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Abstract 

Background:  Timely identification of epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma 
kinase (ALK) rearrangement status in patients with non-small cell lung cancer (NSCLC) is essential for tyrosine kinase 
inhibitors (TKIs) administration. We aimed to use artificial intelligence (AI) models to predict EGFR mutations and ALK 
rearrangement status using common demographic features, pathology and serum tumor markers (STMs).

Methods:  In this single-center study, demographic features, pathology, EGFR mutation status, ALK rearrangement, 
and levels of STMs were collected from Wuhan Union Hospital. One retrospective set (N = 1089) was used to train 
diagnostic performance using one deep learning model and five machine learning models, as well as the stacked 
ensemble model for predicting EGFR mutations, uncommon EGFR mutations, and ALK rearrangement status. A con-
secutive testing cohort (n = 1464) was used to validate the predictive models.

Results:  The final AI model using the stacked ensemble yielded optimal diagnostic performance with areas under 
the curve (AUC) of 0.897 and 0.883 for predicting EGFR mutation status and 0.995 and 0.921 for predicting ALK rear-
rangement in the training and testing cohorts, respectively. Furthermore, an overall accuracy of 0.93 and 0.83 in the 
training and testing cohorts, respectively, were achieved in distinguishing common and uncommon EGFR mutations, 
which were key evidence in guiding TKI selection.

Conclusions:  In this study, driverless AI based on robust variables could help clinicians identify EGFR mutations and 
ALK rearrangement status and provide vital guidance in TKI selection for targeted therapy in NSCLC patients.

Keywords:  Non-small cell lung cancer, Serum tumor markers, Epidermal growth factor receptor, Anaplastic 
lymphoma kinase, Artificial intelligence, Deep learning, Machine learning
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Background
Precise classification of lung cancer types is vital for 
selecting the proper treatment with the best efficacy. 
With the rapid evolution of molecular targeted therapy, 
the survival of non-small cell lung cancer (NSCLC) 
patients with mutations, such as epidermal growth factor 
receptor (EGFR) and anaplastic lymphoma kinase (ALK) 
mutations, has improved significantly. Previous studies 
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have reported that 10–20% of Caucasian and at least 
50% of Asian non-squamous NSCLC patients harbored 
activating EGFR mutations [1–4], and the high abso-
lute number of ALK-positive NSCLC patients, mainly 
with the adenocarcinoma subtype, was due to 3–7% of 
NSCLCs harboring ALK rearrangements [5]. Given that a 
large number of lung cancer patients are subject to muta-
tions, accurately identifying these patients is essential 
so that tyrosine kinase inhibitors (TKIs) can be admin-
istered in a timely manner to improve their outcomes. 
Hitherto, as standard first-line treatments, TKIs have 
been developed for multiple generations [6]. TKI treat-
ment has been proven to significantly improve response 
rates and prolong progression-free survival (PFS) in 
EGFR-mutated and ALK-positive NSCLC patients [7, 
8]. To date, the gold standard for measuring EGFR and 
ALK status is mutational sequencing of tumor tissue 
acquired from biopsy. In the meantime, next-generation 
sequencing (NGS) technologies provide great help in 
understanding the genomic profiles of NSCLC [9]. How-
ever, the invasion, low efficiency, and relatively high cost 
of tumor biopsy constrain its frequent use in patients, as 
mutational status may change during therapy and pro-
gression [10]. In addition, tumor tissue is not available 
for approximately 49% of advanced or metastatic NSCLC 
patients [11]. Therefore, the development of a noninva-
sive and more convenient method to predict EGFR and 
ALK mutation status is of great interest.

Some studies have investigated the relationship 
between clinical image features, including histopathol-
ogy images, computed tomography (CT) images, PET/
CT images, and EGFR mutation status in NSCLC [12–
14]. An EGFR mutation prediction model constructed 
based on 18F-FDG PET/CT radiomic features had an area 
under the curve (AUC) of 0.87 [15]. The feasibility of liq-
uid biopsies has also been highlighted recently; ctDNA, 
circulating tumor cells (CTCs), and exosomes derived 
from tumor cells existing in body fluids have been found 
to be closely related to somatic alterations of tumors [16, 
17]. Krug et al. indicated that combining exosomal RNA 
and circulating tumor DNA in the plasma of patients 
with NSCLC increased the sensitivity of EGFR mutation 
detection [11]. Our previous study suggested that serum 
tumor markers (STMs) integrated with other clinical fac-
tors could be a valuable noninvasive tool for predicting 
EGFR mutations and ALK positivity in NSCLC patients 
[18]. Several clinical tumor markers, such as carci-
noembryonic antigen (CEA), cytokeratin 19 fragments 
(CYFRA 21-1), carbohydrate antigen 125 (CA-125), and 
carbohydrate antigen 19-9 (CA-199), have been shown to 
be valuable for the diagnosis of lung cancer and as predic-
tors of survival in NSCLC patients [19, 20]. Furthermore, 
the value of STMs in predicting immunotherapy efficacy 

in NSCLC patients is being studied and has shown great 
potential [21, 22]. Hence, STMs are attractive tools for 
cancer studies because they are easily obtained as clinical 
indicators. STMs are of great significance in diagnosing 
lung lesions, and the fee for this analysis is provided by 
the health insurance in China.

To assist clinicians, artificial intelligence (AI) has been 
widely applied in the medical field, and its encouraging 
performance presents great hope in the current era of 
precision medicine. The application of machine learning 
(ML), an important subfield of AI, is growing rapidly in 
medicine [23, 24]. ML methods have been used to solve 
various problems in genomics and genetics, such as dis-
tinguishing between different disease phenotypes [25]. 
A previous study used a support vector machine (SVM) 
algorithm to establish a multiclass classifier to diagnose 
multiple common adult malignancies. The overall classi-
fication accuracy of the classifier was 78%, far exceeding 
the accuracy of random classification (9%) [26]. Mu et al. 
reported an 18F-FDG-PET/CT-based EGFR-deep learn-
ing score that can provide decision support for NSCLC 
treatment with TKIs or immune checkpoint inhibitors 
(ICIs) [27].

Based on our previous work, we aimed to use AI 
combined with STMs and other clinical factors to pre-
dict EGFR mutations, common and uncommon EGFR 
mutations, and ALK rearrangement status in NSCLC 
patients. Five ML models, namely distributed random 
forest (DRF), gradient boosting machine (GBM), gener-
alized linear models (GLM), extreme gradient boosting 
(XGBoost), extremely randomized trees (XRT), and deep 
learning (DL) model, as well as the stacked ensemble 
model, were developed and evaluated simultaneously. All 
models were validated in the testing cohort, and the most 
appropriate model was used by comparing their perfor-
mance measures.

Methods
Study population and data collection
This single-center cohort study consisted of a two-step 
approach (training and testing assessment) that included 
NSCLC patients in a published cohort (EJC cohort) [18] 
and model validation in a subsequent recruited cohort. 
The training cohort enrolled 1089 NSCLC patients dis-
played in a previously published cohort from Janu-
ary 2012 to December 2016 at Wuhan Union Hospital, 
Huazhong University of Science and Technology. To 
investigate the external validity, a consecutive set of 1464 
NSCLC patients at Wuhan Union Hospital from January 
2017 to December 2019 was used as the testing cohort. 
Patients at the first onset of NSCLC were recruited based 
on accurate diagnostic criteria according to interna-
tional guidelines. Consistent data collected for each study 
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participant with proven NSCLC included demographic 
features (age, sex, and smoking history) and results of 
STMs, as well as other examinations. Nonsmokers were 
defined as never-smokers or those who smoked less than 
100 cigarettes in their lifetime. The remaining patients 
were defined as ever-smokers. Before any antican-
cer therapy, blood samples of all enrolled patients were 
obtained through peripheral venipuncture, and a com-
mercial chemiluminescence immunoassay kit (Abbott 
Laboratories, I4000, America) was used to detect STMs.

The inclusion criteria were as follows:
(1) At least one of twelve STMs, including CEA, squa-

mous cell carcinoma antigen (SCC), prostate specific 
antigen (PSA), free prostate specific antigen (FPSA), 
CYFRA 21-1, neuronspecific enolase (NSE), alpha feto-
protein (AFP), CA 125, CA 19-9, CA 15-3, ferritin 
(FERR), and CA 72-4 must have been tested; (2) EGFR 
mutation and ALK rearrangement status must have been 
tested sequentially within two weeks.

The exclusion criteria were as follows:
(1) Patients received treatment before EGFR mutation 

and ALK rearrangement status detection; (2) the results 
of pathological examination from different tumor sites 
suggested different pathological types or could not be 
categorically classified as a single pathological type; and 
(3) patients had a history of another cancer.

This study was conducted in accordance with the 
International Council for Harmonization Guidelines for 
Good Clinical Practice and the Declaration of Helsinki. 
And was registered on the Clinical Trials website (No. 
NCT04005677).

Identification of EGFR mutation
The method used to detect EGFR mutations was the 
same as that in a previous study [18], roughly outlined 
as follows: collecting histological specimens of primary 
tumors, metastatic lymph nodes or organs, and cytologi-
cal specimens of pleural or pericardial effusion; fixing 
specimens in 10% neutral buffered formalin and embed-
ding them in paraffin; and then performing experiments 
using the QIAamp DNA formalin-fixed paraffin-embed-
ded (FFPE) Tissue Kit (Qiagen NV, Venlo, Netherlands), 
Mx3000PTM real-time PCR system (Stratagene, La Jolla, 
USA), and EGFR 29 Mutations Detection Kit (Amoy 
Diagnostics, Xiamen, People’s Republic of China) to 
detect any exon mutations. The tumor was identified as 
an “EGFR mutant” if an exon mutation was detected. 
Somatic mutations in the tyrosine kinase domain of 
EGFR, which is an oncogenic mechanism, can dysregu-
late the tyrosine kinase (TK) activity of EGFR [28]. An 
exon 19 deletion (Del19) and an L858R point mutation 
are major EGFR mutations that are sensitive to EGFR 
TKIs, and 80–90% of patients with EGFR-mutated 

NSCLC have one of these two types of EGFR mutations 
[29]. These two types of EGFR mutations are common. 
Uncommon EGFR mutations in NSCLC patients involv-
ing exon 20, including T790M and exon 20 insertions, 
are not sensitive to the first-generation EGFR TKIs. The 
EGFR T790M mutation manifests as a single amino acid 
substitution from threonine to methionine at position 
790 in the wild-type EGFR kinase domain, which is the 
most prevalent resistance mutation in first- and second-
generation EGFR-TKI [30, 31]. Insertions in exon 20 
represent a combination of in-frame insertions and/or 
duplications of 1–7 amino acids between the α-C helix 
and the 762–774 amino acid sequence [32, 33]. T790M, 
exon 20 insertions, and other uncommon EGFR muta-
tions such as G719X, L861Q, and S768I are categorized 
as uncommon EGFR mutations.

Identification of ALK gene rearrangement
Ventana immunohistochemistry (IHC) was performed 
using tumor specimens to confirm ALK rearrangement 
by analyzing formalin-fixed paraffin-embedded (FFPE) 
tissues, as described in our previous study [18]. ALK IHC 
positivity is characterized by strong granular cytoplasmic 
staining in any percentage of tumor cells; otherwise, the 
sample was deemed ALK-negative. ALK IHC has a high 
sensitivity and specificity for detecting ALK rearrange-
ments [34, 35].

Machine learning and deep learning classifiers
In this study, we used model-developing methods based 
on a previous study by Li et al. [36]. DL and five ML mod-
els, including the GBM, XGBoost, XRT, DRF, and GLM, 
were used to create predictive models for identifying 
EGFR mutations, common and uncommon EGFR muta-
tions, and ALK rearrangements in NSCLC patients. The 
details of the ML and DL algorithms are provided in the 
Additional file 1: Supplementary Methods. By combining 
the above models, stacked ensemble models with opti-
mal performance were constructed. All the models were 
trained and tested for both cohorts. The workflow for 
training and testing candidate predictive models using 
computational algorithms is shown in Fig. 1.

The major strides in the development of user-friendly 
ML software that can be used by non-experts using H2O 
software is the Automatic Machine Learning (AutoML), 
which automates the process of training a large selec-
tion of candidate models. H2O’s AutoML can be used 
for automating the ML workflow, which includes the 
automatic training and tuning of many models within a 
user-specified time limit. For other supported methods, 
AutoML performs a hyperparameter search over various 
H2O algorithms to obtain the best model. The construc-
tion of stacked ensembles was based on all previously 
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trained models and the best model for each family. In 
most cases, stacked ensemble models are the top per-
forming models in the AutoML Leaderboard, which 
are automatically trained on collections of individual 
models to produce highly predictive ensemble models. 
Scikit-learn feature importance plots and variable impor-
tance heatmaps of all candidate models were generated 
through the matplotlib package built in AutoML, and 
all plots used for model interpretation were saved in the 
results directory.

Statistical analysis
Continuous variables were compared between groups 
using either Student’s t-test or Mann–Whitney U test, as 
appropriate, and categorical data were compared using 
the chi-square test or Fisher’s exact test. The AUC of 
the receiver operator characteristic (ROC), specificity, 
sensitivity, positive predictive value (PPV), and nega-
tive predictive value (NPV) were calculated to evaluate 
the diagnostic performance of the models in predicting 
EGFR mutation status. We used R version 3.6.1 and SPSS 

20.0 for the statistical analysis. For both sides, P < 0.05 
with a 95% confidence interval was regarded as statisti-
cally significant.

Results
Patients’ clinical characteristics
A total of 2553 NSCLC patients were included in both 
cohorts. A total of 1089 NSCLC patients from the EJC 
cohort[18] as the training cohort and 1464 consecutive 
NSCLC patients from January 2017 to December 2019 
at Wuhan Union Hospital as the testing cohort were 
enrolled in the analysis (Fig. 1). The clinical characteris-
tics of the training cohort are presented in Table 1. EGFR 
mutations were identified in 780 patients (53.28%), with a 
median age of 60 years (range 31–86 years). Of the 1464 
patients tested for ALK rearrangement, 66 (4.51%) were 
positive for ALK, with a median age of 54  years (range 
27–81 years).

The training cohort was used to explore the predic-
tors of EGFR and ALK mutations in our previous study 
[18]. Adenocarcinoma (ADC), never-smoker status, and 

Fig. 1  Study design and patient selection
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Table 1  Association between clinical characteristics and EGFR and ALK status in the testing cohort

Characteristics EGFR ALK

Wild-type Mutant-type P value Wild-type Mutant-type P value

Age, years 0.390  < 0.001

 Median 61 60 61 54

 Range 23–88 31–86 23–88 27–81

Gender  < 0.001 0.337

 Female 495 (72.37) 321 (41.15) 783 (56.01) 33 (50.00)

 Male 189 (27.63) 459 (58.85) 615 (43.99) 33 (50.00)

Smoking history  < 0.001 0.121

 Never-smoker 345 (50.51) 635 (81.41) 930 (66.57) 50 (75.76)

 Ever-smoker 338 (49.49) 145 (18.59) 467 (33.43) 16 (24.24)

Pathology  < 0.001 0.036

 Adenocarcinoma 585 (85.53) 753 (96.54) 1273 (91.06) 65 (98.48)

 Non-adenocarcinoma 99 (14.47) 27 (3.46) 125 (8.94) 1 (1.52)

AFP 0.104 1.000

 Negative 538 (98.18) 642 (99.23) 1126 (98.69) 54 (100.00)

 Positive 10 (1.82) 5 (0.77) 15 (1.31) 0 (0.00)

CEA 0.014 0.060

 Negative 341 (50.52) 342 (44.07) 645 (46.54) 38 (58.46)

 Positive 334 (49.48) 434 (55.93) 741 (53.46) 27 (41.54)

CA125  < 0.001 0.164

 Negative 319 (48.41) 458 (59.87) 748 (54.96) 29 (46.03)

 Positive 340 (51.59) 307 (40.13) 613 (45.04) 34 (53.97)

CA19-9 0.031 0.530

 Negative 493 (75.61) 610 (80.37) 1055 (78.32) 48 (75.00)

 Positive 159 (24.39) 149 (19.63) 292 (21.68) 16 (25.00)

CA15-3 0.195  < 0.001

 Negative 451 (75.04) 542 (78.10) 962 (77.64) 31 (55.36)

 Positive 150 (24.96) 152 (21.90) 277 (22.36) 25 (44.64)

FERR  < 0.001 0.135

 Negative 210 (55.56) 289 (68.16) 471 (61.65) 28 (73.68)

 Positive 168 (44.44) 135 (31.84) 293 (38.35) 10 (26.32)

CA72-4 0.010 0.209

 Negative 289 (72.43) 369 (79.87) 630 (76.83) 28 (68.29)

 Positive 110 (27.57) 93 (20.13) 190 (23.17) 13 (31.71)

PSA 0.610 0.711

 Negative 262 (91.93) 165 (93.22) 403 (92.22) 24 (96.00)

 Positive 23 (8.07) 12 (6.78) 34 (7.78) 1 (4.00)

FPSA 0.436 1.000

 Negative 272 (95.44) 166 (93.79) 414 (94.74) 24 (96.00)

 Positive 13 (4.56) 11 (6.21) 23 (5.26) 1 (4.00)

SCC  < 0.001 0.178

 Negative 472 (76.62) 636 (90.34) 1063 (84.23) 45 (77.59)

 Positive 144 (23.38) 68 (9.66) 199 (15.77) 13 (22.41)

CYFRA 21-1  < 0.001 0.137

 Negative 216 (35.64) 332 (47.91) 519 (41.75) 29 (51.79)

 Positive 390 (64.36) 361 (52.09) 724 (58.25) 27 (48.21)

NSE 0.034 0.472

 Negative 212 (44.17) 268 (50.85) 460 (47.92) 20 (42.55)

 Positive 268 (55.83) 259 (49.15) 500 (52.08) 27 (57.45)
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negative CA 125 and SCC results were predictors of 
EGFR mutations, while younger age and never-smoker 
status were independent predictors of ALK rearrange-
ment. The predictors showed similar discriminative 
power in differentiating EGFR mutations or ALK rear-
rangement in the testing cohort, as reflected by an AUC 
of 0.669 (P < 0.001) or 0.654 (P < 0.001) (Additional file 2: 
Fig. S1A–B). These results demonstrated that our data 
were largely consistent and reliable for further analysis.

Development and validation of deep learning and machine 
learning models to predict EGFR mutation or ALK 
rearrangement status
Although the above factors played an important role in 
the identification of EGFR mutation status or ALK rear-
rangement, the methods had a relatively low AUC value. 
To make the best use of these clinical data, one DL and 
five ML models were utilized to distinguish EGFR sta-
tus in the training cohort. As shown in Fig. 2, the AUCs 
of the above six models were 0.747 for the DL model, 
0.972 for DRF, 0.934 for GBM, 0.737 for GLM, 0.790 
for XGBoost, and 0.974 for XRF. The DRF and XRF 
models exhibited preferable discernibility. In the test-
ing cohort, the AUCs of the six models were 0.731 for 
the DL model, 0.767 for DRF, 0.849 for GBM, 0.708 for 
GLM, 0.761 for XGBoost, and 0.745 for XRF. The GBM 
model achieved the best predictive ability for differenti-
ating EGFR mutation status. Finally, a stacked ensemble 
model combining the above six models was used to cre-
ate the best prediction algorithms. The stacked ensemble 
model showed favorable discriminative power. The AUC 

of the stacked ensemble model were 0.897 and 0.883 for 
the training and testing cohorts, respectively (Fig.  2). 
The sensitivity, specificity, accuracy, PPV, and NPV of 
the stacked ensemble model were 0.835, 0.677, 0.578, 
0.886, and 0.732, respectively, in the training cohort and 
0.856, 0.680, 0.638, 0.877, and 0.750, respectively, in the 
testing cohort (Table  2). ALK rearrangements were dis-
tinguished using another stacked ensemble model fol-
lowing the same pipeline. As shown in Fig. 3, the AUC of 
the stacked ensemble model were 0.995 and 0.921 for the 
training and testing cohorts (Fig. 3A, B).

In order to illustrate the impact of pathological sub-
type on the prediction for EGFR mutation by the AI 
model, the same stacked ensemble model was re-tested 
in adenocarcinoma-only group in the training and test-
ing cohort, respectively. This model showed similar dis-
criminative performance in adenocarcinoma-only group, 
as reflected by an AUC of 0.873 among adenocarcinoma 
cases in the training cohort and an AUC of 0.820 among 
adenocarcinoma cases in the testing cohort (Additional 
file 3: Fig. S2A, B).

Most informative parameters of deep learning and five 
machine learning models to predict EGFR mutation or ALK 
rearrangement status
To investigate the internal mechanism of different clini-
cal features on the discriminative abilities of EGFR sta-
tus, the five most informative parameters selected from 
high to low by DL and five ML models are displayed in 
Additional file 4: Fig. S3A–F. Patients with ADC are more 
prone to EGFR mutations. Pathology ranked first in the 

Values presented are n (%) unless otherwise noted

EGFR epidermal growth factor receptor; ALK anaplastic lymphoma kinase; AFP alpha fetoprotein; CEA carcinoembryonic antigen; CA carbohydrate antigen; FERR 
ferritin; PSA prostate specific antigen; FPSA free prostate specific antigen; SCC squamous cell carcinoma antigen; CYFRA 21-1 soluble fragment of cytokeratin 19; NSE 
neuron-specific enolase; TTF-1 thyroid transcription factor-1; CK-7 cytokeratin-7

Table 1  (continued)

Characteristics EGFR ALK

Wild-type Mutant-type P value Wild-type Mutant-type P value

TTF-1  < 0.001 0.145

 Negative 129 (20.48) 14 (2.04) 140 (11.13) 3 (5.08)

 Positive 501 (79.52) 673 (97.96) 1118 (88.87) 56 (94.92)

Napsin A  < 0.001 0.401

 Negative 121 (28.67) 19 (5.23) 135 (18.10) 5 (12.82)

 Positive 301 (71.33) 344 (94.77) 611 (81.90) 34 (87.18)

CK-7 0.006 1.000

 Negative 19 (5.79) 3 (1.27) 21 (3.94) 1 (3.13)

 Positive 309 (94.21) 234 (98.73) 512 (96.06) 31 (96.88)

Ki67 0.083 0.528

 Negative 37 (28.03) 28 (40.00) 60 (31.58) 5 (41.67)

 Positive 95 (71.97) 42 (60.00) 130 (68.42) 7 (58.33)
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DL and GLM models. However, age ranked first in the 
DRF and XRT models, and smoking history ranked first 
in the GBM and XGBoost models, respectively (Addi-
tional file 1: Fig. S3A–F).

The importance of each clinical feature calculated 
by AutoML in different models and the correlations 

between different models to predict EGFR mutation or 
ALK rearrangement status are shown in Fig. 4 through 
a heatmap. As shown in Fig. 4A, smoking history, CEA 
levels, and gender provided important information for 
predicting EGFR mutations. As shown in Fig.  4B, age, 

Fig. 2  Discrimination of the computational algorithms for discrimination of EGFR mutant status in the training cohort and the testing cohort. A–B 
Deep leaning model; C–D DRF model; E–F GBM model; G–H GLM model; I–J XGBoost model; K–L XRF model; M–N Stacked Ensemble model
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pathology, and gender provided important information 
for predicting ALK rearrangement.

Deep learning and machine learning models to predict 
uncommon EGFR mutations
Common EGFR mutations, including Del19 and L858R, 
were sensitive to all three generations of EGFR-TKIs, 
whereas uncommon EGFR mutations including T790M, 
exon 20 insertions, and others showed varying degrees 
of sensitivity to EGFR-TKIs. Patients with some uncom-
mon EGFR mutations may response poorly to first-gen-
eration TKIs. Therefore, specific EGFR mutation types 
may provide essential information for clinical decision 
making. Here, AI models were used to identify common 
(Del19 and/or L858R), uncommon EGFR mutations, and 
wild status in the training cohort, testing cohort, and all 
patients. The overall accuracy in the training cohort, test-
ing cohort, and total patients was 0.93, 0.83, and 0.87, 
respectively (Fig.  5A–C). The importance of each clini-
cal feature calculated by AutoML in different models 
and the correlations between different models to predict 
the three classifications of EGFR mutations are shown 

in Fig. 5D. Age, FERR levels, and CA125 levels provided 
important information for the six models.

Deep learning and machine learning models to predict 
EGFR mutation and ALK rearrangement status
Although AI models yielded satisfactory efficiency in pre-
dicting EGFR or ALK status separately, to avoid statistical 
errors in the hypothesis test and to further facilitate clini-
cal practice, we attempted to build a model to distinguish 
EGFR mutant status and ALK rearrangement concur-
rently. The overall accuracy in the training cohort, testing 
cohort, and total patients to identify ALK rearrangement 
and EGFR mutation status was 0.70 (Fig. 6A–C). Smok-
ing history, pathology, and sex provided important infor-
mation for this model (Fig.  6D). These results were not 
as satisfactory as those of the former separate models, 
possibly because of the mutually exclusive status between 
EGFR and ALK alterations, as well as the small difference 
between their clinical characteristics or STMs.

Discussion
One critical trend in precision medicine for NSCLC 
patients is the study of predictive biomarkers [31]. The 
identification of EGFR mutations and ALK rearrange-
ment status is becoming increasingly important for 
NSCLC patients to determine the suitability of TKI treat-
ment. Owing to the limitations of tissue biopsy, con-
structing an easy-to-use model based on easily available 
clinical indicators has become a concern. In this study, 
driverless AI technology was fully applied with one DL 
model and five ML models developed to predict EGFR 

Table 2  Performance measures of the stacked ensemble model 
for prediction two classifications of EGFR mutation

EGFR epidermal growth factor receptor; PPV positive predictive value; NPV 
negative predictive value

Cohort Sensitivity Specificity Accuracy PPV NPV

The training cohort 0.835 0.677 0.578 0.886 0.732

The testing cohort 0.856 0.680 0.638 0.877 0.750

Fig. 3  Discrimination of Stacked Ensemble model for discrimination of ALK rearrangement in the training cohort (A) and the testing cohort (B)
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mutations and ALK positivity in NSCLC patients. These 
six models were stacked to develop an ensemble model 
that showed the best performance among all models. 
The stacked ensemble model yielded optimal diagnostic 

performance with AUCs of 0.883 and 0.921 for predict-
ing EGFR mutation and ALK rearrangement status in 
the testing cohort, respectively, which demonstrated 
predictive accuracy in different patient populations. In 

Fig. 4  The importance of differential clinical parameters in different computational algorithm models. The AutoML randomly generated twenty 
algorithms based on deep learning model and five machine learning model, and the twenty models were interpreted using feature importance 
plots through the matplotlib package built in the software. A Variable importance for EGFR prediction. B Variable importance for ALK prediction

Fig. 5  Stacked Ensemble model to distinguish common and uncommon EGFR mutations. A–C Discrimination of Stacked Ensemble model 
for identification of common and uncommon EGFR mutations in the training cohort, the testing cohort and total patients, respectively. D The 
importance of differential clinical parameters in the Stacked Ensemble model. The AutoML randomly generated twenty algorithms based on deep 
learning model and five machine learning model, and the twenty models were interpreted using feature importance plots through the matplotlib 
package built in the software
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addition to some demographic features, including age, 
sex, and smoking status, several STMs, such as CEA, 
CA125, CA199, NSE, SCC, and CYFRA, were also found 
to be associated with EGFR and ALK mutation status in 
NSCLC patients. The present results suggest that it is fea-
sible to use DL and ML based on clinical features to pre-
dict EGFR and ALK mutation status in NSCLC patients.

For NSCLC patients, EGFR mutations were reported 
to be more frequent in never-smokers, adenocarcino-
mas, patients of East Asian ethnicity, and females [37]. 
Approximately 40% of never-smokers present with 
EGFR mutations [38]. Similarly, ALK-positive NSCLC 
patients are usually younger, female, and non-smokers 
[39, 40]. Phyu et al. constructed a predictive model pre-
sented as a nomogram comprising three predictors (sex, 
ethnicity, and smoking status) to evaluate EGFR muta-
tion probabilities in non-squamous NSCLC patients, 
with a sensitivity of 68% and a specificity of 78% when 
the probability cut-off point was 0.2 [41]. The examina-
tion of EGFR mutations in elderly NSCLC patients is 
crucial, since EGFR-TKI treatments, including gefitinib 
and osimertinib, have been reported to be safe and effec-
tive for these patients [42, 43]. Age is an essential fac-
tor to consider when adopting EGFR-TKI treatment for 
EGFR mutation-positive NSCLC [44]. Our study showed 
that age was the most informative parameter in the DRF 
and XRT models, while smoking status was the most 

informative parameter in the GBM and XGBoost mod-
els. Age was the most important variable in both EGFR 
and ALK prediction models. Elevated serum CEA lev-
els predicted the presence of EGFR mutations not only 
in primary lung adenocarcinoma patients, but also in 
patients with recurrent lung adenocarcinomas [45, 46]. 
Preoperative serum CEA levels are also associated with 
ALK fusion in patients with completely resected lung 
adenocarcinomas [47]. Moreover, the efficacy of EGFR-
TKI treatment has been reported to be closely associ-
ated with serum CEA levels [48]. The levels of several 
other tumor markers, including serum CA19-9, CA24-2, 
and cytologic CYFRA were significantly associated with 
EGFR mutations in NSCLC or lung adenocarcinoma [49, 
50]. Fiala et al. found that a high serum NSE level before 
treatment was an independent predictor of poor out-
comes in NSCLC patients treated with EGFR-TKIs [51].

Currently, AI, especially ML and DL, plays an impor-
tant role mainly in the field of medical image analysis 
and has already been applied to other medical areas due 
to its satisfactory application performance [52]. In digi-
tal pathology, AI methods have undertaken many image 
processing and classification tasks to assist in predict-
ing disease diagnosis and the prognosis of treatment 
response [53]. Coudray et  al. trained a DL model based 
on histopathological images to classify LUAD, LUSC, 
or normal lung tissue, and predicted EGFR mutations 

Fig. 6  Stacked Ensemble model to distinguish ERFR mutant status and ALK rearrangement concurrently and corresponding variable importance. 
A–C The overall accuracy in the training cohort, the testing cohort and total patients. D The importance of differential clinical parameters in Stacked 
Ensemble model to distinguish EGFR mutant status and ALK rearrangement concurrently. The AutoML randomly generated twenty algorithms 
based on deep learning model and five machine learning model, and the twenty models were interpreted using feature importance plots through 
the matplotlib package built in the software
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with an AUC of 0.754 [12]. Wang et  al. developed an 
end-to-end DL model to predict EGFR mutation status 
using CT images and found a sensitivity of 72.27% and 
a specificity of 75.41% in validation cohorts, which were 
significantly higher than those in the other three models 
(clinical model, semantic model, and radiomics model) 
[13]. However, compared with complex processing pro-
cedures performed on various medical image features, 
demographic characteristics and levels of STMs are 
more easily obtained and clarified with AI approaches, 
despite the few studies combining them. Since the fee 
for this analysis of STMs is afforded by health insurance 
in China, its clinical applicability is considerable. Sinha 
et al. used demographics, vital signs, as well as laboratory 
and respiratory variables to develop an acute respiratory 
distress syndrome (ARDS) phenotypes classifier model 
based on the GBM algorithm, with an AUC of 0.95 in the 
validation cohort [54]. In the epoch of big data, ML and 
DL show great advantages in finding predictive models 
in intricate biological systems compared to conventional 
logistical regression. By training with a large amount of 
data and sifting through massive information, their reli-
ability and efficiency are significantly improved, which 
is essential for medical work [55]. The AUCs of stacked 
ensemble models to predict EGFR mutation status and 
ALK rearrangement in the training and test cohorts were 
encouraging; however, using the same model to predict 
EGFR and ALK mutation status was not feasible, which is 
likely due to the mutually exclusive status between EGFR 
and ALK alterations, as well as the small difference in 
clinical characteristics or STMs between them [5, 40].

In addition to the easily available variables enrolled 
in the models, another strength of our study is that we 
predicted common and uncommon EGFR mutations by 
constructing predictive models based on several compu-
tational algorithms. Some uncommon EGFR mutations, 
such as T790M mutations, exon 20 insertions and so on, 
have been implicated in the development of resistance to 
TKI treatment in NSCLC patients [56, 57]. The T790M 
mutation can be found in < 5% of patients with NSCLC 
whose primary tumors were not previously treated with 
TKIs [58]. The PFS of patients with uncommon EGFR 
mutations is significantly shorter than that of patients 
with common EGFR mutations [59]. With the identifi-
cation of uncommon EGFR mutations, higher genera-
tions of EGFR inhibitors can be chosen to overcome drug 
resistance to avoid ineffective therapy [60, 61].

However, the present study has certain limitations. 
First, our data source was derived from only one city in 
China, which requires validation in other populations 
to extend its generalizability. Second, statistical mod-
eling based on AI technology requires a certain number 
of samples to obtain optimized classifiers for prediction, 

especially for DL, but the sample size in our study was 
not large enough. Third, we did not predict specific types 
of uncommon EGFR mutations separately, which were 
far more than two, due to the small proportion of each 
uncommon mutation of EGFR. Finally, more demo-
graphic characteristics and STMs should be included to 
strengthen the performance and outcomes of this study. 
Therefore, more large-scale prospective studies involving 
various populations are necessary to verify our predictive 
models in the future.

Conclusion
In conclusion, this study demonstrated that ML and 
DL models can be useful tools to help clinicians iden-
tify EGFR mutation status and ALK rearrangement in 
NSCLC patients. Moreover, the identification of uncom-
mon EGFR mutations is beneficial for evaluating the 
sensitivity of patients to EGFR-TKI treatment. Demo-
graphic characteristics, pathology and STMs were easily 
available variables used to construct predictive models in 
our study. The stacked ensemble model showed a more 
accurate predictive performance by optimally combining 
the DL model with the five ML models. Nevertheless, the 
reliability and generalizability of the computational algo-
rithms constructed in our study require further large-
scale epidemiological studies for verification.
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