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Abstract
Background: Papillary thyroid carcinoma is a type of indolent tumor with a dramatically increasing incidence rate and stably high
survival rate. Reducing the overdiagnosis and overtreatment of papillary thyroid carcinoma is clinically emergent and important. A
radiomics model is proposed in this article to predict lymph node metastasis, the most important risk factor of papillary thyroid
carcinoma, based on noninvasive routine preoperative ultrasound images. Methods: Four hundred fifty ultrasound manually
segmented images of patients with papillary thyroid carcinoma with lymph node status obtained from pathology report were
enrolled in our retrospective study. A radiomics evaluation of 614 high-throughput features were calculated, including size, shape,
margin, boundary, orientation, position, echo pattern, posterior acoustic pattern, and calcification features. Then, combined
feature selection strategy was used to select features with the greatest ability to discriminate lymph node status. A support vector
machine classifier was employed to build and validate the prediction model. Another independent testing cohort was used to
further evaluate the performance of the radiomics model. Results: Among 614 radiomics features, 50 selected features most
reflecting echo pattern, posterior acoustic pattern, and calcification showed the superior lymph node status distinguishable
performance with area under the receiver operating characteristic curve of 0.753, 0.740, and 0.743 separately when using each
type of features predicting the lymph node status. The results of model based on all 50 final features predicting the lymph node
status shown an area under the receiver operating characteristic curve of 0.782, and accuracy of 0.712. In the independent testing
cohort, the proposed approach showed similar results, with area under the receiver operating characteristic curve of 0.727 and
accuracy of 0.710. Conclusion: Papillary thyroid carcinoma with lymph node metastasis usually shows a complex echo pattern,
posterior region homogeneity, and macrocalcification or multiple calcification. The radiomics model proposed in this article is a
promising method for assessing the risk of papillary thyroid carcinoma metastasis noninvasively.
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Introduction

The incidence of thyroid cancer, especially papillary thyroid

carcinoma (PTC), has increased dramatically over recent

decades around the world; however, the mortality rate has

remained stable. In papillary thyroid microcarcinoma (PTMC),

defined as a tumor 1 cm or less in size, the mortality rate is even

<1%.1 Recently, the incidence and mortality rates of thyroid

cancer in China have been reported as 9.0% and 0.68%, respec-

tively. Among these cases, over 80% are PTC, whose 10-year

survival exceeds 90%.1-4 In only a few cases, PTC/PTMC will

spread to cervical or lateral lymph nodes (LNs) and threaten the

survival of patients.5,6 Due to the lack of discriminate features,

it is very difficult to distinguish them when making a clinical

diagnosis.

Lymph node metastasis is the most important risk factor

related to recurrence and poor overall survival in patients with

PTC.6 Due to the low detection rate of central cervical LN

metastasis by ultrasound (US), fine-needle aspiration biopsy

(FNA), and prophylactic lymph node dissection (LND) of cen-

tral cervical LNs are performed in suspicious patients to pre-

vent LN metastasis, and these procedures are invasive and

unnecessary for most patients.5,7,8 Therefore, a noninvasive,

efficient, and accurate way to identify patients with a high

probability of LN metastasis by thyroid US examination before

surgery is urgently needed.2,5,9,10

Previous research has shown that in univariate and multi-

variate analyses, the characteristics of patients, such as age and

gender, and the US features of thyroid tumors, including tumor

size, capsule invasion, and microcalcification, are independent

predictors of LN metastasis in patients with PTC (P < .05).2,9-16

Wu et al aimed to identify independent estimative factors of

LN metastasis in PTC and found that size, vascularization, and

coexisting Hashimoto thyroiditis (HT) were significant factors

(P ¼ .004, .118, .016) based on Color Doppler Flow Images

(CDFIs).17 Nie et al compared computed tomography (CT) and

US in identifying predictors of lateral LN metastasis in patients

with PTC. The results showed that in the univariate analysis,

age, tumor size, tumor spread, extrathyroidal extension, pri-

mary tumor location, and central LN status were significantly

associated with LN metastasis (P < .05).18 Although these

findings illustrate the feasibility of estimating LN metastasis

using thyroid US images, CDFI, and CT, they are based on

clinician experience and visual inspection.

Radiomics is an emerging technique that turns medical

images into mineable data by extracting high-throughput fea-

tures quantitatively. Mineable information that can be

discovered includes pathology, biomarkers, genomic informa-

tion, and prognosis.19 For example, it has been used for esti-

mating LN metastasis in lung cancer through a joint

fluorodeoxyglucose–positron emission tomography (FDG-

PET) and magnetic resonance imaging (MRI) texture-based

model.20 Additionally, a radiomics nomogram for the preo-

perative prediction of LN metastasis in patients with colorectal

cancer by CT has shown good discrimination and calibration.21

Moreover, LN metastasis in patients with bladder cancer has

been preoperatively predicted by radiomics features extracted

from arterial-phase CT images with favorable estimative

accuracy.22

The aim of our study is to develop a radiomics model to

predict the LN status of patients with PTC using preoperative

thyroid US images. Our LN status prediction system includes 4

components: US image manual segmentation, radiomics fea-

tures extraction, feature selection, and classification and

analysis.

Materials and Methods

Overview

In this study, we proposed a radiomics evaluation based on

preoperative US thyroid images to predict LN status noninva-

sively in patients with PTC. The radiomics evaluation includ-

ing feature extracting of 10 type features, 3-step feature

selection, and machine learning method. The workflow of our

study is shown in Figure 1.

Patients

We performed a retrospective study of 1216 patients who had

been diagnosed in Fudan University Shanghai Cancer Center.

The study was approved by the ethics committee of the hospi-

tal. Informed consents of each patients were signed. The inclu-

sion criteria were as follows: (1) patients having a single

thyroid malignant lesion or one thyroid malignant lesion with

several benign lesions, and diagnosed with PTC; (2) patients

who underwent thyroid US diagnosis, LND, and US-guided

FNA of the first time; and (3) patients with follow-up informa-

tion and pathological examination results available in their

medical records. Details of the patient enrolment are shown

in Figure 2.

After that, 450 of 1216 patients with PTC were enrolled in

our study. All the 450 cases were sorted by time period and

were divided into a validation cohort and an independent test-

ing cohort at a ratio of 2:1. The validation cohort consisted of
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300 patients collected from December 2015 to March 2016 (86

males and 214 females; mean age: 42.6 + 11.7 years; range:

18-74 years), while 150 patients collected from March 2016 to

September 2016 formed an independent testing cohort (38

males and 112 females; mean age: 43.7 + 12.2 years; range:

23-82 years). The independent testing cohort was used to eval-

uate the performance of the prediction model. A summary of

the patient characteristics is shown in Table 1.

The demographic information, including age and sex, and

the clinical information, including the US examination report

and pathology report, were all derived from medical records.

Ultrasound Imaging and Segmentation

Real-time US examinations of thyroid glands were conducted

by radiologists with at least 5 years of experience. The US

thyroid images were acquired using an ultrasonic instrument

from Philips (HD15), Siemens (ACUSON2000), or General

Electric (LogiqE9) with 5 to 15-MHz linear transducer L12-

5, 14L5, and ML6-15 separately with similar setting about gain

and frequency. The spatial resolution of axial and lateral was

0.2 mm and 0.4 mm respectively. All US thyroid images were

recorded, in which the tumor was manually segmented by a

clinician with 10 years of experience. A MATLAB software

written by our group was used in manual segmentation.

Thyroid US was performed by different senior doctors. A

representative image of the lesion was saved as a DICOM file.

Standard of LN Status

Then, LND surgery and US-guided FNA were performed by

doctors with at least 5 years of experience on patients with PTC

who were suspected to have a malignant mass after US exam-

ination of the thyroid and LNs. Mass tissue was obtained from

LND surgery and US-guided FNA of suspected lesions for

histological examination, and pathology report was recorded.

Figure 1. Lymph node (LN) status prediction system workflow. (I) US image were manually segmented. (II) Radiomics features including

morphology, texture, and wavelet features were extracted from thyroid US segmented images. (III) A 3 step feature selection method was used to

reduce the dimension. (IV) A support vector machine was used to build the final prediction model. US, ultrasound.

Figure 2. The results of patient enrollments. In total, 450 of 1216

patients were enrolled in this study.

Liu et al 3



The gold standard used in our study was the LN status gathered

from the pathology report in the clinical records of the patients.

Fine-needle aspiration was performed for suspected lesions

using a 10-mL syringe and 30-gauge needle 3 times under US

guidance. One conventional smear was obtained from each

aspirated sample, while the remaining aspirated material was

deposited directly into a vial of alcohol-based preservative

solution and sent for cytopathological diagnosis. Cells found

in either the smear or liquid-based preservative solution were

diagnosed by pathologists, and patients underwent surgery if

they were diagnosed as category IV, V, or VI according to the

Bethesda diagnostic system.8 Computed tomography examina-

tion of the neck was performed before surgery for each patient.

Dissection of central cervical LNs was performed routinely. If

CT or US indicated suspicious LNs in the lateral cervix, lateral

cervical LND was performed. The pathological results of the

LNs read by 2 senior pathologists with experiences more than

10 years were used as the gold standard for diagnosis and were

documented in the clinical records of the patients.

Radiomics Evaluation

We proposed a radiomics evaluation for evaluating thyroid

tumors. We referred to 3 guidelines, including those of the

American Association Clinical Endocrinologists, American

College of Endocrinology, and Associazione Medici Endocri-

nologi, and summarized their descriptors into 614 high-

throughput features.8 The radiomics evaluation is shown in

Supplemental Table E1. Features in this system can be divided

into 10 categories: demographic information and tumor size,

shape, orientation, position, margin, boundary, echo pattern,

posterior acoustic pattern, and calcification. All features were

extracted from the original US thyroid images. All image and

data processing was performed in MATLAB R2015b (Math-

Works, Inc, Natick, Massachusetts).

Demographic information. The demographic information, includ-

ing age and sex, was gathered from patient medical records.

Size. The size of a thyroid tumor includes 3 features: the dia-

meter of an equivalent circle, the area, and the ratio of the

tumor area to that of its convex hull.23 Because of the diversity

in the depth of each US image, size features needed to be

rescaled from pixel-based to real-space dimensions.

Shape. Thyroid tumors can be round, oval, or irregular.8 Our

system used 3 features to describe the shape of a tumor: the

convexity-to-tumor ratio, the compactness, and the rectangle-

fitting factor.23

Margin. Tumor margins can be smooth, irregular, lobulated,

spiculate, or obscure.8 We used 8 features to represent margin:

spiculation, extreme point number, lobule number, moment

difference, edge roughness, acutance, local window mean, and

acutance 2.23

Boundary. Tumor boundaries can be characterized by a muta-

tional interface or halo ring.8 Herein, the tumor boundary was

described by 5 features: the deviation ratio of the inside and

outside of the tumor, the mean contrast correlation coefficient

of the inside and outside of the tumor, the standard deviation

(SD) of the inside and outside of the tumor, and the SD and

signal-to-noise ratio of the annular region.23

Orientation. Resent research has shown that a taller-than-wide

tumor shape is a very important indicator of malignancy and

LN metastasis.8 Hence, we used 3 features, elliptical-

normalized eccentricity, elliptical-normalized angle, and

length-to-width ratio, to represent tumor orientation.23

Position. Two types of position features were used, the first

being the tumor location relative to the thyroid gland and the

thyroid capsule.7,8,13,14 Thyroid tumors may appear in 7

Table 1. Patient Characteristics of Patients in Validation Cohort and Independent Testing Cohort.

Characteristic

Validation Cohort Independent Testing Cohort

Lymphatic Node Metastasis

P

Lymphatic Node Metastasis

PYes No Yes No

Age, mean (SD) 39.1 (11.2) 44.2 (11.7) <.001 40.5 (12.6) 45.5 (11.4) .012

Sex (Case %) .347 .898

Male 36 (37.9%) 50 (24.4%) 21 (36.2%) 17 (18.5%)

Female 59 (62.1%) 155 (75.6%) 37 (63.8%) 75 (81.5%)

Tumor grade – –

TI-RADS 4 81 195 45 87

TI-RADS 5 13 2 12 3

TI-RADS 6 1 8 1 2

Total number of LN’s positive 366 0 – 314 0 –

Total number of LN’s removed 1101 921 – 728 397 –

Total 95 205 58 92

300 150

Abbreviations: LN, lymph node; SD, standard deviation.
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different locations of the thyroid gland, as shown in Figure 3.

Information regarding these 7 positions was gathered from the

medical records. The second feature type comprised overlap

length, overlap area, and distance to capsule. The calculations

of these features are shown in Figure 4A.

Echo pattern. The echo pattern of each tumor could be hyper-

echoic, isoechoic, hypoechoic, complex, or very low8 and can

be described by 3 aspects. First, the mean echo value can be

quantified by 4 features: the mean tumor contrast, mean tumor

covariance, mean tumor nonsimilarity, and mean contrast cor-

relation coefficient. Second, the relative echo intensity of the

tumor compared with normal tissue can be represented by 3

features: the deviation ratio of the tumor tissue and normal

thyroid gland, the relative brightness of the tumor and normal

tissue, and the relative brightness of tumor and normal mus-

cle. Regions of normal thyroid tissue and muscle were marked

manually. Third, the texture complexity represented by the

tumor contrast SD, tumor covariance SD, tumor nonsimilarity

SD, contrast correlation coefficient SD, gray-level co-

occurrence matrix (GLCM), gray-level run-length matrix

(GLRLM), gray-level size zone matrix, and neighborhood

gray-tone difference matrix were also used to examine the

tumor texture.23

Posterior acoustic pattern. The posterior acoustic pattern could be

indifferent, attenuated, enhanced, mixing, or shadowing or

show a large or small comet-tail artifact (�1.0 mm).8 In our

system, we first defined the posterior region, as shown in Fig-

ure 4B. The features used to describe the posterior acoustic

pattern can be divided into 3 parts: the mean value of the

posterior region, the relative intensity of the posterior region,

and the complexity of the texture, which reflects the texture

distribution. The relative intensity and complexity of the pos-

terior region were defined by comparing the posterior region

with normal adjacent tissue at the same depth in terms of the

relative mean, relative brightness, contrast variance, contrast

coefficient, and SD. In addition, the mean and SD of the con-

trast, mean and SD of the covariance, and mean and SD of the

nonsimilarity in the posterior region were used to represent the

complexity of texture in our system.23

Calcification. Calcification is important in analyzing thyroid

tumors7 and can be present as microcalcification, macrocalci-

fication, or eggshell calcification. Microcalcification appears

as very small (<1 mm) hyperechoic regions, macrocalcification

appears as larger (>1 mm) hyperechoic regions, and eggshell

calcification is annular calcification in the tumor margin that

looks like an eggshell.8 We used 5 features to describe the size

or shape of calcification: total, minimum, and maximum calci-

fication area, total calcification circumference, and roundness

SD. Five other features were used to reflect the distribution of

calcification: the number of calcification points, the SD of the

calcification area, the SD of the circumference of calcification

points, and the maximum and minimum distance between cal-

cification points. These features were extracted from the fourth

layer of reconstructed wavelet decomposition images, and the

calcification boundary was defined by an automatic segmenta-

tion algorithm based on wavelet decomposition and threshold

segmentation.24

Machine Learning

Validation, feature selection, and image classification. The relation

between the LN status and high-throughput radiomics features

was explored by a machine learning method. To reduce bias

and overfitting in our study, we used 10-fold cross-validation

with 100 bootstrap in validation cohort.

A 2-dimensional visualization technique called heatmap

was used to analyze the Spearman correlation matrix. In heat-

map, the rows represented features, and columns represented

patients. The unsupervised clustered result of high-throughput

features was shown on the top row of heatmap. The real metas-

tasis status was shown in the second row. Numerical data val-

ues were represented by colors in this graphical indication of

high-throughput feature performance.25 The heatmap was draw

by R (version 3.4.0 http://www.Rproject.org) with the

“pheatmap” package.

Due to the repeatability and redundancy of radiomics fea-

tures, a 3-step feature selection method was employed to

reduce the dimensions of the feature set.22 We performed this

technique in the validation cohorts for each bootstrap repeti-

tion. All the 3-steps feature selection and image classification

were performed in MATLAB R2015b (MathWorks, Inc).

First, a 2-sided Wisconsin rank sum test (WRST) was used

to select features highly related to LN status. The WRST is a

nonparametric hypothesis test. It always be used to check

whether or not elements in 2 independent samples correspond

to the same distribution.26 We used the function “ranksum” in

Matlab R2015b (Mathworks, Inc) to do WRST between the

data of LN positive and negative.

Second, we used a genetic algorithm (GA) combining with

minimum-redundancy-maximum-relevance (mRMR) to

remove the redundant features by selecting approximately half

of the features with high value of fitness function.27,28

Genetic algorithm, which is based on Darwinian theory of

evolution, can be applied to solve optimization problems. The

main concepts of GA to simulate evolution include

Figure 3. Diagrammatic sketch of different position in thyroid. 1:

upper of the right lobe third, 2: mid of the right lobe third, 3: low of the

right lobe third, 4: upper of the left lobe third, 5: mid of the left lobe

third, 6: low of the left lobe third, and 7: isthmus.

Liu et al 5
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reproduction, crossover, mutation, and so on, by rearrange the

position of chromosome. Fitness function can represent the

simulated living environment by the means of evolutionary

simulation and suitable species generation. It can be repre-

sented as:

FitnessmRMRðxÞ ¼ AccyracyðxÞ; ð1Þ

where x denotes a chromosome. Afterward, a new genera-

tion with the best combination of gene can be obtained by the

completion of GA according to the expressions of reproduc-

tion, crossover, and so on.

However, the fitness function in Equation 1 neglected the

relationship between chromosomes. Therefore, a new objective

function was proposed to evaluate the fitness of a chromosome,

as followed:

FitnessmRMRðxÞ ¼ AccyracyðxÞ þ 1� RankðxÞ
1þ AccyracyðxÞ ; ð2Þ

where Rank(x) denotes the sum of mRMR order number.28

Third, sparse representation classification (SRC) was used

to identify the most relevant features according to the impor-

tance index generated by each bootstrap iteration, in which the

top 25% were preserved as remarkable features.29

Because not all the features are relevant to classification,

and different medical image modalities contain same texture

information, features extracted from medical images are highly

redundant. This problem can be solved by SRC.

The basic assumption of sparse representation is that most

natural signal, which been considered as a linear combination

of a few atoms from an over complete dictionary, is sparse and

can be sparsely represented. The SRC are based on sparse

representation. It considers the relevance between features and

teachers under the influence of the other features. The model of

SRC can be formulated as followed:

f̂ ¼ argmin
f
jjl � Ffjj22 þ Zjjfjj0; ð3Þ

where l denotes the label set of sample, F denoted the fea-

ture set of sample, and Z is regularization parameter. The abso-

lute value of sparse representation coefficient f̂ denotes the

importance of the corresponding feature. After calculating the

element of f̂, all the values are ranked in descending order.

And features corresponding to the low-ranked values will be

removed as redundant features.29

The remaining features were sorted by their occurrence fre-

quency in the 100 bootstrap. The top 1% to 25% of the remain-

ing features were input into a classifier.

Support vector machine (SVM) is one of the most com-

monly used classifier in medical researches. It can search for

the optimal hyperplane in high-dimensional space by using

kernel function.30 The learning problem of SVM can be written

as follows:

min
o;b;x

1
2
k o k2 þ C

XN
i¼1

xi; ð4Þ

s:t: yiðoxi þ bÞ � 1� zi; i ¼ 1; 2; . . . ;N ; ð5Þ
xi � 0; i ¼ 1; 2; . . . ;N ; ð6Þ

where o is weight vector, b is bias vector, x is slack variable,

and C is penalty parameter. Besides, xi 2 X 2 Rn;
yi 2 Y 2 Rn; i ¼ 1; 2; . . . ;N where xi is the ith feature and

yi is the label of xi.

The performance was assessed by the area under the recei-

ver operating characteristic curve (AUC), accuracy (ACC),

sensitivity (SENS), and specificity (SPEC). The combination

of features with the best performance was preserved as the final

feature set. We used the final feature set in the validation cohort

to train the prediction model by the SVM.

Independent testing. The prediction model was implemented on

a separate independent testing cohort to explore its stability and

generalization. The performance of the independent testing

model was also assessed by the AUC, ACC, SENS, and SPEC.

Figure 4. Diagram of 2 examples of extracting features (A) the location of tumor relative to the thyroid capsule, and (B) the location of tumor

relative to the thyroid capsule.
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Clinical Usefulness

The decision curve analysis (DCA) was conducted for deter-

mining the clinical usefulness of the radiomics evaluation.31

The y-axis of decision is net benefit, and the x-axis is different

threshold probabilities. Net benefit can be calculated as fol-

lowed:

Net benefit ¼ TP count
N

� FP count
N

Pt

1� Pt

� �
; ð7Þ

where TP count and FP count is the number of patients with

true-positive (TP) and false-positive (FP) results, N is the total

number of patients, and Pt is the threshold probability given by

predict model.

The DCA was done by R (version 3.4.0 http://www.Rpro

ject.org) with the “Decision Curve” and “rmda” packages.

Results

Patient Information

The demographic and clinical data were acquired from the

medical records of patients and included age, sex, tumor posi-

tion, and LN status. In the validation cohort, the mean and SD

age of patients with or without LN metastasis were signifi-

cantly different at 39.1 + 11.2 years and 44.2 + 11.7 years,

respectively (P < .001). The same result was found in the

independent testing cohort, in which the age of patients with

and without LN metastasis was 40.5 + 12.6 years and 45.5 +
11.4 years, respectively (P ¼ .012).

Regarding sex, 59 (62.1%) females and 36 (37.9%) males

with LN metastasis were found in the validation cohort, while

155 (75.6%) females and 50 (24.4%) males were without LN

metastasis (P ¼ .347). The independent testing cohort also

showed no significant difference in this characteristic (P ¼
.898). Hence, sex was not related to LN status.

It was worth mentioning that there were no significant dif-

ferences between the validation and independent testing sets in

terms of demographic information, clinical information, or fea-

tures of the radiomics evaluation.

Prediction of LN Status Based on Radiomics Evaluation in
Validation Cohort

In our radiomics evaluation, 614 high-throughput features were

extracted, consisted of 10 feature types. The heatmap based on

the Spearman correlation matrix is shown in Figure 5. In this

figure, white and gray represent stronger correlations between

the features and LN status, while blue represents weaker cor-

relations. In addition, the echo pattern and posterior acoustic

pattern comprised the majority of the features and are clustered

in blocks. In general, the heatmap shows some blue blocks,

Figure 5. Heatmap of the radiomics features in our system. Cluster: result of unsupervised cluster on high-throughput features. Metastasis: the

real status of LN. Feature type: the subtype of features in our radiomics evaluation. LN, lymph node.

Liu et al 7
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indicating the presence of a correlation between radiomics fea-

tures and LN status, which requires further investigation.

In the 100 bootstrap, each time after the WRST with a sig-

nificance level of .05 (P < .05) set as the threshold, the feature

set was reduced to approximately 400. Then, by using

the feature selection method of the GA combined with mRMR,

the dimension was further reduced to approximately 200. The

parameters of GA are as followed: population size ¼ 50, max

generation number ¼ 30, crossover probability ¼ 0.9, and

mutation probability ¼ 0.1. Furthermore, SRC was used to sort

the features by their importance with t ¼ 0.004, and the top 75

features were selected. The remaining features sorted by their

occurrence frequency in the 100 bootstrap were processed by

the SVM. We used radial basis function as the kernel function

of SVM, and C was adjusted separately for the minority and the

majority class by their number.

The top 50 features showed the best performance and were

preserved as the final feature set. The mean performance of the

final feature set implemented in the validation cohort with 100

bootstrap was AUC ¼ 0.782, ACC ¼ 0.712, SENS ¼ 0.674, and

SPEC¼ 0.730, as shown in Table 2. The receiver operating char-

acteristic curve is shown in Figure 6. The number of each type

features was shown in Figure 7. It shown that after feature selection,

each type of features have at least one features remained.

Table 2. Performance of Predicting LN Status by the Radiomics Evaluation.

Cohort Type Feature Selection Method Feature Number AUC ACC SENS SPEC

Validation cohort Feature selection Origin 614 0.741 (0.690-0.791) 0.689 0.717 0.627

WRST mean 400 0.736 (0.685-0.787) 0.682 0.706 0.630

GA_mRMR mean 200 0.735 (0.685-0.789) 0.683 0.706 0.632

SRC 75 0.754 (0.702-0.807) 0.699 0.723 0.646

Final – 50 0.782 (0.731-0.833) 0.712 0.674 0.730

Independent testing cohort – – 50 0.727 (0.653-0.801) 0.710 0.656 0.745

Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve; GA, genetic algorithm; LN, lymph node; mRMR, minimum-

redundancy-maximum-relevance; SRC, sparse representation classification; SPEC, specificity; WRST, Wisconsin rank sum test.

Note: The results with Italic value had the highest AUC.

Figure 6. The ROC curves of our radiomics evaluation in validation

and independent testing cohorts. The yellow line is the curve of

validation cohort with AUC ¼ 0.782, the red line is the curve of

validation cohort with AUC¼ 0.727, and the blue line is the reference

line with AUC ¼ 0.500. AUC indicates area under the receiver

operating characteristic curve; ROC, receiver operating characteristic.

Figure 7. Number of each type features before and after feature selection.
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Prediction of LN Status by Feature Type

The prediction performance of each feature type in the final

feature set is detailed in Table 3. The overall performance of

the echo pattern was the best, with AUC ¼ 0.753, ACC ¼
0.701, SENS ¼ 0.711, and SPEC ¼ 0.696. The sensitivity of

orientation was the highest with SENS ¼ 0.847, showing

potential to identify positive cases. Regarding size, shape,

demographic information, orientation, and position, these fea-

ture types only had 1 or 2 features in the final feature set; thus,

their AUC values were all below 0.65 even though these fea-

tures all satisfied the P < .05 condition. As expected, the model

including all feature types outperformed those based on only

one category, and the combination achieved the highest AUC

of 0.783 and ACC of 0.711.

Lymph Node Status Prediction Based on the Final Feature
Set in the Independent Testing Cohort

An independent testing cohort with 150 cases was used to

examine the performance of our radiomics model. The final

feature set and the SVM prediction model were applied to

predict LN status in the independent testing cohort. The per-

formance metrics are shown in Table 2, with AUC ¼ 0.727,

ACC ¼ 0.710, SENS ¼ 0.656, and SPEC ¼ 0.745. The results

indicated that our model was accurate in both the validation

and independent testing cohorts.

Clinical Application

The decision curve of the radiomics evaluation on the final

feature set are shown in Figure 8. The decision curve shown

that if the threshold probability was 10% to 85%, using the

radiomics evaluation to predict LN status added more benefit

than treat all patients or treat none patients which assume all

LN status as positive or negative.

Discussion

Lymph Node Metastasis Evaluation in Current Studies

Over the past few years, the global incidence of PTC has

increased significantly, while the mortality of PTC has

remained stable. The sharp increase in the detection rate of

PTC is because of the increased resolution of high-frequency

US examination and the greater prevalence of accurate phys-

ical examination. The state of PTC in China is similar to the

global situation. Although in most cases of PTC, especially

PTMC, the disease progresses slowly and does not threaten

the life of patients, there are still a few instances in which PTC

will progress significantly, such as LN metastasis and extra-

thyroidal extension. Lymph node metastasis is an important

indicator in evaluating the progression of PTC, and it is a

predictor of poor outcome, as determined by multivariate

analysis.17 Therefore, the key to avoiding PTC progression

is to distinguish the small fraction of tumors that are danger-

ous and have the potential for LN metastasis from all the other

inert tumors that progress slowly.

However, the detection rate of central cervical LN metasta-

sis by US examination is very low as shown in our previous

study, with SENS ¼ 0.148, SPEC ¼ 0.940, and ACC ¼
0.662.32 In current clinical practice of China, the LN status is

first screened and diagnosed by US examination. Then, US-

guided FNA biopsy and CT are conducted for highly suspicious

nodes or LNs. Subsequently, prophylactic LND of central and

lateral cervical LNs is performed for patients with suspicious

node during clinical diagnosing and operating to prevent seri-

ous outcomes.5,7,8 Nevertheless, LND may increase the risk of

patients having parathyroidism and nerve injury. In addition,

whether LND can improve the survival rate of patients with

Table 3. Performance of Predicting LN Status by Different Types of

Features.

Feature Type

Feature

Number AUC ACC SENS SPEC

Demographic information 1 0.610 0.565 0.674 0.515

Size 1 0.558 0.532 0.611 0.495

Shape 1 0.566 0.490 0.759 0.365

Margin 3 0.690 0.665 0.571 0.709

Boundary 3 0.625 0.702 0.393 0.846

Orientation 1 0.630 0.536 0.847 0.392

Position 2 0.644 0.683 0.432 0.800

Echo pattern 21 0.753 0.701 0.711 0.696

Posterior acoustic pattern 11 0.740 0.703 0.725 0.692

Calcification 6 0.743 0.687 0.677 0.691

All 50 0.783 0.711 0.679 0.725

Abbreviations: ACC, accuracy; AUC, area under the receiver operating char-

acteristic curve; LN, lymph node; SPEC, specificity. Figure 8. Decision curve analysis for the radiomics evaluation of the

final feature set. The dark blue line is the decision curve of radiomics

final feature set. The light blue line is the 95% confidence interval

decision curve of radiomics final feature set. The green line is the

decision curve for treat all patients assuming LN status as positive.

The red line is the decision curve for treat none patients which

assumes LN status as negative. LN indicates lymph node.
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PTC is debatable, necessitating clinical consideration prior to

use in patients. Additionally, performing follow-up examina-

tions for all patients with PTC is another way to detect LN

metastasis earlier. However, follow-up examinations are costly

and time consuming, and they are inconvenient for both

patients and clinicians. All of those weakness prevent their

wide use for detecting LN metastasis.

Many previous studies based on US have focused on iden-

tifying predictors for LN metastasis in patients with PTC in

order to offer guidelines for clinicians. Gomez et al concen-

trated on US characteristics and found that calcification (P ¼
.007) and size (P¼ .003) were associated with LN metastasis in

patients with PTC.15 Wang et al concluded that the significant

factors of a multivariate analysis were age <45 years, larger

size, “wider-than-tall” shape, extrathyroid extension, and

mixed flow (P < .05).16 These results can serve as references

in clinical practice.

Although the studies mentioned above are encouraging, all

of the results were assessed by P value, which is an index than

can reflect relevant differences between 2 factors. In addition,

and most importantly, the features used by those studies were

based on clinician experience and visual inspection without

repeatability.

Although US examination is the first choice for diagnosing

thyroid disease in clinical practice, the examination has serious

limitations. Papillary thyroid carcinoma frequently metasta-

sizes to the lateral or central regional compartment of the LNs.

Metastatic nodes in the lateral cervical compartment are easily

detected by US examination, although some can be missed by

radiologist carelessness. In clinical practice, if lateral LN

metastasis is detected during US examination, the patient will

undergo LND. However, metastatic nodes in the central cervi-

cal compartment are not so easily detected by US examination

because they were obscured by thyroid and nearby tissue.

Therefore, patients with malignant FNA findings may require

LND of central cervical LNs to prevent LN metastasis. Thus,

LND for lateral or central cervical LN metastasis should be

considered carefully before surgery to avoid overtreatment.3

Our Findings and the Advantages of Radiomics Analysis

Recently, the use of machine learning in medicine has had great

success. Models built by machine learning can be considered

objective observers that will consider a matter from the same

viewpoint at a given level. Radiomics, which sometimes

applies machine learning methods, has recently attracted the

interest of many researchers for exploring the associations

between diagnostic and prognostic information with quantita-

tive medical image features.20-22 This approach has also been

used to predict LN metastasis in other types of cancer. Vallières

et al proposed the use of an FDG-PET and MRI texture-based

model for estimating LN metastasis in lung cancer.20 Huang et

al proposed a radiomics nomogram, which incorporated a 3-

item radiomics signature, carcinoembryonic antigen status, and

CT-reported LN status, for the preoperative prediction of LN

metastasis via CT in patients with colorectal cancer.21 Wu et al

proposed the preoperative prediction of LN metastasis in

patients with bladder cancer through a radiomics nomogram

that incorporated a radiomics signature and the CT-reported

LN status.22 The above successes suggested the feasibility of

applying radiomics to predict the LN status in PTC by US.

According to the analytical results of our proposed radio-

mics model, US images of PTC with and without LN metas-

tasis present different radiomics signatures. Two typical US

images of thyroid tumors with different LN statuses are shown

in Figure 9. The results showed that LN metastasis was asso-

ciated with a younger age, a larger tumor size, an oval or

irregular tumor shape, a spiculate margin, an obscure

Figure 9. Examples of US thyroid images of cases with different LN status. A, US images with depth of 4.0 cm of whose LN status was positive

of a 45-year-old female patient. The size of the tumor was 7 � 11 � 7 mm and it was taller-than-wide, and the tumor has an irregular shape, a

spiculate margin, an obscure boundary, an echo pattern heterogeneity, a mixed posterior echo pattern, multiple calcification, and located in the

middle of the left lobe third. B, US images with depth of 3.5 cm of whose LN status was negative of a 44-year-old male patient. The size of the

tumor was 17 � 14 � 18 mm and the tumor was parallel, with an oval shape, an irregular margin, a mutation boundary, an echo pattern

homogeneity, an enhanced posterior echo pattern, little calcification, and located in the low of the left lobe third. LN indicates lymph node; US,

ultrasound.
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boundary, a taller-than-wide shape, thyroid invasion, a com-

plex echo pattern, posterior region homogeneity, and macro-

calcification or multiple calcification. In contrast, a negative

LN status in patients with PTC was related to an older age,

smaller tumor size, rounder tumor shape, a wider-than-tall

tumor shape, a location inside the thyroid region, a smooth

margin, a mutational boundary, echo pattern homogeneity, a

complex posterior echo pattern, and little calcification. All

features in the final feature set performed well in the radio-

mics evaluation, although their performance varied by feature

type. As shown in Table 3, the performance of 3 feature types,

including echo pattern, posterior acoustic pattern, and calci-

fication, alone could distinguish between patients with and

without LN metastasis. The remaining 7 feature types, includ-

ing demographic information and tumor size, shape, orienta-

tion, position, margin, and boundary, did not yielded a

performance as high as the other ones. Details of the P, mean,

and SD values in patients with or without LN metastasis for

the 50 features in the final feature set are illustrated in Sup-

plemental Table E2. These results are similar to those found

for distinguishing malignant and benign breast cancer tumors,

except for the echo pattern of the posterior region.33

There is an example of a 45-year-old patient who were

indicated no enlarged lymph nodes by US report but the radio-

mics model predicted metastases, later confirmed after sur-

gery, as shown in Figure 10. Doctors couldn’t determine

whether the LN is malignant or not just depend on the US

image of the LN and the primary thyroid tumor. But the radio-

mics evaluation predicted that the LN status of the patient is

positive by just using the US image of the primary tumor. And

the pathological report based on tissue gathered from surgery

confirmed the result.

As for the stability of those radiomics features, the study

of Hu et al shows that the segmentation results, machine

models, and machine setting including gain and frequency

can affect the stability of quantitative features. However,

some of those features were robust, including morphological

features, intensity features, and GLCM features, while most

features were insensitive to machine settings.23 In the final

feature set of 50 features in our study, some features such as

GLRLM variance, were proved to be stable and cannot be

easily influenced.

Our study has some limitations. First, previous studies based

on multimodal techniques we mentioned above showed the

applicability of multimodality images in our study. Different

modalities focused on different aspects of human organs and

functions, making multimodality images contain more infor-

mation. Secondly, diffuse thyroid uptake such as HT often

represents benign nodes but looks similar to the texture of

malignants. Therefore, it could change texture feature of thyr-

oid, and influence the stability of our model. Thirdly, recent

studies shown that using multicenter data can make model

more robust than just using data from single institution.

Besides, big data are a required principle of radiomics for

mining concealed prognosis information to avoid overfitting.

Once overcome those problems, the SENS and SPEC of the

model in our study may be improved.

Conclusions

The radiomics evaluation proposed in this article has potential

to predict LN status noninvasively in patients with PTC based

on preoperative US thyroid images. Patients with US images

showing a complex echo pattern, posterior region homogene-

ity, and macrocalcification or multiple calcification are more

likely to have LN metastasis. This LN status prediction model

has the potential to facilitate early medical management and

alleviate overdiagnosis.
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Figure 10. The US image of a 45-year-old female patient with PTC with pathological confirmed LNM after surgery. A, The primary thyroid
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33. Mendelson EB, Böhm-Vélez M, Berg WA, et al. ACR BI-RADS®

Ultrasound. In: Carl J. D’Orsi, ed. ACR BI-RADS® Atlas, Breast

Imaging Reporting and Data System. Reston, VA: American Col-

lege of Radiology; 2013.

Liu et al 13



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


