
validation and repeating for 50 times was built with 
the “caret” package in R. We calculated the Spearman 
correlation between dominant microbiota (>0.1%) 
and abundant functional composition (>0.15%) to 
explore their relationship. We calculated the 
Spearman correlation between environmental factors 
(including dietary factors, physical characteristics and 
sport-related features, Table S3) and the taxonomical 
composition at genus level (>0.05%), which were clas-
sified into five phyla. The p value and Spearman 
correlation coefficient cutoffs were set at 0.05 and 
0.6, respectively. We visualized the Spearman correla-
tion between different features and different genera 
with OmicCircos.75 Depending on the contribution, 
p value and adjusted p value of each feature with the 
interactive forward selection function of Canoco soft-
ware (version: 5.0)76 to eliminate collinearity between 
factors,52 we selected five important features, namely 
intermediate cell, erythrocyte, staple food, vegetables, 
and the time of closing one’s eyes while standing on 
left foot, to determine the effect induced by factors on 
the microbial community using the ‘varpart’ function 
of the ‘vegan’ package in the R environment.77,78
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